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1. Introduction

In this paper, we consider the following smooth minimization problem with
mixed variables.

(MP ) min
x∈IRn

f(x)

s.t. xi ∈ [ui, vi], i ∈ I,

xi ∈ {ui, vi}, i ∈ J,

I ∩ J = φ, I ∪ J = {1, 2, . . . , n},

where ui, vi ∈ IR, ui < vi and f is a twice continuously differentiable function
on an open set containing the feasible set of (MP ). Model problems of the form
(MP ) appear in numerous application areas, including electronic circuit design
[10], computational chemistry [4,11] and combinatorial optimization [2,12], and
cover, for instance, optimization problems with binary constraints [1], where ui =
0, vi = 1 for all i ∈ J and I = ∅, and box-constrained smooth optimization
problems [3,14], where J = ∅.

Recently, global optimality conditions for various classes of problems (MP )
have been established separately for the box constrained problems, where J = ∅
[1,3,9], and for problems with discrete constraints, where I = ∅ [13,15]. Sufficient
optimality conditions were established in [8] for quadratic minimization problems
with box constraints. More recently, in [7] global optimality conditions were given
separately for the minimization of difference of quadratic and convex functions
constrained over box as well as over binary constraints. In [6], corresponding re-
sults were also given for smooth minimization problems. By considering (MP ),
in this paper, we not only present unified global optimality conditions for these
classes of problems extending and improving the corresponding recent results (see
[1,3,6–8]) but also we provide optimality conditions for problems with mixed vari-
ables. Moreover, our extended necessary global optimality conditions now cover
difference of convex minimization problems, whereas our sufficient conditions pro-
vide easily verifiable conditions for global optimality of various classes of noncon-
vex problems. Our approach is based on a minimizing quadratic underestimator,
which is an underestimator at a feasible point (see [5–7]) at which it attains its
global minimizer. Thus, a minimizing underestimator at a feasible point yields
global optimality of the problem.

The outline of the paper is as follows. Section 2 presents necessary optimality
conditions for various classes of problems (MP ), including difference of convex
minimization problems. Section 3 provides conditions that are sufficient for global
optimality of (MP ), and includes conditions for constructing a minimizing qua-
dratic underestimation of a smooth function.
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2. Necessary global conditions

In this section we derive necessary conditions for a given feasible point to be a
global minimizer of the optimization model problem (MP ). We then give several
classes of optimization problems where the conditions can easily be checked.

We begin by giving the notations and definitions used throughout the paper.
For a matrix, A � 0 means that A is positive semi-definite. A diagonal matrix
with diagonal elements a1, a2, . . . , an is denoted by diag(A) := diag(a1, . . . , an).
For f : IRn → IR, the gradient and the Hessian of f at x̄ are denoted by ∇f(x̄)
and ∇2f(x̄), respectively. Clearly, for each x ∈ IRn, ∇2f(x) ∈ Sn, where Sn the
space of all (n× n) symmetric matrices. The set of all positive semidefinite n× n
symmetric matrices is denoted by Sn

+.
For the problem (MP ), put

D = {(x1, . . . , xn)T ∈ IRn | xi ∈ [ui, vi], i ∈ I, xi ∈ {ui, vi}, i ∈ J}.

Let x̄ = (x̄1, . . . , x̄n) ∈ D. For i = 1, 2, . . . n, define

χ̃i =

⎧⎨
⎩

−1 if x̄i = ui

+1 if x̄i = vi

(∇f(x̄))i if x̄i ∈ (ui, vi).
(1)

For ci ∈ IR, i = 1, 2 . . . n, define

c̃i =
{

max{0,−ci} if i ∈ I
−ci if i ∈ J.

(2)

Define

D̃ := {(x1, . . . , xn)T ∈ IRn
∣∣ xi ∈ [ui, vi], i ∈ I ∪ J}. (3)

We now derive necessary conditions for global optimality.

