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VECTORS IN MULTIPLE OBJECTIVE INTEGER LINEAR

PROGRAMMING
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Abstract. An algorithm for enumerating all nondominated vectors
of multiple objective integer linear programs is presented. The method
tests different regions where candidates can be found using an auxiliary
binary problem for tracking the regions already explored. An exper-
imental comparision with our previous efforts shows the method has
relatively good time performance.
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1. Introduction

Generating non-dominated vectors and efficient solutions in multiple objective
mathematical programming has been a field of interest both as a theoretical prob-
lem and as a part of Multiple Criteria Decision Making procedures. Multiple
Objective Integer Linear Programming (MOILP) arises in Multiple Criteria De-
cision Making (MCDM) problems involving discrete decisions [14]. Several pro-
cedures have been developed for generating the non-dominated set for MOILP
problems [3,7,12,14] as well as interactive procedures for these problems [1,5,9].

The authors have contributed in this field with two different approaches for
generating the set of non-dominated vectors in MOILP problems; in our first
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proposal, the results were generated in decreasing order of some fixed weighted
objective function [10], while in our second proposal the output was ordered to
obtain a well dispersed subset of vectors [11].

In this paper, we present a different approach for solving the problem where no
specific order is imposed to the output. At each stage, the algorithm tries to find
a new nondominated vector by selecting for each known nondominated vector an
objective to surpass, testing different combinations until a new efficient solution
is found. The control of the combinations of objectives tested is made using an
auxiliary binary ILP problem. Although this simple approach cannot control the
order of apparition of the solutions, it offers a much better time performance than
our previous methods.

The division of the search space for solving MOILP problems has also been used
in algorithms recently proposed by Laumanns et al. [6] and Tenfelde-Podehl [13].
The main difference with these algorithms is that they split the objective space
using a grid whose nodes are determined by the values of all previously found non
dominated vectors, imposing upper and lower bounds to the values of the objec-
tive functions. This leads to ILP problems whose solutions cannot be guaranteed
to correspond to non dominated solutions. The method presented here, on the
contrary, does not impose explicit upper bounds to the objective functions when
defining partial search regions and therefore it will always find a new non dom-
inated solution, if it exists, or will lead to an infeasible problem if such solution
does not exists in that region. The procedure can be adapted to find subsets of
nondominated vectors

2. Theoretical basis and algorithm

The MOILP problem can be stated as:

(P ): “max” {Cx: Ax ≤ b, x ≥ 0, x ∈ Zn}

where C ∈ Zp×n, A ∈ Rm×n and b ∈ Rm. Cx represents p objective functions,
Ax ≤ b represents m linear constraints and x represents n integer decision vari-
ables. The feasible set of problem (P ) will be denoted F (P ). In this work, we
assume that F (P ) is bounded and non-empty.

Because of conflicting objectives, there is not usually a maximum solution but
a set of non-dominated vectors.

Definition 1. A feasible solution x∗ to problem (P ) is an efficient solution iff there
is not another feasible x such that Cx ≥ Cx∗ with at least one strict inequality.
The resulting criterion vector Cx∗is said to be non-dominated.

A well-known result connecting Multiple Objective Programming and Paramet-
ric Programming is the following [9]:

Theorem 1. If x∗ is an optimal solution to the (single objective) problem:

max
{
λtCx: x ∈ S

}



ENUMERATING THE NON-DOMINATED SET IN MULTI-OBJECTIVE ILP 373

Figure 1. Non-dominated vectors greater than a fixed z are non
dominated to (P ).

for some λ ∈ R
p, λ > 0, then x∗is an efficient solution to problem:

“ max ” {Cx: x ∈ S} .

Efficient solutions that are optimal to the parametric problem in Theorem 1 are
said to be supported efficient solutions. Unlike Multiple Objective Linear Pro-
gramming, the converse of this theorem does not hold when some variables are
integer [2] as some efficient solutions (known as unsupported efficient solutions)
may not be optimal for any λ > 0.

The result of Theorem 1 still holds true if we constrain the search region:

Proposition 1. Let z ∈ R
p be a fixed objective vector,λ ∈ R

p a fixed positive
weight vector and x∗ an optimal solution to the problem:

max
{
λtCx: Cx ≥ z, x ∈ F (P )

}
.

Then x∗ is an efficient solution to problem (P ).

