
RAIRO-Oper. Res. 42 (2008) 325–359 RAIRO Operations Research

DOI: 10.1051/ro:2008024 www.rairo-ro.org

POLYHEDRAL REFORMULATION OF A SCHEDULING
PROBLEM AND RELATED THEORETICAL RESULTS

Jean Damay
1
, Alain Quilliot

1
and Eric Sanlaville

1

Abstract. We deal here with a scheduling problem GPPCSP (Gen-
eralized Parallelism and Preemption Constrained Scheduling Problem)
which is an extension of both the well-known Resource Constrained
Scheduling Problem and the Scheduling Problem with Disjunctive Con-
straints. We first propose a reformulation of GPPCSP: according to
it, solving GPPCSP means finding a vertex of the Feasible Vertex
Subset of an Antichain Polyhedron. Next, we state several theoretical
results related to this reformulation process and to structural proper-
ties of this specific Feasible Vertex Subset (connectivity, ...). We end
by focusing on the preemptive case of GPPCSP and by identifying
specific instances of GPPCSP which are such that any vertex of the
related Antichain Polyhedron may be projected on its related Feasible
Vertex Subset without any deterioration of the makespan. For such
an instance, the GPPCSP problem may be solved in a simple way
through linear programming.

Keywords. Partially ordered sets, hypergraphs, linear programming,
polyhedra, multiprocessor scheduling, resource constrained project
scheduling problem.

Mathematics Subject Classification. 90B35.

Introduction

We deal here with a scheduling problem GPPCSP (Generalized Parallelism
and Preemption Constrained Problem), which extends the well-known RCPSP
(Resource Constrained Project Scheduling Problem) and which includes generalized

Received December 1st, 2005. Accepted November 11, 2007.

1 LIMOS, UMR CNRS 6158, Bât ISIMA, Université Blaise Pascal, Campus des Cézeaux, BP

125, 63173 Aubière, France; {jean.damay, alain.quilliot, eric.sanlaville}@isima.fr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2008

http://dx.doi.org/10.1051/ro:2008024
http://www.rairo-ro.org
http://www.edpsciences.org

326 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

parallelism constraints as well as specific preemption constraints. An instance of
such a problem is defined by a task set X , a generalized parallelism relation E,
a precedence constraint ρ, a duration function d and a preemption function P .
We talk here about generalized parallelism constraints, since the compatibility
relation E will enable us to describe any kind of subset made with tasks which are
allowed to be simulateously run (while RCPSP disjunctive constraints are usually
related to limited amounts of renewable resources). The triple H = (X, E, ρ)
defines what we call an ordered hypergraph. Our purpose is to show how using
the hypergraph and the partially ordered set formalism may yield a polyhedral
reformulation of this problem, and then open new pathes for algorithm design.

Partially ordered (Poset) sets and hypergraphs are among the combinatorial
tools which most often appear inside Combinatorial Optimization models. Par-
tially ordered sets have a large range of applications, many of them related to
planning and scheduling (see [3,4,7,13,20,26,34,37]). Hypergraphs are essentially
involved in the combinatorial analysis of global constraints (see [44]), which may
appear in information storage and retrieval models (see [8,24,30,32]), of timetabling
and scheduling problems (see [1,14]), of resource allocation problems or even of
some genetics or archeology problems (see [7,28]).

We first associate, with any instance (H = (X, E, ρ), d, P) of the GPPCSP
Problem, a specific Antichain Polyhedron ΛH,d. Such a polyhedron was first intro-
duced by Sauer and Stone (see [40,41]), Papadimitriou and Yannanakis (see [38]),
in the context of non preemptive multiprocessor scheduling problems [37], and
has next been used (see for instance [6,11,12,16,26,35]) in order to get theoretical
bounds for the Resource Constraint Project Scheduling problem.

Next, by involving specific combinatorial properties like the Extended Interval
Representability Property (see [10]), we show how it is possible to reformulate a
GPPCSP instance as a search problem defined on some specific feasible subset
V − PRH,d (preemptive), V −NPRH,d (non preemptive) or V − PPRH,d,P (par-
tially preemptive) of the vertex set V (ΛH,d) of the polyhedron ΛH,d. We study
the connectivity (in the sense of the natural adjacency relation which is defined
on the vertex set of any polyhedron), of those subsets, and we briefly discuss the
way some local search procedures might be derived from these theoretical results.

Finally we focus on the preemptive version of the GPPCSP Problem. Pre-
emptive problems have been less studied that non preemptive ones. Still, they are
related to many practical applications (multiprocessor scheduling, grid computing,
truck fleet planning). They also may be viewed as relaxations of non preemptive
problems. Thus, capturing some of their combinatorial properties may help in
designing solutions for non preemptive problems and for mixed problems. What
we mainly do here is to extend a previous result of Moukrim and Quilliot (see [33])
related to the Multiprocessor Scheduling Problem: we identify cases when
any vertex of the polyhedron ΛH,d may be projected, without any deterioration
of the makespan, on the feasible preemptive subset V − PRH,d. In such a case,
solving the related makespan minimization preemptive scheduling problem can be
done in a simple way by solving a linear program on the polyhedron ΛH,d.