Theorem 2.1. For (MP ), suppose that

max{∂2f(z)/∂x2
i | z ∈ D̃} ≤ ci,

for some ci ∈ IR, i = 1, 2, . . . n. If x̄ ∈ D is a global minimizer of (MP ) then, for
each i = 1, 2, . . . , n,

[NC]
1
2

c̃i(vi − ui) + χ̃i(∇f(x̄))i ≤ 0.
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Proof. Let x̄ be a global minimizer of (MP ). Then, for every x ∈ D there exists
z ∈ D̃ such that

f(x) − f(x̄) =
1
2

⎛
⎝ n∑

j=1

n∑
i=1

(
∂2f(z)
∂xi∂xj

(xi − x̄i)(xj − x̄j)
)

+
n∑

i=1

(∇f(x̄))i (xi − x̄i)

⎞
⎠

=
1
2

n∑
i=1

⎛
⎝ n∑

j=1

∂2f(z)
∂xi∂xj

(xi − x̄i)(xj − x̄j) + (∇f(x̄))i (xi − x̄i)

⎞
⎠.

Since x̄ is a global minimizer of (MP ), for each x ∈ D,

n∑
i=1

⎛
⎝ n∑

j=1

1
2

∂2f(z)
∂xi∂xj

(xi − x̄i)(xj − x̄j) + (∇f(x̄))i (xi − x̄i)

⎞
⎠ ≥ 0. (4)

Then, for each i = 1, 2, . . . , n,

1
2
ci(xi − x̄i)2 + (∇f(x̄))i(xi − x̄i) ≥ 0, (x1, x2, . . . xn)T ∈ D. (5)

Otherwise, there exist i0 and xi0 such that (5) is not fulfilled. Then, by taking
x̃ = (x̃1, . . . , x̃n) such that x̃i = x̄i, i �= i0 and x̃i0 = xi0 , one finds z̃ ∈ D̃ satisfying

f(x̃) − f(x̄) =
1
2

(
∂2f(z̃)
∂x2

i0

)
(x̃i0 − x̄i0)

2 + (∇f(x̄))i0
(x̃i0 − x̄i0)

≤ 1
2

ci0(x̃i0 − x̄i0 )
2 + (∇f(x̄))i0

(x̃i0 − x̄i0 )

< 0

which contradicts (4).
We now show that (5) is equivalent to [NC] by considering the following three

cases.
Case 1. xi = ui. If i ∈ I then (5) holds if and only if

1
2

ci(xi − ui) + (∇f(x̄))i ≥ 0, ∀xi ∈ (ui, vi]. (6)

If ci ≥ 0 then (6) holds if and only if (∇f(x̄))i ≥ 0. Indeed, if (∇f(x̄))i < 0, by

taking xi sufficiently close to ui, we obtain
1
2

ci(xi − ui) + (∇f(x̄))i < 0. This

contradicts (6). Conversely, if (6) holds then (5) trivially holds.
If ci < 0 then we clearly see that (6) holds if and only if

1
2

ci(vi − ui) + (∇f(x̄))i ≥ 0. (7)
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If i ∈ J then (5) holds if and only if

1
2

ci(xi − ui) + (∇f(x̄))i ≥ 0, ∀xi �= ui

i.e., (5) holds if and only if

1
2

ci(vi − ui) + (∇f(x̄))i ≥ 0.

Therefore [NC] holds.
Case 2. xi = vi. The equivalence of (5) and [NC] follows by similar arquments
as in Case 1 above.
Case 3. xi ∈ (ui, vi). Then (5) holds if and only if (∇f(x̄))i = 0 and ci ≥ 0.

Indeed, if (∇f(<̄x̄i, x))i > 0 then, by taking xi sufficiently close to x̄i and xi

we have
(xi − x̄i)[

1
2

ci(xi − x̄i) + (∇f(x̄))i] < 0

which contradicts (5). On the other hand if (∇f(x̄))i = 0 and ci ≥ 0 then
obviously (5) holds, and so does [NC].
Combining the above three cases, we obtain the conclusion. �

Note from Theorem 2.1 that if x̄ ∈ D is a global minimizer of (MP ) then, for
each i ∈ I, χ̃i(∇f(x̄))i ≤ 0, which is a necessary condition for x̄ to be a local
minimizer of f over the box

∏
i∈I [ui, vi].