Proof. Let us suppose that x∗ is not efficient. Then there exist x̃ ∈ S such that
Cx̃ ≥ Cx∗ with at least one strict inequality. As Cx̃ ≥ Cx∗ ≥ z and λtCx̃ >
λtCx∗, x∗ is not optimal. This contradicts the hypothesis that x∗ is an optimal
solution (see Fig. 1). �

Taking z as a parameter1 we can find the whole set of non dominated vectors [8]:

1Theoretically, this holds true if z takes all possible values in R
p; in practice, the values of z

are chosen according to the values of known non-dominated vectors.
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Proposition 2. The set of efficient solutions to problem (P ) is the set of optimal
solutions to the parametric problem:
(Pλ,z) :

max λtCx
s.t. Ax ≤ b

Cx ≥ z
x ≥ 0, x ∈ Zn

for an arbitrarily fixed λ > 0 and all z ∈ Rn.

Proof. From Proposition 1 we have that any optimal solution x∗ to (Pλ,s) is effi-
cient to (P ). Conversely, if x∗ is efficient to (P ) it is an optimal solution to (Pλ,z)
for z = Cx∗. �

2.1. Algorithm

The basic idea of the algorithm is to find an initial non dominated vector using
Theorem 1 and then sequentially find new vectors applying Proposition 1 with z
such that for each non dominated vector previously found at least one component
of z is strictly greater. The decision of increasing or not the value of the k-th
objective function on the s-th solution is controlled by a binary variable ys

k ; a
value of 1 means we must improve the value of the function while a value of 0
indicates we will not necessarily do so. Then for each non dominated vector zs we
have a constraint

∑p
k=1 ys

k ≥ 1 to guarantee that at least one objective function is

surpassed. For a given y =
(
ys

k

)
k=1,...,p; s=1,...l we will have a constraint (Cx)k >

(Cxs)k when ys
k

= 1 or, more tersely, for each objective function k we have the
constraint:

(Cx)k > max
s=1...l
ys

k
=1

{(Cxs)k}

where l is the number of previously found non dominated vectors. By convention,
max

s=1...l
ys

k
=1

{(Cxs)k} = −∞ when ys
k

= 0 for all s = 1, ..., l.

In a MOILP problem with an integer cost matrix C we can restate this con-
straint as (Cx)k ≥ max

s=1...l
ys

k
=1

{(Cxs)k} + 1. For large problems, the enumer-

ation of all non-dominated vectors may not be practical, and a representative
subset of the non-dominated vectors can be generated changing this constraint
to (Cx)k ≥ max

s=1...l
ys

k
=1

{(Cxs)k} + fk ; where fk is a fixed value representing a

minimal increment on objective k for a new solution to be noteworthy.
The management of the selected combination y is basically an enumerative

scheme. In this work we did this enumeration using a linear integer system (L)
implemented as an ILP with an arbitrary objective function. Other enumeration
schemes can be used, however, this choice reuses ILP routines already being used
for solving weighted objective problems.

Some ys
k

combinations will lead to an empty search region. In order to avoid
such a failed combination ys

k
to reappear it is necessary that at least one variable
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ys
k that was equal to 1 be changed to 0 in future attempts (that is, at least one

of the objectives that were requested to rise should not be increased). Defining
K =

{
(k, s) | ys

k
= 1; k = 1...p; s = 1...l

}
, this is equivalent to ask that the sum

of all indices corresponding to those in K must be strictly less than the cardinality
of this set: ∑

(k,s)∈K

ys
k ≤ ‖K‖ − 1.

Notice that this constraint not only will rule out ys
k

but also any other one that
includes the increases requested by the failed combination. This suggests trying
first the combinations with the least requested increases; that is, implementing
the linear system (L) as an ILP with the objective of minimizing the sum of the
ys

k variables.

2.1.1. Preliminary Algorithm

Accordingly to these ideas we have the following procedure:
(1) (Initialization step) Choose λ > 0 and steps fk > 0, k = 1, ...p. Solve

Pλ : max {λtCx: x ∈ F (P )}. If there is no solution then stop; otherwise,
let x1 be an optimal solution; l = 1.
Solve the problem:

L : min

{
l∑

s=1

p∑
k=1

ys
k:

p∑
k=1

y1
k ≥ 1, y1

k ∈ {0, 1} , k = 1...p

}
.

