RAIRO-Oper. Res. 42 (2008) 415-431 RAIRO Operations Research
DOI: 10.1051/r0:2008021 WWW.rairo-ro.org

A MEMETIC ALGORITHM FOR THE VEHICLE
ROUTING PROBLEM WITH TIME WINDOWS

NAcCIMA LABADI, CHRISTIAN PRINS AND MOHAMED REGHIOUT!

Abstract. This article deals with the vehicle routing problem with
time windows (VRPTW). This problem consists in determining a least-
cost set of trips to serve customers during specific time windows. The
proposed solution method is a memetic algorithm (MA), a genetic al-
gorithm hybridised with a local search. Contrary to most papers on
the VRPTW, which minimize first the number of vehicles, our method
is also able to minimize the total distance travelled. The results on 56
classical instances are compared to those of the best metaheuristics.
The efficiency of the MA is similar for the classical criterion, but it be-
comes the best algorithm available for the total distance, being much
faster and improving 20 best-known solutions.

Résumé. Cet article concerne le probleme de tournées de véhicules
avec fenétres horaires (Vehicle Routing Problem with Time Windows
ou VRPTW). Ce probléme consiste & déterminer un ensemble de tour-
nées de coiit total minimal pour servir des clients dans des fenétres ho-
raires spécifiques. Nous proposons un algorithme mémétique (MA, al-
gorithme génétique hybridé avec une recherche locale) pour le résoudre.
Contrairement a la plupart des articles sur le VRPTW, qui minimisent
en priorité le nombre de véhicules, notre méthode peut aussi minimiser
la distance totale parcourue. Les résultats sur 56 problémes-tests clas-
siques sont comparés a ceux des meilleures métaheuristiques. Pour le
critere classique, le MA offre des performances similaires, mais il de-
vient le meilleur algorithme disponible pour la distance totale, en étant
bien plus rapide et en améliorant 20 des meilleures solutions connues.

Keywords. memetic algorithm, vehicle routing problem, time window.
Mathematics Subject Classification. 90B06.

Received July 27, 2007. Accepted April 01, 2008.

1 Inst. Charles Delaunay, Univ. Technologie Troyes, FRE CNRS 2848, BP 2060, 10010 Troyes
Cedex, France; {nacima.labadi,christian.prins,mohamed.reghioui_hamzaoui}@utt.fr

Article published by EDP Sciences © EDP Sciences, ROADEF, SMAI 2008

http://dx.doi.org/10.1051/ro:2008021
http://www.rairo-ro.org
http://www.edpsciences.org

416
1. INTRODUCTION

The VRPTW is a generalization of the well-known capacitated vehicle routing
problem in which the service of each customer must begin within a specified time
window. It is defined on a complete undirected graph G = (V, E) with a node set
V ={0,1,2,...,n} and an edge set E. Node 0 represents a depot where a fleet of
identical vehicles of capacity W is located. The n other nodes correspond to the
customers. Each customer 7 has a demand ¢; and a time window [e;, [;], where ¢;
and [; are respectively the earliest and the latest service time. Arriving at i earlier
than e; is allowed but induces a waiting time a;, while arriving later than [; leads
to infeasibility. A traversal cost (distance) d;; = d;; and a traversal time ¢;; = t;;
are associated with each edge [7, j]. The objective is to build a set of vehicle trips of
minimum total cost, such that each trip starts and ends at the depot and services
a subset of customers within their time windows. Each customer must be visited
by a single trip, i.e., split deliveries are not allowed.

The VRPTW was studied for the first time by Solomon [22]. This author
proposed benchmark problems and constructive heuristics to minimize the number
of vehicles and, in case of ties, the total distance travelled. This hierarchical
objective function, called Solomon’s objective in the sequel, is unusual in vehicle
routing: for instance, most articles on the VRP minimize the total distance without
taking the number of vehicles used into account [20]. However, almost all authors
after Solomon have used the same objective to compare their results. Note that
minimizing the number of vehicles is already difficult, since the existence of a
feasible solution for a given number of vehicles is already NP-complete [22].

Apart from exact methods, which are beyond the scope of this paper, several
metaheuristics are available to solve the VRPTW with the objective of Solomon.
Rochat and Taillard [21] and Taillard et al. [23] designed tabu search meth-
ods. Evolutionary algorithms are more widely used, especially genetic algorithms:
Blanton and Wainwright [4], Thangiah [27], Potvin and Bengio [19], Berger et al. [3],
Tan et al. [24,25], Jung and Moon [15], and Berger et al. [2]. More recent
frameworks known as evolutionary strategies were developed by Homberger and
Gehring [13] and by Mester [17]. There exist also some hybrid approaches com-
bining genetic and tabu search algorithms: Gehring and Homberger [9,10], Wee
Kit et al. [28], and Homberger and Gehring [14].

Two recent papers of Briaysy and Gendreau [6,7] offer a good survey of the dif-
ferent heuristic methods developed for the VRPTW with the objective of Solomon.
Bréaysy et al. [5] published another survey, dedicated to evolutionary methods. To
the best of our knowledge, only five studies consider the total distance as main
objective: Tan et al. [24-26], Jung and Moon [15] and Alvarenga et al. [1]. Note
that nobody has tried to minimize the total duration of trips: travelling times are
only used to check time windows. However, all existing methods can be easily
adapted to handle this criterion.