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 327

1. The GPPCSP problem and the related antichain

polyhedron

1.1. Temporal phases, schedules, preemptive numbers

If I = [α, β] is a closed interval of the real line [0, +∞[, we say that α is the start-
point of I and that β is the end-point of I. If J = {[α0, β0], [α1, β1], ..., [αn, βn]}
is a finite family of disjoint closed intervals of the real line [0, +∞[, such that
α0 < β0 < α1 < β1 < ... < αn < βn, then we say that J is a temporal phasis,
with preemption number NP (J) equal to n, with start-point START (J) equal
to α0 and with end-point END(J) equal to βn. The length of J is the sum∑

i=0..n(βi − αi).
If X is a task set, then a schedule of X is a function Φ which associates, with

any task x in X , a temporal phasis Φ(x). The real line [0, +∞[is also called the
Time Space.

If Φ is such a schedule, and if t is a value (an instant) in the Time Space [0, +∞[,
we denote by eΦ(t) the task subset eΦ(t) = {x ∈ X such that t belongs to the
interior Φ(x)0 of Φ(x)} which is defined by the tasks which are simultaneously run
at instant t. We call Makespan of Φ the quantity Maxx∈XEND(Φ(x)).

We denote by SCH(X) the set of all the schedules of X .

1.2. The GPPCSP scheduling problem

A GPPCSP problem instance (Generalized Parallelism and Preemption Con-
strained Scheduling Problem) is defined by:

– a task set X ;
– E is a subset family (edge set) of X , called generalized parallelism relation;
– a binary precedence relation ρ, defined on X ;
– a duration function d, defined from X to the set Q of the positive rational

numbers;
– a preemption threshold function P , defined from X to the set N of the

integral numbers;
– a cost real valued function Cost which is defined on the Schedule Set

SCH(X).

Remark 1.1. The subset family E provides us with a description, which is even-
tually implicit, of the tasks which are allowed to be simultaneously run, and thus
defines what we shall call the Generalized Parallelism Constraint. The preemption
function P tells us how many times a given task may be interrupted during its
execution, and thus defines what we shall call the Partial Preemption Constraint.
Practically, partial preemption constraints may be found when human resources
are involved (timetabling problems).

328 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

Solving GPPCSP on the above instance means computing a schedule Φ of X ,
in such a way that:

– for any x in X , the length of Φ(x) is equal to the duration d(x) of x;
(Duration Constraint C1)

– for every task x in X , the preemption number NP(Φ(x)) of the tempo-
ral phasis Φ(x) does not exceed the preemption threshold P(x); (Partial
Preemption Constraint C2)

– if x, y ∈ X are such that x ρ y, then the start-point START(Φ(y)) of
Φ(y) is at least equal to the end-point END(Φ(x)) of Φ(x); (Precedence
Constraint C3)

– for any positive real number t, the subset eΦ(t) = {x ∈ X such that t
belongs to the interior Φ(x)0 of Φ(x)}, belongs to the edge set E; (Gen-
eralized Parallelism Constraint C4)

– Φ minimizes some quantity Cost(Φ).

A schedule Φ which satisfies C1, C2, C3 and C4 is a feasible schedule for the
related instance of GPPCSP.

If the preemption function P is constant and equal to 0, then we say that our
instance of GPPCSP is non preemptive. If P is constant and equal to +∞, then
we say that our instance of GPPCSP is fully preemptive.

If P = 0 (resp. +∞), if running any task x in X requires the use of some
machine, and if the relation E is defined by: e ∈ E iff Card(e) ≤ k, where k is
the number of existing machines, then our GPPCSP instance is an instance of
the non preemptive (resp. preemptive) Multiprocessor Scheduling Problem,
(see [19,20,36,37,41,42]).

If P = 0 (resp. +∞), if the execution of every task x in X requires the
use of some resource amount vector r(x) and if the relation E is defined by:
e ∈ E iff

∑
x∈e r(x) ≤ R, where R is the existing resource amount vector, then

we see that our instance of GPPCSP is an instance of the non preemptive (resp.
preemptive) Resource Constrained Project Scheduling Problem (RCPSP),
(see [5–7,12,16,26,27,29,33]).

Let us see now an example of a GPPCSP instance.

Example 1.2. Let us set X = {A, B, C, D, E}.
We suppose that the duration function d and the preemption threshold P are

given by the following table:

Task x A B C D E
d(x) 2 2 2 1.5 1
P (x) 0 0 1 0 0

We suppose that the precedence relation ρ is defined by: A ρ D.
We suppose that the generalized parallelism relation E is defined as follows:

– D and C are not allowed to be simultaneously performed, i.e. the pair
{C, D} does not belong to E;

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 329

– Every task x in X requires, at any time during its execution, some amount
r(x) of a given resource, according to the following table, while the avail-
able amount of existing resource is equal to 4.