Let y1 be an optimal solution (one solution is y1
1

= 1; y1
k

= 0, k = 2, ..., p).
(2) Let z be such that zk = max

s=1...l
ys

k
=1

{(Cxs)k +fk} ; zk = −∞ if ys
k

= 0

for all s = 1...l . Let P l
λ be the problem obtained adding the constraints

Cx ≥ z to Pλ. Solve P l
λ. If there is no solution, go to step 3; otherwise,

go to step 4.
(3) Add the constraint ∑

k=1...p
s=1...l
ys

k
=1

ys
k ≤ −1 +

∑
k=1...p
s=1...l
ys

k
=1

1

to problem (L). Go to step 5.
(4) Let xl+1 be an optimal solution to P l

λ; let l = l+1 (this implies modifying
the objective function in L) and add the constraints

p∑
k=1

yl
k ≥ 1, yl

k ∈ {0, 1} , k = 1...p

to problem (L).
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(5) Solve L. If there is no solution stop; otherwise, let y = (ys
k
) k=1...p; s=1...l

be an optimal solution. Go to step 2.

At the end of the process, we have a list of efficient solutions {xs}s=1...l and a set
of non dominated vectors {Cxs}s=1...l.

Proposition 3. The algorithm ends in a finite number of steps when applied to
a Multiple Objective Mixed Integer Linear Programming problem with a bounded
feasible region for any fk > 0, k = 1, ...p.

Proof. First we will prove that the algorithm yields a new solution or ends in a
finite number of steps (that is, step 2 eventually leads to step 4 or to the stop
condition in step 5). In effect, at the beginning of step 2, Problem L has a finite
number of feasible solutions and each time step 3 is executed at least one solution y
is deleted from the feasible set; therefore, we will ultimately get a feasible problem
P l

λ or an infeasible problem L .
Now we show that the number l of solutions generated by the algorithm is finite.

Defining z such that z
k

= minx∈F (P ) {(Cx)k}−fk, Δs = {z |Cxs − f < z ≤ Cxs}
where f = (f1,...,fp)

T , W =
{
z |z ≤ z ≤ Cx, for some x ∈ F (P )

}
and W s ={

z |z ≤ z ≤ Cxs
}

for s = 1, ..., l; we can verify that Δs ⊂ W s ⊂ W but for
any s′ < s there is a k such that (Cxs)k ≥ (Cxs′)k + fk so Δs ∩ W s′ = ∅ and
therefore Δs ∩ Δs′ = ∅ for s′ < s.

If μ represents the usual measure2 in Rp, then the measure of Δs is constantly

equal to μ (Δs) =
p∏

k=1

fk, and we have that μ

(
l⋃

s=1
Δs

)
= l

p∏
k=1

fk. But
l⋃

s=1
Δs ⊂

W so l
p∏

k=1

fk ≤ μ
(
W

)
and l ≤ μ

(
W

)
/

p∏
k=1

fk. (See Fig. 2) �

Proposition 4. When applied to MOILP with a bounded feasible region and an
integer cost matrix C the algorithm generates all non dominated vectors when
fk = 1, k = 1, ...p.

Proof. Let {Cxs}s=1...l be the set of non dominated vector generated at the end
of the algorithm and let x̃ ∈ F (P ) efficient such that Cx̃ 
= Cxs for all s = 1...l.
Let ỹ =

(
ỹs

k

)
k=1...p; s=1...l

such that ỹs
k = 1 if (Cx̃)k > (Cxs)k , ỹs

k = 0 otherwise.

At the end of the algorithm the last version of problem L is infeasible and thus ỹ
must violate some constraint in L.

As Cx̃ is non dominated, for each s = 1...l there is k such that (Cx̃)k ≥
(Cxs)k + 1 and therefore all constraints

∑p
k=1 ys

k ≥ 1 must hold. Then we are

2That is, the measure of a hyperbox with opposite vertices at the origin and (f1, ..., fp) is
p∏

k=1
fk.
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Figure 2. The Δs are non-intersecting equally-sized subsets of
W so there can only be a finite number of them.