In our opinion, Solomon’s objective is not very realistic since the fleet of vehicles
is often purchased before planning the routes. Moreover, distribution may be
partly subcontracted and, in that case, the number of vehicles is not critical and

A MEMETIC ALGORITHM FOR THE VRPTW 417

the cost mainly depends on the distance travelled. These reasons motivated us
to develop a flexible memetic algorithm, able to tackle Solomon’s objective or the
total distance, while being competitive with already published methods.

The article presents this memetic algorithm (MA) for the VRPTW. Genetic
algorithms (GA), introduced for the first time by Holland [12], are not aggressive
enough for combinatorial optimization problems, compared to other metaheuris-
tics like tabu search. Memetic algorithms proposed by Moscato [18] are more
powerful versions which apply a local search procedure to each new solution. The
main components of our MA are described in Section 2. In Section 3, numerical
experiments are conducted to evaluate the performances of the method for the
two objective functions. Some conclusions and perspectives are given in the last
section.

2. MEMETIC ALGORITHM FOR THE VRPTW

2.1. CHROMOSOMES AND EVALUATION

Each chromosome is coded as a sequence S containing the n customers but no
trip delimiter. This list can be viewed as a giant tour which ignores vehicle capac-
ity and time windows. Since no special symbol is included to delimit successive
trips, all chromosomes have the same length and may be combined using classical
crossover operators designed for the TSP (Travelling Salesman Problem). This
encoding also allows a significant reduction of solution space. The best VRPTW
solution, subject to the sequence defined by S, can be computed using an optimal
splitting procedure called Split and described in the sequel.

The cost of S is defined by equation (1), in which TD(S) and NV (S) denote the
total distance and the number of vehicles used after splitting. M is a parameter
set to 0 when minimizing the total distance, or to a large positive value when the
number of vehicles must be minimized in priority (Solomon’s objective).

F(S) = M x NV(S) + TD(S). (1)

The Split procedure, initially designed by Prins [20] for the VRP, is here extended
to tackle time windows. Split computes a shortest path in an auxiliary graph H
containing one dummy node 0 and n other nodes corresponding to the n customers.
Each subsequence of customers (S;, Siy1,...,S;) corresponding to a feasible trip
is modelled by a weighted arc (i —1,7) in H. If M = 0, the weight assigned to this
arc is the trip length. Otherwise, the arc is weighted by the sum of M and the
trip length. Note that any trip which violates time windows or vehicle capacity is
discarded at this level.

The shortest path from node 0 to node n in H can be computed using Bellman’s
algorithm for directed acyclic graphs. It indicates where to split .S to get an optimal
VRPTW solution, subject to the order imposed by S. If M = 0, the total length
of the routes is minimized. Otherwise, the number of arcs of the shortest path
(vehicles used) is minimized, followed by the total length in case of ties.

418 NACIMA LABADI ET AL.

c (4) [20,60]

b (4) [10,25] d (2) [20,60]

a (5) [0,25] e (7) [110,120]

Depot [0,250]

cd:1095

bc:1085 de:1090

c (55)

b (25)

a(20)
Trip 1
40

Ficure 1. Example of Split for the VRPTW.

e (110)

Figure 1 gives a example of splitting for the instance defined by Table 1. To
simplify, travel times are here equal to distances, i.e., t;; = d;; for each edge [4, j].
The goal is to minimize the number of vehicles used and, in case of ties, the total
length of the trips (Solomon’s objective), by setting M = 1000. The upper part
of the figure shows a chromosome S = (a,b,c,d, e), viewed as a giant tour. Each
customer has a demand in brackets and a time window in square brackets.

The auxiliary graph is given in the middle of the figure, assuming a vehicle
capacity W = 10. Each arc represents a feasible trip. For instance, arc a models
the trip reduced to customer a: its length 40 is twice the length of edge [0,a].
The only feasible trip with a waiting time serves customers d and e: it leaves the
depot at time 20, node d at 60, and waits 5 units of time at node e before leaving
it at time 110. However, since the goal is not to minimize the total duration, arc
de is weighted by the trip length (90) and not its duration (95). Arc ab is not
represented, since customer b is already closed when a vehicle can reach it, at time
30. All the other trips which are not represented violate vehicle capacity.

Bellman’s algorithm gives a shortest path with a cost F'(S) = 3215. The labels
computed are given above each node. The number of vehicles used NV (S) = 3 and
the total distance T'D(S) = 215 are respectively the quotient and the remainder of

A MEMETIC ALGORITHM FOR THE VRPTW 419

TABLE 1. Data for the instance used in Figure 1.

Node €; Zi q; Edge dijztij
0 0 250 0 [0,a] 20
a 0 25 5 [0,b] 25
b 10 25 4 [0, 30
c 20 60 4 [0,d 40
d 20 60 2 [0,¢] 5
e 110 120 7 Ja, b] 10
[b, ¢] 30
[c, d] 25
[d, €] 45

the integer division of F'(S) by M. The lower part of the figure shows the resulting
solution, with departure times in brackets.

It is important to note that the resulting solution is optimal for the order
defined by S. In fact, there always exists an optimal chromosome, i.e., one giving
a globally optimal VRPTW solution after splitting. Indeed, consider an optimal
solution 71" and concatenate its trips to form a chromosome S: Split will obviously
find this optimal solution when applied to S. Thus, there is no loss of information
when the MA explores the set of customer permutations (giant tours) instead of
the larger set of feasible VRPTW solutions. The only price to pay is the running
time of Split. The complexity of Bellman’s algorithm is O(m), where m is the
number of arcs in the auxiliary graph. In the worst case, m = n(n+1)/2 and Split
is then in O(n?). In practice, m is much smaller because most long subsequences
are infeasible.