Task x A B C D E
r(x) 2 2 2 1 3

It comes that a subset e of X belongs to E iff: it does not contain the pair {C, D}
and

∑
x∈e r(x) ≤ 4.

We notice that the relation E defined this way is defined in an implicit way.
If we explicit it, we find the edges e0 = {Nil}, e1 = {A}, e2 = {B}, e3 = {C}, e4 =
{D}, e5 = {E}, e6 = {A, B}, e7 = {A, C}, e8 = {B, C}, e9 = {A, D}, e10 =
{B, D}, e11 = {C, D}, e12 = {D, E}.

If the function Cost is the Makespan function, then an optimal solution of
GPPCSP may be described as below:

Remark 1.3. The GPPCSP is an extension of the RCPSP (Resource Con-
trained Project Scheduling Problem) Problem in two senses:

– generalized disjunctive constraints are allowed, whose expression comes
through the edge set E, and which do not involve renewable resources;

– preemption and non preemption characteristics are mixed into a unique
formalism, which allows us to simultaneously deal with preemptive and
non preemptive tasks, while imposing conditions on the way a preemptive
task may be divided into subtasks. As a matter of fact, the preemptive
version of RCPSP Problem has been fairly less studied than the non
preemptive one: algorithmic studies involving preemption have mainly
been limited to the case of multiprocessor scheduling (see Djellab [19],
Josefowska et al. [26]).

Definition 1.4 (left (right) translation of a schedule and dominant schedules).
During the next sections, we shall try to capture some structural properties of
the optimal solutions of the GPPCSP Problem. In order to do it, we shall need
some tools which will allow us to modify feasible solutions in an elementary way.
This will provide the motivation for the following definitions related to translations
and domination. Let Φ and Φ′ two feasible schedules related to a given instance
(X, E, ρ, d, P) of the GPPCSP Problem:

330 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

– we say that Φ′ comes from Φ through left (right) translation if for ev-
ery task x in X , there exists δ > 0 such that the temporal phasis Φ′(x)
comes from the temporal phasis Φ(x) through a left (right) translation
with parameter δ;

– we say that Φ′ dominates Φ if for every task x in X , it is possible to write:

Φ(x) =
⋃

i=1..n

[αi, βi]and Φ′(x) =
⋃

i=1..n

[α′
i, β

′
i]

in such a way that:
– for every i = 1..n, [αi, βi] and [α′

i, β
′
i] have equal lengths;

– for every i, j in 1..n, [αi, βi] and [αj , βj] ([α′
i, β

′
i] and [α′

j , β
′
j]) do not

intersect by more than one point;
– for every i = 1..n, αi ≤ α′

i.

For most Cost functions (and not only if Cost is the makespan function), it will
happen that if Φ′ dominates Φ then we shall have Cost(Φ′) ≤ Cost(Φ).

Φ is said to be dominant if no feasible schedule Φ′ dominates Φ but itself.

1.3. Ordered hypergraphs

A triple H = (X, E, ρ) as in Section 1.2, that means such that X is some finite
(we call it vertex set of H) set, E is some (we call it the edge set of H) subset
family of X , and ρ (we call it the partial ordering of H) is some binary relation
defined on X , is called an Ordered Hypergraph.

We say that H is monotonic, if the two following statements are true:

– if e ∈ E is some edge of H , then any subset of e is also in E;
– for any x ∈ X , the singleton subset {x} is in E.

A sequence {x0..xn = x0} of vertices of H such that x0 ρ x1..ρ xn = x0, will be
called a circuit for the relation ρ. We say that H is no-circuit if there does not
exist any circuit in X for the relation ρ.

An instance of GPPCSP is then defined by a monotonic no-circuit ordered
hypergraph H = (X, E, ρ), by a duration function d, and by a preemption thresh-
old function P . Given such an instance, one may notice that the information which
is provided by the precedence relation ρ may restrict the parallelism opportunities
allowed by the description of E: for instance, an edge e of E may contain 2 tasks
x and y such that x ρ y. This leads us to define ρ-antichains and valid antichains
as follows:

– H = (X, E, ρ) being a monotonic no-circuit ordered hypergraph, we denote
by ρT the transitive closure of ρ, and we call ρ-antichain of H any subset
B of X which satisfies: there does not exist x, y in B such that x ρT y;

– we say that such a ρ-antichain B is a valid antichain of the ordered hy-
pergraph H if it belongs to the edge set E. We denote by Eρ the set of

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 331

all valid antichains of H , and we say that Eρ is the Valid Antichain Edge
Set associated with H .

1.3.1. Dual hypergraph

Let us suppose that H = (X, E, ρ) is a monotonic no-circuit ordered hyper-
graph. Then, we may define on the Valid Antichain Edge Set Eρ, considered as a
vertex set, an ordered hypergraph structure KH = (Eρ, F, τ) as follows:

– if e and e′ ∈ Eρ, then we define the binary relation τ by setting: e τ e′ iff
there exists x ∈ e and y ∈ e′ such that x ρ y;

– if x ∈ X , then we set Fx = {e ∈ Eρ such that x ∈ e}. We define the Edge
Family F of KH by setting F = {Fx, x ∈ X}.