Example 2.1. Consider the following problem

min
x∈IR2

{
x4

1 + x2
1 − x2

2 + x2 | x1 ∈ [−1, 1], x2 ∈ {−1, 1}} .

Let f(x) = x4
1 + x2

1 − x2
2 + x2. Then ∇f(x) = (4x3

1 + 2x1, −2x2 + 1)T .

∂2f(z)
∂x2

1

= 12z2
1 + 2 ≤ 14, for each z1, z2 ∈ [−1, 1]

∂2f(z)
∂x2

2

= −2, for each z1, z2 ∈ [−1, 1].

The points x̄ = (0, 1) and ȳ = (0,−1) are local minimizers of the problem. Take
c1 = 14, c2 = −2. Then it is easy to check that the necessary condition [NC] does
not hold at the local minimizer x̄ = (x̄1, x̄2) = (0, 1) because

c̃1 + χ̃1(∇f(x̄))1 = 0 and c̃2 + χ̃2(∇f(x̄))2 = 1 > 0.

Thus x̄ = (0, 1) is not a global minimizer of f . On the other hand, we can check
that

c̃1 + χ̃1(∇f(ȳ))1 = 0 and c̃2 + χ̃2(∇f(ȳ))2 = −1 ≤ 0.

Thus, [NC]. holds at ȳ = (0,−1).
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Remark 2.1. It is worth noting that Theorem 2.1 requires that

max{∂2f(z)/∂x2
i | z ∈ D̃} ≤ ci,

which itself is a global optimization problem. So, it may not be always easy to
find a suitable ci satisfying this condition. However, as we will see later in the
Section that this condition can easily be checked for many important classes of
problems. On the other hand, it is important to find ci which is as close as
max{∂2f(z)/∂x2

i | z ∈ D̃} in order to get an effctive necessary condition. For
instance, if we take c2 = 0.5 in Example 2.1, then the point (0, 1) also satisfies
[NC] and becomes a candidate for a global minimizer.

Corollary 2.1. For (MP ), let di = max{∂2f(z)/∂x2
i | z ∈ D̃}, for i = 1, 2, . . . , n.

If x̄ ∈ D is a global minimizer of (MP ) then, for each i = 1, 2, . . . , n,

[NC1]
1
2

d̃i(vi − ui) + χ̃i(∇f(x̄))i ≤ 0.

Proof. The conclusion follows from Theorem 2.1 by taking ci = di.

Corollary 2.2. For (MP ), let A = (aij) ∈ Sn, a ∈ IRn and let g be a twice
continuously differentiable function such that (∂2g(z)/∂x2

i ) ≥ 0, ∀i = 1, 2, . . . , n

and ∀z ∈ D̃. Let f(x) =
1
2
xT Ax + aT x − g(x), x ∈ IRn. If x̄ ∈ D is a global

minimizer of (MP ) then for each i = 1, 2, . . . , n,

[NC2]
1
2

ãii(vi − ui) + χ̃i(a + Ax̄ −∇g(x̄))i ≤ 0.

Proof. Note that

∂2f(z)
∂x2

i

= aii − ∂2g(z)
∂x2

i

≤ aii, ∀i = 1, . . . , n and ∀z ∈ D̃.

So, [NC2] follows easily from Theorem 2.1 by taking ci = aii. �
Corollary 2.3 (Minimization of Difference of Quadratic and Convex Functions).
For (MP ), let, for each x ∈ IRn, f(x) = 1

2 xT Ax + aT x− g(x), where A = (aij) ∈
Sn, a ∈ IRn and g is a twice continuously differentiable convex function. If x̄ ∈ D
is a global minimizer of (MP ) then for each i = 1, 2, . . . , n,

[NC3]
1
2

ãii(vi − ui) + χ̃i(a + Ax̄ −∇g(x̄))i ≤ 0.