2.2. POPULATION

The population is stored in a table Pop with a fixed number ns of chromosomes,
sorted in increasing order of costs. The initial population includes three good
solutions, computed by the sequential heuristic of Solomon [22] and two methods
inspired by classical VRP heuristics: the savings algorithm of Clarke and Wright [8]
and the sweep heuristic of Gillett and Miller [11].

The heuristic of Solomon starts from a solution reduced to a dummy loop on the
depot. At each iteration, for each customer not yet serviced, the heuristic evaluates
all feasible insertions in non-empty trips plus the insertion, always feasible, in a
new empty trip. The best insertion found is executed. The Clarke and Wright
heuristic for the VRP starts from a trivial solution with one trip per customer. At
each iteration, all feasible mergers (concatenations of two trips) are evaluated and
the one that provides the maximal saving is performed. These mergers stop when
additional concatenations would violate vehicle capacity or increase total cost. For
the VRPTW, time windows must be also checked when evaluating each merger.

In the sweep heuristic, clusters of customers compatible with vehicle capacity
are generated by rotating a half-line centered on the depot. One vehicle route is

420 NACIMA LABADI ET AL.

then computed in each cluster, using a TSP heuristic. This method gives poor
results for the VRPTW, because it is difficult to know in advance if all customers
of a cluster can be visited by a tour without time window violation. To bypass
this problem, we combined the two phases of the heuristic as follows. Starting
from the customer with the smallest polar angle, the first tour is built iteratively
by adding the nearest customer with compatible demand and time window. When
no further insertion is possible, the current tour is closed and a new tour is started
from the customer not yet serviced with the smallest polar angle.

The three initial heuristic solutions are improved by a local search procedure
based on the cross-exchange operator of Taillard et al. [23]. This move consists in
exchanging two sequences of customers between two different trips. Each sequence
moved may be as long as the trip which contains it. The ns — 3 other initial
solutions of Pop are generated by randomizing Solomon’s heuristic: instead of
inserting the customer with the best insertion cost, a customer is randomly selected
among the five best. Each initial solution is converted into a chromosome by
concatenating its trips and the resulting chromosome is evaluated by Split, which
often brings an additional improvement by shifting several trip limits.

To guarantee a sufficient diversity, a simple cost spacing rule is used: an initial
solution or a solution generated by crossover is added to the population if there
is no solution in Pop with a cost difference smaller than a given threshold A. In
other words, a solution S is accepted in Pop if and only if equation (2) holds.
Recall that the cost F(S) of solution S is defined by equation (1)

VT € Pop:|F(S)— F(T)| > A. (2)

2.3. SELECTION AND CROSSOVER

Parents are selected using the binary tournament method: two chromosomes
are randomly selected in Pop and the best one is the first parent, P;. This process
is repeated to get the second parent, P». These parents are then combined using
the order crossover or OX, a classical crossover for the travelling salesman problem.

OX randomly chooses two cutting points ¢ and 7 (1 < 7 < j < n) in P;.
Customers P (7) to P;(j) are then copied into child C, at the same positions. The
child solution is completed by browsing circularly the second parent, from position
j + 1 to position 7. The insertion of customers into the child is also performed in
a circular way, from position j + 1 onwards. OX usually produces two children,
by interchanging the role of the two parents. In our algorithm, only one child is
generated, by choosing randomly the order of parents. Figure 2 gives an example
of OX for two chromosomes with 11 customers.

2.4. LOCAL SEARCH

In Moscato’s MA model [18], the local search is systematically applied to each
new child. In our implementation, it is called with a given probability p;s and

A MEMETIC ALGORITHM FOR THE VRPTW 421

Fi1cURE 3. Example of 2-opt* move.

operates on a complete solution obtained by Split. Each iteration of the local
search evaluates the four following moves:

(1) Or-opt: relocate one or two consecutive customers in one or two trips.
(2) 2-opt: invert a chain of customers in one trip.

(3) Exchange: swap two customers pertaining to one or two trips.

(4) 2-opt*: interchange the last parts of two trips as shown in Figure 3.

In Figure 3, there exist another way to repair the routes when arcs (u,x) and
(y,v) are removed: add (u,y) and (v,). However, this move inverts the traversal
direction of one subsequence in each route, which often raises a time window
violation. As it is rarely feasible, this move was not selected.

An additional move is used when the main objective is to minimize the number
of vehicles or trips (case M > 0). This move tries to empty the least loaded trip
T by moving its customers to other routes. A necessary condition is checked first:
the sum of residual capacities in the other routes must not be smaller than the
load of T'. Then, the move consists in performing the best possible relocation (the
one with the smallest cost variation) for each customer of 7. If this sequence of
relocations succeeds, we try to empty the least loaded remaining trip.

The problem is that this emptying process can fail. Moreover, the relocations
already performed have often increased the total length of the routes, without
reducing the number of vehicles. In that case, the solution is restored in its initial
state. Since this move is time-consuming, it is tested separately at the beginning
of the local search, before evaluating the other moves.

Each iteration of the local search (neighborhood exploration) searches for the
first improving move and executes it if found. The local search stops when no

422 NACIMA LABADI ET AL.

further improvement is possible. The trips of the obtained solution are then con-
catenated to return a chromosome without trip delimiters. Split is finally called
to deduce the fitness and sometimes obtain an additional improvement.

Two procedures described in Kindervater and Savelsbergh [16] are used to up-
date departure times and check time windows when a customer is inserted or
removed in a route (swap and exchange moves). Both are based on the following
remark: if the order of customers after the modification is preserved, we just have
to check that the arrival time at each node is still compatible with its time window.