The ordered hypergraph KH = (Eρ, F, τ) which is defined this way, is called the
Dual Ordered Hypergraph of H . If B is some subset of Eρ, then we denote by
KH(B) the ordered subhypergraph which is induced from KH by B.

Example 1.5. Let us keep on with example 1.2 in Section 1.2. Then:

– Eρ = {e0 = {Nil}, e1 = {A}, e2 = {B}, e3 = {C}, e4 = {D}, e5 = {E},
e6 = {A, B}, e7 = {A, C}, e8 = {B, C}, e10 = {B, D}, e11 = {C, D},
e12 = {D, E}};

– we have: ei τ ej every time ei contains A and ej contains D;
– FA = {e1, e6, e7}, FB = {e2, e6, e8, e10}, FC = {e3, e7, e8, e11}, FD =
{e4, e10, e11, e12}, FE = {e5, e12}.

We notice that KH , defined according to this example, is not monotonic. Still,
it is no-circuit. But, if we augment the relation ρ by setting E ρ B, then KH

contains the circuit (e6, e12, e6).

1.3.2. Interval representations of an ordered hypergraph

As we shall see further, solving GPPCSP will mean identifying valid antichains
made with tasks which are effectively going to be simultaneouasly run, and se-
quencing them in such a way that they define a schedule compatible with both
precedence constraints (C3) and partial preemption constraints (C2). Formalizing
the induced sequencing problem requires us to define the L-Interval Representabil-
ity of an ordered hypergraph as follows:

If π is a linear ordering of a set Z, then we say that x0, .., xk ∈ Z are consecutive
according to π if x0 π x1 π .. π xk−1 π xk and if there does not exist z ∈ Z and
i ∈ {0..k − 1} such that xi π z π xi+1.

Given an ordered hypergraph K = (Z, F, σ), together with some function L,
which, to any e in F , makes correspond L(e) ∈ {0, 1, .., n, .. +∞}. We say that
such a function L is an edge-preemption threshold function for K. K is said to
be L-interval representable if there exists a linear ordering σ∗ of Z (L-Interval
Representation) such that:

– σ∗ is an extension of σ, which means that any pair x, y ∈ Z such that
x σ y is also such that x σ∗ y;

332 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

– any edge e in F may be written e = e0∪..∪el(e), where the ei, i = 0..l(e) are
disjoint subsets of Z, in such a way that l(e) ≤ L(e) and that the elements
of any ei, i = 0..l(e), are consecutive according to the linear ordering σ∗:
we say that σ∗ makes the elements of e be consecutive modulo L(e).

In case L = 0, we only say that K is interval representable.
Interval structures (graphs, hypergraphs, partially ordered sets) have already

been studied in several ways (see [7,8,10,21,30,40]). For instance, Booth and
Lueker, (see [10]), got an efficient algorithmic polynomial characterization of in-
terval hypergraphs (the case when σ is empty and L = 0), based upon the use
of PQ-trees. Also Quilliot and Xiao proposed in [40], a characterization through
forbidden patterns of interval representable ordered hypergraphs. Still, character-
izing the L-interval representability property in the general case remains an open
problem.

Example 1.6. Let us suppose that Z = {A, B, C}, that F = {e ∈ Z such that
Card(e) = 2}, and that σ is the empty relation. Then we see that K = (Z, F, σ) is
not interval representable. Still, it becomes L-interval representable if L is defined
by: L({A, B}) = L({A, C}) = 0 and L({B, C}) = 1. In order to check this last
point, we may consider that B, A, C are consecutive according to σ∗. Then we
get that the elements of {A, B} and {B, C} are consecutive according to σ∗, while
{B, C} may be written {B, C} = {B} ∪ {C}.

Since we want to use the notion of L-Interval Representability in order to prop-
erly sequence specific valid antichains, we will only apply it here to the Dual
Hypergraph KH defined in Section 1.3.1.

1.4. Expression of a GPPCSP Schedule as a weighted valid antichain

sequence

Our purpose is now to link the ordered hypergraph formalism to the GPPCSP
Problem in order to get a reformulation of this problem which might open the way
to new algorithmic approaches. In this section, as well as in Sections 1.5 and
1.6, we are going to explain how feasible GPPCSP schedules can be related to
specific weighted valid antichain sequences and to specific vertices of an antichain
polyhedron.

So, let us consider a feasible schedule Φ of our GPPCSP instance H =
(X, E, ρ, d, P). We may associate with Φ some finite sequence U of elements of
Eρ, according to the procedure ANTICHAIN-SEQ of algorithm 1.