violating some constraint of the form∑
k=1...p
s=1...l
ys

k
=1

ys
k ≤ −1 +

∑
k=1...p
s=1...l
ys

k
=1

1

for some y that led to an infeasible P l
λ. As ỹ violates this constraint, ys

k
= 1 ⇒

ỹs
k = 1 so in the construction of this problem P l

λ :

zk = max
s=1...l
ys

k
=1

{(Cxs)k + 1} ≤ max
s=1...l
ỹs

k=1

{(Cxs)k + 1} ≤ (Cx̃)k

and x̃ is feasible to P l
λ contradicting that this problem is infeasible. �

2.1.2. Order Constraint between Artificial Variables

As stated now, the algorithm relies on the enumeration of possible values of the
artificial variables ys

k. As the number of combinations grows exponentially with
the number of solutions and objective functions, we need to incorporate ideas to
lower the number of combinations we must try. Recalling that yl

k = 1 means trying
to find a better value for the k-th objective function than on the l-th solution, we
find that some ys

k combinations are logically inconsistent.
The algorithm can be improved noticing that if ys

k = 1 then for each solution
xs′ such that (Cxs′)k ≤ (Cxs)k we can only consider the possibility of ys′

k = 1 as
increasing (Cxs)k implies raising Cxs′, then we can add the constraint ys′

k ≥ ys
k

whenever (Cxs′)k ≤ (Cxs)k. The algorithm is easily modified by inserting between
steps 4 and 5 the following instruction:



378 J. SYLVA AND A. CREMA

Figure 3. Feasible set.

For each k = 1, ..., p find a permutation σk on the index set {1, ..., s} such that
(Cxs)σk(1) ≥ (Cxs)σk(2) ≥ ... ≥ (Cxs)σk(s) and add to problem L the constraints

y
σk(1)
k ≤ y

σk(2)
k ≤ ... ≤ y

σk(s)
k .

As this modification only adds constraints to problem L, the proof of Propo-
sition 3 remains valid. We now prove that the conclusion of Proposition 4 still
holds:

Proposition 5. When applied to MOILP with a bounded feasible region an integer
cost matrix C the modified algorithm generates all non dominated vectors when
fk = 1, k = 1, ...p.

Proof. Defining x̃ and ỹ as in the proof of Proposition 4 , we have already proved
that ỹ does not violate the constraints of the preliminary algorithm then it must
violate some constraint of the form ys

k ≤ ys′
k for a pair of solutions such that

(Cxs)k ≥ (Cxs′)k. Then we must have ỹs
k = 1 and ỹs′

k = 0 that accordingly
to the construction of ỹ corresponds to (Cx̃)k > (Cxs)k and (Cx̃)k ≤ (Cxs′)k

contradicting that (Cxs)k ≥ (Cxs′)k. �

However, when the hypothesis of the proposition are not met (fk 
= 1) the algo-
rithms can yield different subsets of non dominated vectors.

3. Numerical example

Let us consider the MOILP problem:
(P ) : “ max” x1 − 2x2

−x1 + 3x2

s.t. x1 − 2x2 ≤ 0
x1, x2 ∈ {0, 1, 2} .

The feasible region is shown in Figure 3 while the objective space image is shown
in Figure 4. For this example we choose λ = (4, 3)T . As we want to enumerate all
non dominated vectors we take f1 = f2 = 1. An initial solution is found solving:
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Figure 4. Feasible objective vectors.

(P 0
λ)
max x1 + x2

s.t. x1 − 2x2 ≤ 0
x1, x2 ∈ {0, 1, 2} .

An optimal solution to this ILP problem is x1 = (2, 2)T with an optimal objective
function value v(P 0

λ) = 4. Then x1 = (2, 2)T is an efficient solution to problem
(P ) with a (non dominated) objective function value vector equal to (−2, 4)T .

Now we select an objective to raise by solving the following linear integer prob-
lem:

(L) min y1
1 + y1

2

s.t. y1
1 + y1

2 ≥ 1
y1
1 , y

1
2 ∈ {0, 1} .

There are two solutions, (1, 0)T and (0, 1)T . For this example we will always choose
the solution where the value 1 is assigned to the variable with the smallest possible
index,so we will use y1 = (1, 0)T . This indicates we will add restrictions to raise
the value of the first objective function (see Figs. 5 and 6):

(P 1
λ) max x1 + x2

s.t. x1 − 2x2 ≤ 0
x1 − 2x2 ≥ −2 + 1 = −1 (3)
x1, x2 ∈ {0, 1, 2} .