More precisely, consider a route R = (R1,...,Ry,...,R,) and let T} be the
departure time at a node Ry in R. If the vehicle leaves R, earlier at T, — 6, for
instance if a move removes node R,_1, a Pull procedure reduces the departure
time of each subsequent node Ry, by B = min{By_1, Tk — e}, with B,, = 6. Such
a shift is always feasible but Pull is necessary to keep correct departure times.

If the departure from R, is delayed by 6, for instance when a move inserts one
customer before it, the Push procedure consists in augmenting the departure times
of each subsequent node Ry by Fj, = max{Fj_; — ax,0}, where ay, is the waiting
time at Ry and F,, = #. The time window of Ry is violated if Ty + Fy > l;. The
feasibility check when a move delays T, can be done in O(1), by pre-computing
for each node Rj the maximum delay without violating a time window after it:
Dy =min{l; —T;+a; : i =k+1,...,v}. Hence, T,, can be delayed by 6 if § < D,,.

We designed similar tests in O(1) for 2-opt and 2-opt* moves, although some
trip segments are inverted. The arrays required by all these tests are initialized at
the beginning of the local search and updated after each improving move. Using
these techniques, the complexity of one neighborhood exploration can be kept in
O(n?), like for the classical VRP. In fact, the local search is often faster in the
VRPTW, because many moves are infeasible and can be rejected before computing
their cost variations.

2.5. GENERAL STRUCTURE OF THE MEMETIC ALGORITHM

The general structure of the memetic algorithm is given by Algorithm 1. It
starts by building an initial population Pop of ns chromosomes, as explained in
Section 2.2. FEach iteration of the repeat loop chooses two parents P; and P,
using the binary tournament and applies the OX crossover to get one child C
which is evaluated by Split. The resulting VRPTW solution T undergoes the
local search with a given probability p;s and its trips are concatenated to give an
improved chromosome. Contrary to a classical GA, there is no mutation operator:
population diversity is here guaranteed by the cost dispersal rule.

The chromosome Pop(b) to be replaced by C' is randomly selected in the worst
half of Pop, i.e., among the |ns/2] last solutions. This chromosome is actually
replaced if the cost dispersal rule is respected or if the current best solution Pop(1)
is improved. Children that do not match these conditions are discarded. The
population is re-sorted in increasing cost order after each successful replacement.

The for main loop performs a fixed number of phases np. A phase is a short
MA stopping after a maximum number of iterations 4, or a maximum number

A MEMETIC ALGORITHM FOR THE VRPTW 423

of iterations without improvement (Gpq. (repeat loop). The first phase operates
on the initial population. All phases end with a partial renewal of population:
the best nc chromosomes are kept and the others are replaced by new solutions
computed with the randomized version of Solomon’s heuristic. Like in the initial
population, new solutions must satisfy the cost spacing rule.

Algorithm 1 : General structure of memetic algorithm.

build the initial population Pop of ns chromosomes
sort Pop in increasing order of cost
for phase :=1 to np do

o, 3:=0;
repeat
a=a+1

select two parents P; and P, in Pop by binary tournament
apply OX crossover to the parents to get one child C'
evaluate C' with Split and keep the resulting VRPTW solution T’
if random < p;s then
apply local search to T'
concatenate the trips of T" to rebuild C' and evaluate it with Split
end if
select randomly a chromosome Pop(b) to be replaced, with b > |ns/2|
if F(C) < F(Pop(1)) then
8:=0
else
p:=p5+1
end if
if F(C) < F(Pop(1)) or ¥S € Pop\ {Pop(b)} : |F(C) — F(S)| > A then
Pop(b) :=C
shift Pop(b) to keep population Pop sorted
end if
until (Oé = amax) or (ﬁ = 5max)
if phase < np then
apply the partial renewal procedure, keeping the nc best solutions
re-sort Pop
end if
end for

3. COMPUTATIONAL RESULTS

3.1. IMPLEMENTATION AND INSTANCES

All algorithms were written in Delphi and tested on a 3 GHz PC with Windows
XP Pro. The evaluation is based on 56 instances of 100 customers proposed by

424 NACIMA LABADI ET AL.

Solomon [22] and available at: http://w.cba.neu.edu/ msolomon/problems.
htm. There exist also 56 problems with n = 25 customers and 56 with n = 50, but
they were discarded because all are now solved by exact methods.

The instances are partitioned into six classes: R1, R2, C1, C2, RC1 and RC2.
Customers are randomly located in a 100 x 100 square in classes R1 and R2
and clustered in C1 and C2. Problems in sets RC1 and RC2 mix clustered and
randomly distributed customers. The positions of customers are identical within
each class: only time windows differ. Classes R2, C2 and RC2 have wider time
windows and require less vehicles than R1, C1 and RC1. All demands, coordinates
and window limits are integers. However, both travel times and distances are equal
to the Euclidean distance between nodes, computed using double precision real
numbers.

3.2. PARAMETERS SETTINGS

The memetic algorithm can minimize either the total distance alone or the
objective of Solomon (number of vehicles, then total distance). The parameter
M is respectively set to 10000 and 0 in the two versions, called MA1 and MA2
in the sequel. The other parameters result from several preliminary tests and are
identical for both versions: a population containing ns = 30 chromosomes, a local
search rate p;s = 0.1, a minimum cost spacing A = 0.2, a maximum number of
iterations per phase 4 = 3000, a maximum number of iterations per phase
without improvement (,,,, = 2000, only one solution kept in partial renewals
(nc = 1), and a number of phases np = 10.