The weighted sequence U is such that:
– several elements of U may correspond to a same antichain e in Eρ;
– for any x ∈ X , the sum

∑
u∈U/x∈u η(u) is equal to d(x); (Duration Con-

straint C5)
– if u and u′ ∈ U , x ∈ u, y ∈ u′ are such that x ρ y, then u precedes u′ in

U ; (Precedence Constraint C6);
– for any x ∈ X , the subsequence U(x) of U which is defined by the valid

antichains of U which contain x, may be written as an union of pairwise

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 333

Algorithm 1 ANTICHAIN-SEQ Procedure

1: Build the set Δ of all end-points and start-points of the intervals which are
involved in the description of the temporal phases Φ(x), x ∈ X , as unions of
pairwise disjoint closed intervals of the Time Space [0, +∞[; Add the point
0 to Δ ; Δ may be written as a sequence Δ = {δ0..δn}, in such a way that
0 = δ0 < δ1 < ... < δn−1 < δn

2: for i = 0..n− 1 do
3: set ui = {x ∈ X such that]δi, δi+1[⊆ Φ(x)}, and set η(ui) = δi+1 − δi {for

any i = 0..n− 1, ui is a valid antichain and belongs to Eρ}
4: end for
5: Set U = the sequence {u0, ..., un−1}: U is weighted by the weight sequence

η(ui), i = 0..n− 1

disjoint subsequences U0..Uk of U , in such a way that: (Partial Preemption
Constraint C7)

– for any j = 1..k, the elements of Uj are consecutive in U ;
– k ≤ P (x).

Clearly, any weighted sequence U which satisfies C5, C6 and C7 defines a feasible
schedule for our GPPCSP problem, whose makespan is equal to the quantity∑

u∈U η(u), which is called the makespan of U . As a matter of fact, we shall
indistinctly talk about a feasible schedule in the case of such a weighted sequence
U and in the case of a schedule Φ which satisfies the constraints C1, C2, C3 and
C4 of Section 1.2.

Example 1.7. Let us come back to our GPPCSP instance of example 1.2
in Section 1.2. Applying the ANTICHAIN-SEQ procedure to the feasible
schedule which was then proposed yields the sequence Δ = (0, 1, 2, 3, 4, 4.5) and
the weighted sequence U = ((e7, η(e7) = 1), (e6, η(e6) = 1), (e8, η(e8) = 1),
(e12, η(e12) = 1), (e4, η(e4) = 1/2)).

1.5. The antichain polyhedron ΛH,d

Let us keep on with our instance (H = (X, E, ρ), d, P) of the scheduling problem
GPPCSP. We call Antichain Polyhedron defined by the ordered hypergraph H =
(X, E, ρ) and by the duration function d, the set of all feasible solutions z = (ze, e ∈
E) ≥ 0 of the following linear constraint system ΛH,d :

ΛH,d :

⎧⎨
⎩z = (ze, e ∈ Eρ) ≥ 0, such that : for any x ∈ X,

∑
e/x∈e

ze = d(x)

⎫⎬
⎭ .

As a matter of fact, we denote by ΛH,d both the polyhedron and its related linear
constraint system.

Let Φ be some feasible schedule of the instance of the GPPCSP problem which
is defined by the hypergraph H , the duration function d and the preemption

334 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

threshold function P , and let U = {ui, with weight η(ui), i = 0..n − 1}, the
weighted valid antichain sequence which derives from Φ through application of the
ANTICHAIN-SEQ procedure of algorithm 1. Then, for every valid antichain
e ∈ Eρ, we may set ze =

∑
i=0..n−1/e=ui

η(ui). In case any valid antichain e ∈ Eρ

occurs at most one time in the sequence U , then this formula may be rewritten in
a simpler way: ze = η(ui) if there exists i ∈ 0..n− 1 such that ui = e and ze = 0
otherwise. We define by this way a vector z = (ze, e ∈ Eρ) ≥ 0, which belongs
to the polyhedron ΛH,d. We say that z derives from the feasible schedule Φ.
We say that the valid antichain e is active for the schedule Φ if ze �= 0.

Example 1.8. If we refer to the specific GPPCSP instance of Example 1.2 in
Section 1.2, we see that the vector z defined by ze0 = 0, ze1 = 0, ze2 = 0, ze3 = 0,
ze4 = 1/2, ze5 = 0, ze6 = 1, ze7 = 1, ze8 = 1, ze10 = 0, ze11 = 0, ze12 = 1, derives
from the previously proposed optimal schedule Φ. The related active antichains
are e4, e6, e7, e8 and e12.

The polyhedron ΛH,d is a convex closed subset of the space R
Card(Eρ). In case

E is defined in an implicit way, Card(Eρ) may be very large. Its intersection with
the hyperspace defined by zNil = 0, where Nil is the empty edge, is compact.
Also, all vertices of ΛH,d are located in this hyperspace zNil = 0. If z ∈ ΛH,d,
then we say that an edge e ∈ Eρ is active for z if ze �= 0. We denote by ACT (z)
the set of all edges e ∈ Eρ which are active for z.