Proof. Because g is convex, we have (∂2g(z)/∂x2
i ) ≥ 0, ∀i ∈ I. Hence, [NC3]

follows from Corollary 2.2. �
Corollary 2.4 (Quadratic Minimization). For (MP ), let, for each x ∈ IRn, f(x) =
1
2
xT Ax + aT x, A := (aij) ∈ Sn, a ∈ IRn. If x̄ ∈ D is a global minimizer of (MP )
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then for each i = 1, 2, . . . n,

[NC4]
1
2

ãii(vi − ui) + χ̃i(a + Ax̄)i ≤ 0.

Moreover, if A is a diagonal matrix then x̄ is a global minimizer of (MP ) if and
only if [NC4] holds.

Proof. Clearly [NC4] follows from Corollary 2.1 by taking g = 0. To obtain
sufficiency, let A := diag(a11, . . . , ann). Then,

f(x) − f(x̄) =
1
2

n∑
i=1

aii(xi − x̄i)2 +
n∑

i=1

(a + Ax̄)i(xi − x̄i).

The analysis that is similar to that of the proof of Theorem 2.1, shows that x̄
is a global minimizer of (MP ) if and only if for every i = 1, 2, . . . n and x =
(x1, . . . , xn)T ∈ D,

1
2

aii(xi − x̄i)2 + (a + Ax̄)i(xi − x̄i) ≥ 0. (8)

By considering the three cases as in the proof of Theorem 2.1, we see that (8) is
equivalent to [NC4]. �

Corollary 2.5 (Minimization of Difference of Convex Functions). For (MP ), let
g and h be twice continuously differentiable convex functions on IRn. Let f(x) =
h(x)− g(x), x ∈ IRn. Suppose that, for each i = 1, 2, . . . , n, max

{
∂2h(z)/∂x2

i |z ∈
D̃

}
≤ di. If x̄ ∈ D is a global minimizer of (MP ) then for each i = 1, 2, . . . n,

[NC5]
1
2

d̃i(vi − ui) + χ̃i(∇h(x) −∇g(x))i ≤ 0.

Proof. Since g is convex, for each z ∈ D̃, ∂2g(z)/∂x2
i ≥ 0. So,

∂2f(z)
∂x2

i

=
∂2h(z)
∂x2

i

− ∂2g(z)
∂x2

i

≤ di, for each z ∈ D̃.

Hence [NC5] follows from Theorem 2.1 by taking ci = di. �

Corollary 2.6. If x̄ ∈ D is a global minimizer of (MP ) then, for each i ∈ I,

[NC6] χ̃i(∇f(x̄))i ≤ 0.

Proof. The proof is immediate from Theorem 2.1 and so is omitted. �
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3. Minimizing underestimators and sufficient conditions

In this section we obtain sufficient global optimality conditions for the model
problem (MP ) by underestimation.
Definition (Minimizing Underestimators). A quadratic function � on R

n is
a minimizing quadratic underestimator of a function f at x̄ over D if

∀x ∈ D, f(x) − f(x̄) ≥ �(x) − �(x̄) and ∀x ∈ D, �(x) − �(x̄) ≥ 0.

Clearly, if f has a minimizing quadratic underestimator at x̄ then it attains its
global minimum at x̄.

Lemma 3.1. Let x̄ ∈ D and Q = diag(q1, q2, . . . , qn) ∈ Sn, qi ∈ IR, i =
1, 2, . . . , n. If, for each x ∈ D̃, (∇2f(x) − Q) � 0, and

1
2
q̃i(vi − ui) + χ̃i(∇f(x̄))i ≤ 0, i = 1, 2, . . . , n,

then �(x) = 1
2xT Qx + (∇f(x̄) − Qx̄)T x, x ∈ IRn, is a minimizing quadratic un-

derestimator of f at x̄ over D.

Proof. Let φ(x) = f(x)− �(x), x ∈ D̃. Then ∇φ(x̄) = 0 and ∇2φ(x) = ∇2f(x)−
Q � 0, ∀x ∈ D̃. So φ(x) − φ(x̄) ≥ 0, for all x ∈ D̃, as φ is a convex function over
D̃. Hence, f(x) − f(x̄) ≥ �(x) − �(x̄), ∀x ∈ D. We now consider

�(x) − �(x̄) =
n∑

i=1

qi

2
(xi − x̄i)2 +

n∑
i=1

(∇f(x̄))i(xi − x̄i).