The initial versions used a single phase with a4, = 30000 iterations, but
we observed better results if this number of crossovers is spread over 10 phases,
with a partial renewal of solutions between two consecutive phases. The resulting
structure which alternates between reproduction phases and diversification can be
viewed as a transition form towards scatter search methods.

The small size of the population compared to classical GAs is typical of such
memetic algorithms: with a larger population, the percentage of unproductive
iterations (when the child C is rejected) becomes significant and the algorithm
wastes time in useless crossovers. The most important component is the local
search, which consumes 90% of the total running time while being essential for
solution quality. Since the local search is not systematic, solutions not improved
by this procedure can be inserted in the population, contributing to a better
diversity in conjunction with the cost spacing rule.

The other components are less critical than the local search but the choice of
OX as crossover operator and of the binary tournament as selection rule brings a
slight improvement of solution costs, compared to other strategies.

3.3. RESULTS FOR THE TOTAL DISTANCE — MA1

As mentioned in introduction, only five published algorithms minimize the to-
tal distance. MA1 is compared here with the best of them, the Column Genera-
tion Heuristic (CGH) of Alvarenga et al. [1]. CGH is a sophisticated cooperative

http://w.cba.neu.edu/~msolomon/problems.htm
http://w.cba.neu.edu/~msolomon/problems.htm

A MEMETIC ALGORITHM FOR THE VRPTW 425

TABLE 2. Total distance per instance for classes C1 and C2.

CGH MA1 Time(s) Gap(%)
NV TD NV TD

C101 10 828.937 10 828.937 63.33 0.00
C102 10 828.937 10 828.937 82.08 0.00
C103 10 828.065 10 828.065 82.38 0.00
C104 10 824.777 10 824.777 102.44 0.00
C105 10 828.937 10 828.937 66.31 0.00
C106 10 828.937 10 828.937 72.81 0.00
C107 10 828.937 10 828.937 59.58 0.00
C108 10 828.937 10 828.937 83.70 0.00
C109 10 828.937 10 828.937 90.03 0.00
Mean C1 10.00 828.378 10.00 828.378 78.07 0.00
C201 3 591.557 3 591.557 128.28 0.00
C202 3 591.557 3 591.557 133.13 0.00
C203 3 591.173 3 591.173 132.30 0.00
C204 3 590.599 3 590.599 149.14 0.00
C205 3 588.876 3 bH88.876 155.22 0.00
C206 3 588.493 3 588.493 179.11 0.00
C207 3 5H88.286 3 588.286 215.69 0.00
C208 3 588.324 3 588.324 197.48 0.00
Mean C2 3.00 589.858 3.00 589.858 161.29 0.00
Mean C 6.70 716.133 6.70 716.133 159.83 0.00

method, alternating between a genetic algorithm, which builds a set of high-quality
trips, and the resolution of a partitioning problem with a public domain linear pro-
gramming solver (GLPK), to select a subset of trips covering all customers.

Jung and Moon [15] published the best and average results of a hybrid GA,
but for 100 runs. Their best results slightly outperform CGH but their average
results are clearly inferior. This is why our comparison is limited to MA1 and
CGH, which are evaluated in the same conditions, using one run only.

Tables 2 to 4 respectively give the results of CGH and MA1 on classes C, R
and RC, using a common format. The first column indicates the instance name.
Columns 2 and 3 provide the number of vehicles NV and the total distance T'D ob-
tained by CGH. The results obtained by MA1 are shown in columns 4 and 5. The
two last columns give the running times in seconds of MA1 and the deviation in per-
cent between MA1 and CGH, computed as follows: (MA1 distance/ CGH distance
—1) x 100. The average values for each column are given after the last file of each
class. An additional row at the end of Table 4 gives the average values over the
56 instances.

MAT1 improves CGH 20 times, gives identical results on 20 instances and infe-
rior results on 16 other problems. The results of both methods are identical for
clustered problems (classes C1 and C2), which seem to be the easiest ones. MA1

426 NACIMA LABADI ET AL.

TABLE 3. Total distance per instance for classes R1 and R2.

CGH MA1 Time(s) Gap(%)
NV TD NV TD

R101 20 1642.870 20 1644.045 87.95 0.07
R102 18 1472.620 18 1472.815 130.92 0.01
R103 14 1213.620 14 1213.624 156.28 0.00
R104 11 986.096 12 1000.900 163.44 1.50
R105 15 1360.783 15 1360.783 113.28 0.00
R106 13 1241.518 13 1240.468 177.16 -0.08
R107 11 1076.125 11 1074.243 198.50 -0.18
R108 10 948.573 11 952325 209.09 0.40
R109 13 1151.839 12 1154.551 170.76 0.24
R110 12 1092.347 12 1072.415 138.63 -1.83
R111 12 1053.496 12 1053.802 149.84 0.03
R112 10 960.675 11 969.992 125.72 0.97
Mean R1 13.25 1183.380 13.42 1184.164 151.80 0.09
R201 9 1148.483 8 1150.917 207.80 0.21
R202 7 1049.737 7 1037.498 178.59 -1.17
R203 5 900.080 6 874.869 194.48 -2.80
R204 4 772330 5 735861 264.94 -4.72
R205 6 970.886 6 960.079 180.03 -1.11
R206 5 898.914 5 879.893 192.41 -2.12
R207 4 834.930 4 800.786 265.95 -4.09
R208 3 723.610 3 706.855 191.53 -2.32
R209 6 879.531 5 859.390 198.69 -2.29
R210 7 932.887 6 912,533 208.58 -2.18
R211 5 T787.511 4 755.949 237.05 -4.01
Mean R2 5.55 899.900 5.36 879.512 21091 -2.42
Mean R 9.57 1047.80 9.57 1038.46 180.07 -1.11

finds better results on problems with large time windows (classes R2 and RC2),
with a saving exceeding 4% for two problems. This is remarkable, because these
instances which tend to a VRP are the hardest ones for exact methods.