Let us denote by MH the constraint {0, 1}-matrix associated with ΛH,d. The
rows and the columns of MH may respectively be identified with the vertices and
with the valid antichains of H , or, equivalently, with the edges and the vertices
of the dual ordered hypergraph KH = (Eρ, F, τ) of H . Then ΛH,d may also be
rewritten:

ΛH,d = {z = (ze, e ∈ Eρ) ≥ 0, such that MH .z = d}.
1.5.1. The vertex set V (ΛH,d) of ΛH,d

We denote by V (ΛH,d) the set of the vertices of the polyhedron ΛH,d. If B ⊂ Eρ

and Y ⊂ X , then we denote by MH(B, Y) the submatrix of the matrix MH which
is defined by B and Y . The following lemma will help us in reformulating the
GPPCSP problem as a search problem involving specific basis subsets of Eρ.

Lemma 1.9 (see for instance [43], Chap. 8). A vertex of ΛH,d is a vector z ≥ 0
such that there exists a subset B of Eρ, such that:

Card(B) = Rank(MH) = Card(X),

and which satisfies the following relations: (Basis Subset Equations)
– the restriction zEρ−B of z to the edges which are not in the column set

B ⊂ Eρ, is null;
– the submatrix MH(B, X)−1 is invertible;
– the restriction zB of z to B is equal to MH(B, X)−1.d.

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 335

If z is such a vertex of ΛH,d, and if B is as in Lemma 1.9, then we say that the
column subset B ⊂ Eρ is a basis subset associated with the vertex z, and that
z derives from this basis subset B. Lemma 1.9 will help us in reformulating the
GPPCSP problem as a search problem involving specific basis subsets of Eρ.

Example 1.10. If we refer to our Example 1.2 in Section 1.2, we see that the
vector z defined by ze0 = 0, ze1 = 0, ze2 = 0, ze3 = 0, ze4 = 1/2, ze5 = 0, ze6 = 1,
ze7 = 1, ze8 = 1, ze10 = 0, ze11 = 0, ze12 = 1, which derives from the optimal
schedule Φ which was then proposed, is a vertex of the related polyhedron ΛH,d,
with associated basis B = {e4, e6, e7, e8, e12}.
1.5.2. Ajacency relation on the vertex set V (ΛH,d)

There exists a natural adjacency relation which is defined on the vertex set of
any polyhedron. We know that:

Lemma 1.11 (see for instance [43], Chap. 8). Two distinct vertices z and z′

in V (ΛH,d) are adjacent in the sense of this relation if and only if they admit
two associated basis subsets B and B′, such that the cardinality of the symmetric
difference (B Δ B′) is equal to 2.

This lemma will help us in studying the connectivity of the specific vertex
subsets of V (ΛH,d) which will be involved in the reformulation of the GPPCSP
problem.

1.5.3. Using the ΛH,d polyhedron in order to get lower bounds for the linear GP-
PCSP problem

In case the performance criterion of our GPPCSP instance involves a specific
cost vector C = (Ce, e ∈ Eρ), in such a way that Ce.δ expresses the cost of simul-
taneously running the tasks of the edge e in Eρ during some time δ, then Cost(Φ)
may be written Cost(Φ) = C.z, and we say that the related GPPCSP instance
is linear. Of course, the case when the performance criterion is the makespan
(C = 1) corresponds to such a linear instance.

In such a case, solving the following linear program LC
H,d:

LC
H,d : {Compute z in ΛH,d which minimizes the quantity Cost(z) = C.z}

through column generation techniques provides a lower bound of the related GP-
PCSP problem.

This idea of using the ΛH,d polyhedron in order to get lower bounds for a sched-
uling problem was first introduced in [40,41] for the Multiprocessor Scheduling
Problem, and was next used in [5,6,11,12,27] for the Resource Constrained Project
Scheduling Problem. More precisely, Sauer and Stone [40,41], Papadimitriou, Yan-
nanakis [38], and next Moukrim, Quilliot [36], used it in order to state conditions
which make the optimal value of L1

H,d be equal to the optimal value of a related
multiprocessor scheduling problem. Djellab [19], and next Josefowska et al. [26],
used clever adaptations of the linear program L1

H,d in order to get lower and

336 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

upper bounds for preemptive multiprocessor scheduling problems. Those adap-
tations, which yield very good results, involve MAC NAUGHTON’s Algorithm
(see [4]) for preemptive multiprocessor scheduling without precedence constraint.
Also, Baptiste and Demassey [6], used constraint propagation techniques in order
to provide the linear program L1

H,d with additional constraints (cuts) and this
allowed them to get tight bounds for the non preemptive RCPSP, giving rise by
this way to very efficient branch/bound algorithms.

Example 1.12. If we refer to the specific GPPCSP instance of Example 1.2 in
Section 1.2, then we see that the vector z defined by ze0 = 0, ze1 = 0, ze2 = 0,
ze3 = 0, ze4 = 1/2, ze5 = 0, ze6 = 1, ze7 = 1, ze8 = 1, ze10 = 0, ze11 = 0, ze12 = 1,
is an optimal solution of the linear program L1

H,d, and provides us with a lower
bound equal to 4.5.