Then, as in the proof of Theorem 2.1, �(x) − �(x̄) ≥ 0 for all x ∈ D if and only if

1
2

qi(xi − x̄i)2 + (∇f(x̄))i(xi − x̄i) ≥ 0 for each i = 1, . . . , n. (9)

By considering three cases and by using similar analysis as in the proof of Theo-
rem 2.1, we have (9) holds if and only if

1
2

q̃i(vi − ui) + χ̃i(∇f(x̄))i ≤ 0 for each i = 1, 2, . . . , n. (10)
�

Remark 3.1. The condition, ∇2f(x)−Q) � 0, ∀x ∈ D̃, means that the function
p, defined by, p(x) = f(x) − 1

2xT Qx, is convex over D̃. So, Lemma 3.1 applies to
functions f of the form where f(x) = p(x) + 1

2xT Qx. Hence minimizing quadratic
underestimators can easily be found for the sum of a convex and a (not necessarily
convex) weighted sum of squares.
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We now see that whenever (χ̃i(∇f(x̄))i) ≤ 0, i ∈ I, (10) holds with

qi =
2χ̃i(∇f(x̄))i)

vi − ui
·

This leads us to obtain a simple verifiable sufficient condition for global optimality.

Theorem 3.1. For (MP), let x̄ ∈ D. Suppose that for each i ∈ I, χ̃i(∇f(x̄))i ≤ 0.
If

(∇2f(x) + diag((−2χ̃1(∇f(x̄))1)/(v1 − u1), . . . , (−2χ̃n(∇f(x̄))n)/(vn − un)) � 0,

∀x ∈ D̃,

then x̄ is a global minimizer of (MP ).

Proof. Let Q = diag(q1, q2, . . . , qn) and let �(x) = 1
2xT Qx+(∇f(x̄)−Qx̄)T , x ∈ D̃.

Then ∇2f(x) − Q � 0. Since χ̃i(∇f(x̄))i ≤ 0, ∀i ∈ I, we have q̃i = −qi, ∀i ∈
I ∪ J . Hence

1
2
q̃i(vi − ui) + χ̃i(∇f(x̄))i ≤ 0.

Therefore the requirements of Lemma 3.1 are satisfied and hence � is a minimizing
quadratic underestimator of f at x̄. Thus x̄ is a global minimizer of (MP ). �
Example 3.1. Let us consider the problem discussed in Section 2:

min
x∈IR2

{x4
1 + x2

1 − x2
2 + x2 | x1 ∈ [−1, 1], x2 ∈ {−1, 1}}.

Then, ∇f(x) = (4x3
1 + 2x1, −2x2 + 1)T and

∇2f(x) =
(

12x2
1 + 2 0
0 −2

)
.

Let ȳ = (0,−1)T. Note that, for each x ∈ D,

∇2f(x) − diag(χ̃i(∇f(ȳ))i) =
(

12x2
1 + 2 0
0 −2

)
−

(
0 0
0 −3

)

=
(

12x2
1 + 2 0
0 1

)
� 0.

Moreover, χ̃1(∇f(ȳ))1 = χ̃2(∇f(ȳ))2 = 0. Thus, ȳ = (0,−1) is a global minimizer
of the problem.

Corollary 3.1. Let g be a twice continuously differentiable convex function on

R
n, A ∈ Sn and a ∈ Rn. Let f(x) =g(x)− 1

2
xTAx + aTx, x ∈ R

n. Suppose that

for each i ∈ I, χ̃i(∇(g(x̄)) − Ax̄ + a)i ≤ 0. If

(diag((−2χ̃1(∇g(x̄) − Ax̄ + a)1)/(v1 − u1)), . . . ,

(−2χ̃n(∇g(x̄) − Ax̄ + a)n)/(vn − un)) − A) � 0
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for all x ∈ D̃ then x̄ is a global minimizer of (MP ).