In particular, all solution values achieved by CGH except one are improved
in class R2. Even when MA1 is outperformed by CGH, the worst deviation is
1.63% (problem RC108). Overall, MA1 is better than CGH, with an average gap
of —0.45%. Although the number of vehicles is not considered in the optimization
criterion, we can see that MA1 and CGH find in general the same values. MA1
uses sometimes one additional vehicle, but never more. Concerning running times,
Alvarenga et al. do not specify the computer they use, but they indicate that CGH
is stopped after one hour of execution. In comparison, MA1 is very fast since its
duration is less than 3 min on average and does not exceed 4.5 min.

A MEMETIC ALGORITHM FOR THE VRPTW 427

TABLE 4. Total distance per instance for classes RC1 and RC2.

CGH MA1 Time(s) Gap(%)
NV TD NV TD

RC101 16 1639.968 17 1658.991 138.14 1.16
RC102 14 1466.840 14 1480.363 120.23 0.92
RC103 11 1264.707 12 1276.050 181.11 0.90
RC104 10 1135.520 10 1139.887 199.58 0.38
RC105 16 1518.600 16 1524.220 120.56 0.37
RC106 13 1377.352 13 1388.095 139.09 0.78
RC107 12 1212.830 12 1212.833 156.41 0.00
RC108 11 1117.526 11 1135.734 163.45 1.63
Mean RC1 12.88 1341.668 13.13 1352.022 152.32 0.77
RC201 9 1274.537 10 1273.040 196.69 -0.12
RC202 8 1113.526 8 1099.542 233.11 -1.26
RC203 5 945.960 6 937.449 156.27 -0.90
RC204 4 799.670 4 791.399 197.45 -1.03
RC205 7 1161.810 8 1168.651 235.36 0.59
RC206 7 1059.886 7 1054.606 243.22 -0.50
RC207 7 976.396 6 966.372 138.11 -1.03
RC208 5 795.391 5 783932 196.87 -1.44
Mean RC2 6.50 1015.897 6.75 1009.374 199.63 -0.71
Mean RC 9.69 1178.78 9.94 1180.70 175.98 0.03
Global mean 8.73 984.54 8.80 981.25 159.83 -0.45

3.4. RESULTS FOR SOLOMON’S OBJECTIVE — MA2

Since many metaheuristics have been published for this criterion, it is difficult to
provide a comparison instance per instance. In their surveys, Bréiysy et al. [5] and
Braysy and Gendreau [7] prefer to use two convenient indicators to rank published
algorithms: the cumulative number of vehicles CNV and the cumulative total
distance CTD, over the 56 instances.

The upper part of Table 5 gives these indicators for the best published evo-
lutionary algorithms and MA2. Two rows give for each method the number of
vehicles and the total length of the routes. To get a more compact table with
smaller numbers, columns R1 to RC2 contain average values per instance. The
cumulative values CNV and CTD are listed in the global column. The table shows
that MA2 offers a good tradeoff between the number of vehicles and the total dis-
tance. MA2 does not supersede the two current best algorithms for the number
of vehicles, Berger et al. [2] and Homberger and Gehring [14], but it does better
than the algorithms of Wee Kit et al. [28] and Thangiah [27], for instance.

To better illustrate the conflicting nature of the two objectives, we added to
Table 5 a lower part for the best algorithms designed to minimize the total distance,
including MA1. The best and average results for 100 runs obtained by the HGA

428 NACIMA LABADI ET AL.

TABLE 5. Cumulative indicators of the best evolutionary algorithms.

Solomon’s objective R1 R2 C1 C2 RC1 RC2 Global
Berger et al. 12.58 3.09 10.00 3.00 12.13 3.50 424
(1998) 1261.58 1030.01 834.61 594.25 1441.35 1281.25 60539
Berger et al. 11.92 2.73 10.00 3.00 11.50 3.25 405
(2003) 1221.10 975.43 828.48 589.93 1389.89 1159.37 57952
Gehring, Homberger 12.42 2.82 10.00 3.00 11.88 3.25 415
(1999) 1198 947 829 590 1356 1140 56942
Gehring, Homberger 12.00 2.73 10.00 3.00 11.50 3.25 406
(2001) 1217.57 961.29 828.63 590.33 1395.13 1139.37 57641
Homberger, Gehring 11.92 2.73 10.00 3.00 11.63 3.25 406
(1999) 1228.06 969.95 828.38 589.86 1392.57 1144.43 57876
Homberger, Gehring 11.92 2.73 10.00 3.00 11.50 3.25 405
(2005) 1212.73 955.03 828.38 589.86 1386.44 1123.17 57309
MA2 12.75 3.09 10.00 3.00 12.37 3.62 429
This paper 1188.01 920.86 828.38 589.86 1351.27 1087.18 56067
Mester 12.00 2.73 10.00 3.00 11.50 3.25 406
(2002) 1208 954 829 590 1387 1119 57219
Potvin, Bengio 12.58 3.00 10.00 3.00 12.13 3.38 422
(1996) 1296.83 1117.64 838.11 590.00 1446.25 1368.13 62634
Thangiah 12.75 3.18 10.00 3.00 12.50 3.38 429
(1995) 1300.25 1124.28 892.11 749.13 1474.13 1411.13 65074
Wee Kit et al. 12.58 3.18 10.00 3.00 12.75 3.75 432
(2001) 1203.32 951.17 833.32 593.00 1382.06 1132.79 57265
Total distance R1 R2 C1 C2 RC1 RC2 Global
Alvarenga et al. 13.25 5.55 10.00 3.00 12.88 6.50 489
(2007) 1183.38 899.90 828.38 589.86 1341.67 1015.90 55134
Jung, Moon (2002) 13.25 5.36 10.00 3.00 13.00 6.25 486
best of 100 runs 1179.95 878.41 828.38 589.86 1343.64 1004.21 54779
Jung, Moon (2002) 13.73 5.61 10.00 3.00 13.27 6.43 498
mean of 100 runs 1190.69 885.99 828.40 589.93 1363.61 1014.06 55230
MAT1 . 13.42 5.36 10.00 3.00 13.13 6.75 493
This paper 1184.16 879.51 828.38 589.86 1352.02 1009.37 54950
Tan et al. 13.17 5.00 10.11 3.25 13.50 5.00 478
(2001a) 1227 980 861 619 1427 1123 58605
Tan et al. 12.91 5.00 10.00 3.00 12.60 5.80 471