1.6. Specific vertex subsets of the vertex set V (ΛH,d)

Of course, not every vector z in the polyhedron ΛH,d derives from some feasible
schedule of the GPPCSP instance which is defined by the ordered hypergraph
H , by the duration function d and by the preemption threshold function P . We
can see it by considering Example 1.2 in Section 1.2, and by considering the vector
z which is defined by

for i = 1..5, zei = 1/2, ze6 = 3/4, ze7 = 3/4, ze8

= 1/2, ze10 = 1/4, ze11 = 1/4, ze12 = 1/2.

As a matter of fact, we notice that:

Proposition 1.13 (derivability characterization). Given an ordered hypergraph
H = (X, E, ρ), a duration function d, a preemption threshold function P , and a
vector z in the polyhedron ΛH,d.

The vector z corresponds to a feasible schedule of the GPPCSP instance defined
by H, d and P , if and only if the ordered subhypergraph KH(ACT (z)) of the dual
hypergraph KH , which is induced by the subset ACT (z) of Eρ made with the edges
e which are active for z, is P -interval representable.

Proof. It is only a matter of applying the definitions. �
Since we are motivated here by the idea of finding tools which would allow us to

deal with elements of ΛH,d which derive from “extremal” feasible schedules, this
result leads us to define the following subsets:

– V − PPRH,d,P = P -Feasible Vertex Subset of the polyhedron ΛH,d =
{vertices z of the polyhedron ΛH,d which may be associated with some
basis subset B such that the ordered subhypergraph KH(B) of the dual or-
dered hypergraph KH , which is induced by B, is P -interval representable}.

– V − PRH,d = Fully Preemptive Vertex Subset of the polyhedron ΛH,d =
the set V −PPRH,d,+∞ which corresponds to the case when the threshold
preemption function P is equal to +∞ (fully preemptive case).

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 337

– V −NPRH,d = Non Preemptive Vertex Subset of the polyhedron ΛH,d =
the set V − PPRH,d,0 which corresponds to the case when the threshold
preemption function P is equal to 0 (non preemptive case).

The next section will then be devoted to describe the way the GPPCSP problem
may be reformulated as a search problem on the set V −PPRH,d,P , and to study
the structure of this specific vertex set.

Example 1.14. If we refer to the specific GPPCSP instance of example 1.2 in
Section 1.2, we see that the vector z = (ze0 = 0, ze1 = 0, ze2 = 0, ze3 = 0, ze4 =
1/2, ze5 = 0, ze6 = 1, ze7 = 1, ze8 = 1, ze10 = 0, ze11 = 0, ze12 = 1) belongs to the
set V − PPRH,d,P , but does not belong to the set V −NPRH,d.

2. Structural properties of the antichain

polyhedron ΛH,d

This part of our work is going to focus on the link which exists between the
specific vertex subsets V − PPRH,d,P and V −NPRH,d, of the polyhedron ΛH,d

and efficient feasible solutions of the GPPCSP problem. We shall study the
connectivity (in the sense of the general structure of polyhedra: see Sect. 1.5.2) of
those subsets, and the results which we are going to obtain will eventually open
the way to the design of new kinds of local search algorithms for the GPPCSP
problem.

2.1. Some theoretical results

We are first going to state a Lemma which is going to better identify the
link which exists between Proposition 1.13 and the definition of the subset V −
PPRH,d,P . Proposition 1.13 involves the active antichain subset ACT (z) ⊂ Eρ

which may be associated with a vector z in the polyhedron ΛH,d. It only requires
the P -interval property to be satisfied by the subhypergraph KH(ACT (z)) of the
dual hypergraph KH which is induced by ACT (z) = {e ∈ Eρ such that ze �= 0}.
But the definition of the subset V − PPRH,d,P involves vertices of ΛH,d, and re-
quires the whole basis subset B ⊂ Eρ related to a vertex of ΛH,d to be such that
the induced subhypergraph KH(ACT (z)) be P -interval representable. We link
both by stating:

Lemma 2.1 (extension lemma). Let z be a vector in ΛH,d such that ACT (z) de-
fines a family of independant columns of the matrix MH and such that the subhy-
pergraph KH(ACT (z)) is P -interval representable. We suppose that the duration
function d is strictly positive. Then z is in the subset V − PPRH,d,P .

Proof. We only need to prove that z is a vertex of ΛH,d and that there exists a
subset B of Eρ which is a basis subset for z and which is such that ACT (z) ⊂ B
and that the ordered subhypergraph KH(B) is P -interval representable.