The optimal solution is x2 = (2, 1)T with an objective value v(P 1
λ ) = 3. We have

found a new efficient solution x2 = (2, 1)T and a non dominated vector (0, 1)T .

3We will look for solutions with a better value of the first objective function.
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Figure 5. Search region for P 1
λ (decision variable space). Feasi-

ble region is the shaded area.

Figure 6. Search region for P 1
λ (objective function space). Fea-

sible region is the shaded area.

Now we solve:

(L) min y1
1 + y1

2 + y2
1 + y2

2

s.t. y1
1 + y1

2 ≥ 1
y2
1 + y2

2 ≥ 1
y1
1 ≥ y2

1 (4)
y2
2 ≥ y1

2

y1
1 , y

1
2 , y

2
1 , y

2
2 ∈ {0, 1} .

We consider first the solution y1 = y2 = (1, 0)T , getting the problem:
(P 2

λ) max x1 + x2

s.t. x1 − 2x2 ≤ 0
x1 − 2x2 ≥ 1
x1, x2 ∈ {0, 1, 2} .

4If y2
1 = 1 we will be looking for solutions with first objective value greater than that of the

second solution (0), then it will also be better than the respective value in the first solution (−2),
that is we can assume that y1

1 = 1.
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Figure 7. No feasible solution has a better first objective.

Figure 8. No feasible solution has a better first objective than
z2 = (0, 1)T .

In this problem we are trying to find a solution with a better first objective function
value than the two previous solutions (Fig. 7). This problem is infeasible so we
add a new constraint to L:

(L) min y1
1 + y1

2 + y2
1 + y2

2

s.t. y1
1 + y1

2 ≥ 1
y2
1 + y2

2 ≥ 1
y1
1 ≥ y2

1

y2
2 ≥ y1

2

y1
1 + y2

1 ≤ 1
y1
1 , y

1
2 , y

2
1 , y

2
2 ∈ {0, 1} .
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Figure 9. Higher first objective than x1 and second objective
than x2.

Figure 10. Looking for a first objective better than (−2, 4)T and
second objective better than than (0, 1)T , we find vector (−1, 2)T .

This problem admits the solution y1
1 = y2

2 = 1, y1
2 = y2

1 = 0; that is, we will
now try to find a solution with a higher first objective value than x1 and a sec-
ond objective value better than x2 (Fig. 9). The corresponding problem (P 2

λ) is:
(P 2

λ) max x1 + x2

s.t. x1 − 2x2 ≤ 0
x1 − 2x2 ≥ −1
−x1 + 3x2 ≥ 2
x1, x2 ∈ {0, 1, 2} .

This problem has an optimal solution x3 = (1, 1)T with an objective vector
(−1, 2)T .

If we continue this procedure until the problem (L) is infeasible, the process ends
and we will have all non dominated vectors and one efficient solution corresponding
to each one of them (Tab. 1).
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Table 1. Efficient solutions and non dominated vectors (P ).

(x1, x2) (z1, z2)
(2, 2) (−2, 4)
(2, 1) (0, 1)
(1, 1) (−1, 2)
(1, 2) (−3, 5)
(0, 2) (−4, 6)

4. Computational results

The methods were programmed in MS Visual C++ 2005 Express Edition
Beta 2 and executed on a Sony VAIO VGN-A190 under Windows XP SP2. Linear
integer problems were solved using the branch and bound routine of the COIN-OR
library [4]. For each problem size, 30 different problems were randomly generated
and executed five times5. For each problem size, mean and maximal number
of solutions and CPU times are reported. The method presented in this article
is referred to as “undirected search” while our previous methods are labeled as
“weighted objective” [10] and “maximal dispersion” [11]. In all cases, weighted
problems were solved giving an equal importance to each objective. The integer
linear programs are not solved incrementally although the last basis of the linear
relaxation is used as an initial basis for the next iteration.

The first batch of problems are multiconstrained 0-1 knapsack problems with
two objectives functions. Objective functions and constraint coefficients are un-
correlated integers uniformly distributed between 1 and 99. For each constraint,
the right-hand side value is set to a (truncated) 50% of the sum of its coefficients.
For all these problems, the complete set of non-dominated vectors was generated.
Results are shown on Table 2.