Proof. Since g is convex, ∇2g(x) � 0, ∀x ∈ D̃. Hence ∇2f(x)+diag((−2χ̃1(∇g(x̄)−
Ax̄ + a)1)/(v1 − u1), . . . , (−2χ̃n(∇g(x̄)−Ax̄ + a)n)/(vn − un)) = ∇2g(x) + (−A−
diag((2χ̃1(∇g(x̄)−Ax̄+a)1)/(v1−u1), . . . , (2χ̃n(∇g(x̄)−Ax̄+a)n)/(vn−un))) � 0.
So, the conclusion follows from Theorem 3.1. �

Finally, we observe from Theorem 3.1 that, for (MP ), if f(x) = 1
2 xTAx+aTx,

x ∈ IRn, and if A+diag((−2χ̃1(Ax̄+a))1)/(v1−u1), . . . , (−2χ̃n(Ax̄+a))n)/(vn −
un)) � 0 and χ̃i(Ax̄ + a)i ≤ 0, i ∈ I then x̄ ∈ D is a global minimizer of (MP ).

References

[1] A. Beck and M. Teboulle, Global optimality conditions for quadratic optimization problems
with binary constraints. SIAM J. Optim. 11 (2000) 179–188.

[2] E. Cela, The quadratic assignment problem: theory and algorithms. Kluwer Academic Pub-
lishers (1998).

[3] P. De Angelis, P. Pardalos and G. Toraldo, Quadratic programming with box constraints,
in Developments in global optimization, edited by Bomze I. et al. Kluwer Acad. Publ.,
Dordrecht (1997) 73–93.

[4] C.A. Floudas and P.M. Pardalos, Optimization in computational chemistry and molecular
biology: Local and global approaches. Kluwer Academic Publishers (2000).

[5] N.Q. Huy, V. Jeyakumar and G.M. Lee, Sufficient global optimality conditions for multi-
extremal smooth minimization problems with bounds and linear matrix inequality con-
straints, The ANZIAM J. 47 (2006) 439–450.

[6] N.Q. Huy, V. Jeyakumar and G.M. Lee, Globally minimizing smooth functions with simple
constraints: Necessary, and sufficient optimality conditions (submitted).

[7] V. Jeyakumar and N.Q. Huy, Global minimization of difference of quadratic and con-
vex functions over box or binary constraints, To appear in Optimization Letters, DOI:
10.1007/s11590-007-0053-6 (2008).

[8] V. Jeyakumar, A.M. Rubinov and Z.Y. Wu, Sufficient global optimality conditions for non-
convex quadratic minimization problems with box constraints. J. Global Optim. 36 (2006)
461–468.

[9] V. Jeyakumar, A.M. Rubinov and Z.Y. Wu, Nonconvex quadratic minimization with qua-
dratic constraints: Global optimality conditions. Math. Program. 110 (2007) 521–541.

[10] M. Junger, A. Martin, G. Reinelt and R. Weismantel, 0/1 optimization and a decomposition
approach for the placement of electronic circuits. Math. Program. 63 (1994) 257–279.

[11] R.F. Marcia, J.C. Mitchell and J.B. Rosen, Iterative convex quadratic approximation for
global optimization in protein docking, Comput. Optim. Appl. 32 (2005) 285–297.

[12] P.M. Pardalos and G.P. Rodgers, Computational aspects of quadratic zero-one program-
ming, Computing 45 (1990) 131–144.

[13] M.C. Pinar, Sufficient global optimality conditions for bivalent quadratic optimization, J.
Optim. Theor. Appl. 122 (2004) 433–440.

[14] M.C. Pinar and M. Teboulle, On semidefinite bounds for maximization of a non-convex
quadratic objective over l1 unit ball. RAIRO Oper. Res. 40 (2006) 253–265.

[15] Z. Wu, V. Jeyakumar, A.M. Rubinov, Sufficient conditions for global optimality of bivalent
nonconvex quadratic programs with inequality constraints. J. Optim. Theor. Appl. 133
(2007) 123–130.


	Introduction
	Necessary global conditions
	Minimizing underestimators and sufficient conditions
	References