(2001b) 1205.0 929.6 841.96 611.2 13923 1081.1 56931

A MEMETIC ALGORITHM FOR THE VRPTW 429

Jung and Moon

(2002)
500 o)

= _Awarenga et al (2007)

490 -

Tan et al (2001a)

480 -
Tan et al (2001b)
470 9
460

450 -

CNV

440 -

Wee Kit et al (2001)
o Thangiah (1995)
Berger et al (1998) Potvin and Bengio o
o (1996)
Gehring and Homberger o
(1999) Gehring and Homberger
(2001)

430 -

420 -

Homberger and Gehring (1999)

410
Mester (2002)—» 5/4‘/7 Berger et al (2003)

“—— Homberger and Gehring (2005)
400 T T

54000 56000 58000 60000 62000 64000 66000
CTD

FIGURE 4. Results of evolutionary methods in objective space.

TABLE 6. Compared running times of MA1 and MA2.

Version R1 R2 C1 C2 RC1 RC2 Global
MALI total time 151.80 210.91 78.07 161.29 152.32 199.63 159.83
MA1 time to best 67.66 90.58 3.31 6.98 61.69 82.39 54.40
MAZ2 total time 225.57 392.62 85.65 255.52 154.84 379.61 252.07
MAZ2 time to best 136.14 208.93 2.44 14.41 79.14 152.73 105.79

of Jung and Moon [15] are also distinguished. We can see that MA2 becomes the
best metaheuristic for the total distance, if only one run is allowed.

Figure 4 locates the performance of all methods in the objective space. Small
squares indicate methods designed for Solomon’s objective, while small circles
concern algorithms for the total distance. The broken line connects non-dominated
solutions (Pareto front). Clearly, MA1 and MA2 are non-dominated.

Table 6 compares the average running times in seconds of MA1 and MA2. It
distinguishes between the total running time, until the programs stop, and the
time required until the last improvement (time to best). MA2 is slower than MA1,
due to the additional moves evaluated in the local search to reduce the number
of vehicles. MA1 has a smaller ratio Time to best/Total time, indicating a faster
convergence. Both algorithms are very fast on classes C1 and C2, for which one
of the initial heuristics often finds an optimal or quasi-optimal solution.

430 NACIMA LABADI ET AL.
4. CONCLUSION

This paper presents a memetic algorithm for the VRPTW. The first highlight
of our method is its flexibility to deal with the two objective functions addressed
in the literature. For the minimization of the total distance, MA1 outperforms the
best metaheuristic published for this objective, the algorithm CGH of Alvarenga
et al. [1]. Tt is also conceptually simpler and much faster. For the objective of
Solomon in which priority is given to the number of vehicles, the MA takes place
among the best algorithms, even if it does not become the best one.

The key-point behind the effectiveness and the simplicity of our method is the
encoding of chromosomes: permutations of customers without trip delimiters. A
feasible solution for the VRPTW is deduced optimally from each permutation,
using the Split procedure. Since we have shown that there always exists a permu-
tation for which Split gives an optimal VRPTW solution, the MA can explore a
smaller solution space without any loss of information.

The results are less impressive for the number of vehicles but this can be ex-
plained. Let C be a chromosome and C; one customer such that ¢ < n and
e(C;) > 1(Cit+1), which means that the time window of C; 11 ends before the be-
ginning of the window of Cj;. Split is then obliged to cut C' between indices ¢ and
i+ 1, since no feasible trip can contain these two customers. The problem comes
from the OX crossover, which has no control on such pairs of customers: if there
are numerous, the solution obtained by Split will be poor in terms of vehicles,
even if it is optimal for the sequence defined by C and if the local search can save
a few vehicles. Therefore, a new crossover able to reduce the number of vehicles
(compared to the parents) would be required to improve the memetic algorithm
with Solomon’s objective.

REFERENCES

[1] G.B. Alvarenga, G.R. Mateus and G. de Tomi, A genetic and set partitioning two-phase
approch for the vehicle routing problem with time windows. Comput. Oper. Res. 34 (2007)
1561-1584.

[2] J. Berger, M. Barkaoui and O. Bréysy, A route-directed hybrid genetic approach for the
vehicle routing problem with time windows. Inf. Syst. Oper. Res. 41 (2003) 179-194.