The second group of tests involves randomly generated multiconstrained 0-
1-2 knapsack problems with two objectives functions. Objective functions and
constraint coefficients are uncorrelated integers uniformly distributed between 1
and 99. For each constraint, the right-hand side value is set to the sum of its
coefficients. The complete set of non-dominated vectors was generated. Table 3
shows the results of these experiments.

The method was also tested with multiconstrained 0-1 knapsack problems with
three objective functions. Objective functions and constraint coefficients are ran-
domly generated integers between 1 and 999 and the right-hand side values of the
constraints are set to one half of the sum of its coefficients. In this case, there is
obviously a much larger set of non-dominated vectors and the complexity of integer
linear programs grows at a faster rate with every new solution found. Therefore,
only a subset solutions was generated; this was accomplished by stipulating an
increment of at least 500 units in some objective for any new solution generated.

5Experiments are repeated five times in order to average execution times which are variable
when working under windows XP.
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Table 2. Knapsack problems, 2 objectives, m constraints and n variables.

Method
Undirected search Weighted objective Maximal dispersion

m n mean maximum mean maximum mean maximum

5 15 Solutions 7.2 13 7.2 13 7.2 13
Time[s] 0.774 2.544 1.795 8.192 1.783 10.064

20 Solutions 12.8 22 12.8 22 12.8 22
Time[s] 2.700 8.251 12.184 45.085 15.808 63.281

25 Solutions 14.5 25 14.5 25 14.5 25
Time[s] 5.592 25.357 33.279 273.884 36.720 223.962

30 Solutions 20.8 36 20.8 36 20.8 36
Time[s] 13.014 33.307 120.244 410.430 132.971 438.601

10 15 Solutions 7.3 19 7.3 19 7.3 19
Time[s] 1.190 5.769 2.824 26.007 3.752 34.099

20 Solutions 13.3 30 13.3 30 13.3 30
Time[s] 5.713 26.158 30.925 261.036 38.339 322.093

25 Solutions 16.7 28 16.7 28 16.7 28
Time[s] 8.320 18.977 50.074 219.285 66.567 251.832

30 Solutions 21.0 33 21.0 33 21.0 33
Time[s] 23.697 87.987 221.954 942.885 271.993 1147.180

Table 3. Knapsack, 2 objectives, m constraints and n 0/1/2 variables.

Method
Undirected search Weighted objective Maximal dispersion

m n mean maximum mean maximum mean maximum

5 12 Solutions 12.4 31 12.4 31 12.4 31
Time[s] 1.765 14.521 9.616 158.628 9.911 142.695

15 Solutions 17.5 37 17.5 37 17.5 37
Time[s] 4.062 14.311 34.170 203.092 36.212 221.699

18 Solutions 19.7 41 19.7 41 19.7 41
Time[s] 6.657 28.100 74.958 647.260 67.221 375.030

10 12 Solutions 10.2 20 10.2 20 10.2 20
Time[s] 1.918 6.289 7.044 36.032 7.564 39.166

15 Solutions 18.2 35 18.2 35 18.2 35
Time[s] 6.488 16.414 48.948 217.382 57.977 252.543

18 Solutions 22.8 48 22.8 48 22.8 48
Time[s] 13.591 59.336 141.323 1103.810 179.028 1683.020

The same parameter was used in the two other methods and results are shown on
Table 4.

Another group of experiments consisted in General Assignment Problems (GAP)
with two objective functions. The GAP deals with the optimal allocation of s
agents to a group of t tasks in such a way that each task j is assigned to exactly
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Table 4. Knapsack , 3 objectives, m restricciones and n variables.

Method
Undirected search Weighted objective Maximal dispersion

m n mean maximum mean maximum mean maximum

5 15 Solutions 3.4 8 3.4 7 4.7 12
Time[s] 0.282 1.142 0.475 2.994 1.271 11.006

20 Solutions 4.6 8 4.6 8 7.2 12
Time[s] 0.701 1.933 1.408 5.719 4.398 16.654

25 Solutions 6.6 13 6.6 13 11.4 21
Time[s] 1.841 6.419 6.233 29.993 21.243 103.238

30 Solutions 8.8 17 8.3 16 14.3 27
Time[s] 4.180 12.097 19.313 89.789 60.956 344.676

10 15 Solutions 3.4 6 3.3 6 5.0 9
Time[s] 0.504 1.452 0.802 3.605 2.496 12.098

20 Solutions 4.8 8 4.7 7 7.4 12
Time[s] 1.455 4.376 3.112 10.455 8.372 31.235

25 Solutions 6.7 13 6.7 13 11.4 23
Time[s] 3.937 16.093 14.218 95.958 49.926 285.16

30 Solutions 9.6 14 9.1 14 15.7 22
Time[s] 9.349 35.551 40.192 182.473 123.758 468.254

one agent i incurring a cost cij (a vector in the multiple objective case) and con-
suming rij units of a single resource subject to an availability of bi for each agent.
This results in the formulation:

(GAP ) : “ min ”
∑s

i=1

∑t
j=1 cijxij

s.t.
∑t

j=1 rijxij ≤ bi; i = 1, ..., s∑s
i=1 xij = 1; j = 1, ..., t

xij ∈ {0, 1}i; i = 1, ..., s; j = 1, ..., t.

This formulation is easily modified to a bicriterion problem by considering each
cij to be a vector instead of a number. In this experiments, cij components and
rij are randomly selected integers between 1 and 999 and each bi is fixed at a 50%
of the sum of the corresponding rij . Only a subset of the non-dominated solutions
was generated using a parameter value of 500. Tables 5–7 show the results of these
tests.

5. Conclusions

According to the experimental results, the time performance of the method is
superior than our two previous methods. On the qualitative aspect however the
resulting nondominated vectors do not follow a useful order.
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Table 5. GAP, 5 agents, t tasks.

Method
Undirected search Weighted objective Maximal dispersion

t mean maximum mean maximum mean maximum

60 Solutions 21.2 32 21.2 32 28.1 37
Time[s] 3.189 6.379 7.929 21.922 51.296 102.318

70 Solutions 24.2 31 24.2 31 31.7 42
Time[s] 4.725 6.710 14.338 24.525 83.966 139.240

80 Solutions 28.7 32 28.8 32 37.3 44
Time[s] 7.312 11.386 25.110 37.253 150.319 279.592

90 Solutions 31.7 36 31.7 36 42.6 50
Time[s] 10.050 17.114 36.861 59.375 235.891 355.091

100 Solutions 37.1 45 37.1 45 48.5 57
Time[s] 14.668 21.741 63.514 99.864 384.791 598.27

Table 6. GAP, 10 agents, t tasks.

Method
Undirected search Weighted objective Maximal dispersion

t mean maximum mean maximum mean maximum

60 Solutions 23.5 27 23.5 27 31.1 37
Time[s] 7.260 10.275 21.316 34.420 138.672 189.142

70 Solutions 27.2 35 27.2 35 38 46
Time[s] 12.542 20.490 40.021 80.195 255.045 375.800

80 Solutions 30.7 39 30.8 39 43.4 53
Time[s] 17.858 27.580 63.104 128.956 400.402 659.578

90 Solutions 35.3 41 35.3 41 48.8 59
Time[s] 25.152 37.764 99.179 159.809 615.214 1024.02

100 Solutions 39.2 44 39.2 44 56.2 67
Time[s] 33.502 53.146 142.537 205.546 958.227 1300.340

Table 7. GAP, 15 agents, t tasks.

Method
Undirected search Weighted objective Maximal dispersion

t mean maximum mean maximum mean maximum

60 Solutions 22.6 28 22.6 28 31.1 39
Time[s] 12.428 17.415 33.896 51.364 197.895 298.349

70 Solutions 26.0 29 26.0 29 37.1 42
Time[s] 19.078 29.202 56.097 89.989 378.447 533.127

80 Solutions 29.5 34 29.5 34 42.7 52
Time[s] 28.825 44.194 94.939 142.875 618.016 997.074

90 Solutions 33.2 39 33.2 39 48.2 56
Time[s] 39.202 57.232 139.680 210.232 948 1310.920

100 Solutions 36.9 42 36.9 42 54.4 62
Time[s] 55.628 71.573 218.561 306.851 1487.194 2129.710
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One possible advantage of this method is that it only adds a few additional
constraints to the original problem which makes it easier to develop a special-
ized algorithm for a given problem class. It is also possible to develop a specific
algorithm for the auxiliary binary problem L.

The method can be adapted to find subsets of nondominated vectors by intro-
ducing a step parameter although there is not an easy procedure for estimating a
convenient value of this parameter. When this parameter is used, the method can
be applied to problems with continuous variables.

References
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