[3] J. Berger, M. Salois and R. Begin, A hybrid genetic algorithm for the vehicle routing
problem with time windows. Lecture Notes in Artificial Intelligence 1418. Springer, Berlin
(1998) 114-127.

[4] J.L. Blanton and R.L. Wainwright, Multiple vehicle routing with time and capacity con-
straints using genetic algorithms, Proceedings of the Fifth International Conference on
Genetic Algorithms. Morgan Kaufmann, San Francisco (1993) 452-459.

[5] O. Braysy, W. Dullaert and M. Gendreau, Evolutionary algorithms for the vehicle routing
problem with time windows. J. Heuristics 10 (2005) 587—611.

[6] O. Braysy and M. Gendreau, Vehicle routing problem with time windows — Part I: route
construction and local search algorithms. Transportation Science 39 (2005) 104-118.

[7] O. Braysy and M. Gendreau, Vehicle routing problem with time windows — Part II: meta-
heuristics. Transportation Science 39 (2005) 119-139.

[8] G. Clarke and J.W. Wright, Scheduling of vehicles from a central depot to a number of
delivery points. Oper. Res. 12 (1964) 568-581.

[9]

(10]
(11]
(12]
13]
14]

(15]

(16]

(17]

(18]
(19]
20]
(21]
(22]

23]

(24]

(25]

[26]

27]

28]

A MEMETIC ALGORITHM FOR THE VRPTW 431

H. Gehring and J. Homberger, A parallel hybrid evolutionary metaheuristic for the ve-
hicle routing problem with time windows, Proceedings of EUROGEN 99, University of
Jyviskyld, Finland (1999) 57—64.

H. Gehring and J. Homberger, Parallelization of a two-phase metaheuristic for routing
problems with time windows. Asia-Pacific J. Oper. Res. 18 (2001) 35-47.

B.E. Gillett and L.R. Miller, A heuristic algorithm for the vehicle dispatch problem. Oper.
Res. 22 (1974) 340-349.

J.H. Holland, Adaptation in natural and artificial systems. University of Michigan Press,
Ann Arbor (1975).

J. Homberger and H. Gehring, Two evolutionary metaheuristics for the vehicle routing
problem with time windows. INFOR 37 (1999) 297-318.

J. Homberger and H. Gehring, A two-phase hybrid metaheuristic for the vehicle routing
problem with time windows. Fur. J. Oper. Res. 162 (2005) 220-238.

S. Jung and B.R. Moon, A hybrid genetic algorithm for the vehicle routing problem with
time windows, Proceedings of Genetic and Evolutionary Computation Conference. Morgan
Kaufmann, San Francisco (2002) 1309-1316.

G.A.P. Kindervater and M.W.P. Savelsbergh, Vehicle routing: handling edge exchanges.
edited by E.H.L. Aarts and J.K. Lenstra, Local search in combinatorial optimization.
Wiley, Chichester (1997) 311-336.

D. Mester, An evolutionary strategies algorithm for large scale vehicle routing problem
with capacitate and time windows restrictions, Working paper, Institute of Evolution,
University of Haifa, Israel (2002).

P. Moscato, Memetic algorithms: a short introduction, edited by D. Corne, M. Dorigo
and F. Glover, New Ideas in Optimization. McGraw-Hill, New York (1999) 219-234.
J.Y. Potvin and S. Bengio, The vehicle routing with time windows — Part II: genetic
search. INFORMS J. Comput. 8 (1996) 165-172.

C. Prins, A simple and effective evolutionary algorithm for the vehicle routing problem,
Comput. Oper. Res. 31 (2004) 1985-2002.

Y. Rochat and E.D. Taillard, Probabilistic diversification and intensification in local search
for vehicle routing. J. Heuristics 1 (1995) 147-167.

M.M. Solomon, Algorithms for the vehicle routing and scheduling problems with time
window constraints. Oper. Res. 35 (1987) 254-265.

E. Taillard, P. Badeau, M. Gendreau, F. Guertin and J.Y. Potvin, Tabu search heuristic
for the vehicle routing problem with soft time windows. Transportation Science 31 (1997)
170-186.

K.C. Tan, L.H. Lee and K. Ou, Hybrid genetic algorithms in solving ehicle routing prob-
lems with time window constraints. Asia-Pacific J. Oper. Res. 18 (2001) 121-130.

K.C. Tan, L.H. Lee and K. Ou, A messy genetic algorithm for the vehicle routing prob-
lem with time window constraints, Proceedings of the 2001 Congress on Evolutionary
Computation, IEEE, Piscataway (2001) 679-686.

K.C. Tan, L.H. Lee, Q.L. Zhu and K. Ou, Heuristic methods for the vehicle routing
problem with time windows. Artificial Intelligence in Engineering 15 (2001) 281-295.

S. Thangiah, Vehicle routing with time windows using genetic algorithms. edited by L.
Chambers, Application handbook of genetic algorithms: new frontiers, Vol II. CRC Press,
Boca Raton (1995) 253-277.

H. Wee Kit, J. Chin and A. Lim, A hybrid search algorithm for the vehicle routing problem
with time windows. Int. J. Art. Intell. Tools 10 (2001) 431-449.

	Introduction
	Memetic algorithm for the VRPTW
	Chromosomes and evaluation
	Population
	Selection and crossover
	Local search
	General structure of the memetic algorithm

	Computational results
	Implementation and instances
	Parameters settings
	Results for the total distance -- MA1
	Results for Solomon's objective -- MA2

	Conclusion
	References