Let A be a subset of Eρ such that:

338 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

– the ordered subhypergraph KH(A) of the dual ordered hypergraph KH

which is induced by A is P -interval representable;
– the rank of the restriction of MH to the A indexed colums is equal to

Card(A).
Then we have to prove that there exists B ⊂ Eρ, such that the ordered sub-
hypergraph KH(A ∪ B) is P -interval representable, and such that the rank of
the submatrix of MH which is induced by A ∪ B is equal to Card(X). We set
q = Card(A) and we proceed by induction on Card(X) − q. Also, for any pair
(U, Y), where U ⊂ Eρ and Y ⊂ X , we denote by MH(U, Y) the submatrix of MH

which is induced by U (columns) and Y (rows).
If q = Card(X), then we are done. If q < Card(X), then we may consider

X ′ ⊂ X , such that the determinant Det(MH(A, X ′)) which is defined by X ′ and
A is different from 0, and x0 ∈ X −X ′. Then, in order to get our result, we only
need to prove (because of the induction) that there exists an antichain b in Eρ

such that:
– Det(MH(A + {b}, X ′ + {x0})) �= 0;
– the ordered subhypergraph KH(A ∪ {b}) is P -interval representable.

Let us suppose that A may be written A = {e1, e2, .., eq}, in such a way that the
linear ordering defined this way is a P -interval representation of KH(A). We may
remark that, since d(x0) > 0, x0 must belong to

⋃
i=1..q ei. Let us also suppose

(refutation), that there does not exist b in Eρ such that Det(MH(A + {b}, X ′ +
{x0})) �= 0 and such that KH(A ∪ b) is P -interval representable. (E1)

Then (E1) yields, that, for any x in (X ′ + {x0}) ∩ e1, the ordered hypergraph
KH(A∪{x}) is P -interval representable, and that Det(MH(A, X ′+{x0}−{x})) =
0. Keeping on with the same reasoning, we define i0 as the largest integer i such
that for any x in (X ′ + {x0}) ∩ ei, we have Det(MH(A, X ′ + {x0} − {x})) = 0. If
i0 < q, then, for any x in (X ′ + {x0}) ∩ (ei0+1 −

⋃
j=1..i0

ej), we may define the
subset b = b(x) of X as follows:

b = {x} ∪ {y ∈ X, such that y ∈ ei0 ∩ ei0+1}.

Clearly, b is in Eρ, and the ordered hypergraph KH(A ∪ {b}) is P -interval repre-
sentable. It follows that we have Det(MH(A, X ′ + {x0}− {x})) = 0, which allows
us to deduce a contradiction on i0, except if i0 = q. But if i0 = q, we know that x0

must be in some edge ei, i = 1..q, and we get that Det(MH(A, X ′+{x0}−{x0})) =
0, which means that the rank of the submatrix MH(A, X ′) cannot be equal to q,
and a contradiction. �

We can now state our first Antichain Polyhedron Theorem, which will allow
us to consider the non preemptive GPPCSP problem related to the ordered
hypergraph H and to the duration function d, as a search problem defined on the
Non Preemptive Feasible Vertex Subset V

¯
−NPRH,d.

Theorem 2.2 (non preemptive antichain polyhedron theorem). Let Φ be some
dominant feasible schedule for the non preemptive GPPCSP problem which is

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 339

defined by the ordered hypergraph H = (X, E, ρ) and by a strictly positive duration
function d, and let z be the Eρ indexed vector which derives from Φ. Then z is in
V−NPRH,d.

Proof. The feasible non preemptive schedule Φ gives rise, through application of
the ANTICHAIN-SEQ procedure of algorithm 1, to some weighted antichain
sequence U = {ui, i = 0..n−1, weight of ui = η(ui)} and to some positive number
sequence Δ = {0 = δ0 < δ1 < ... < δn−1 < δn}, in such a way that:

– Δ = {0} ∪ {the set of all end-points END(Φ(x)) and start-points
START (Φ(x)) of the intervals Φ(x), x ∈ X , which belong to the real
line [0, +∞[};

– for any i = 0..n − 1, ui = {x ∈ X such that Φ(x) contains the interval
]δi, δi+1[};

To any edge ui corresponds some column vector Vi of the incidence matrix MH .
Vi is a X indexed vector defined by: Vi,x = 1 if ui contains the vertex x ∈ X , and
Vi,x = 0 otherwise. Because of the Extension Lemma, we only need to prove that
the vectors Vi, i ∈ 0..n− 1, are linearly independent. (E2)

In order to prove it, we denote by V the {0, 1}-matrix whose columns are the
vectors Vi, i ∈ 0..n− 1, and we proceed by induction on n. Clearly, u0 cannot be
the empty antichain: if we had u0 = Nil, then it would be possible to left translate
(with a parameter value equal to −δ0) the whole schedule Φ in such a way that
it would contradict the fact that Φ is dominant. Let x0 ∈ X be an element of u0

with minimal duration d(x0). We claim that Φ(x0) = [0, δ0]. (E3)
If it were not the case, then there would exists x1 in u1 such that 0 < START

(Φ(x1)) < END(Φ(x0)), and such that START(Φ(x1)) is the smallest possible
with this property. But we could contradict the fact that Φ is dominant by left
translating (with a parameter value equal to START(Φ(x1)) the task x1.

It follows from (E3) that all vectors Vi but vector V0 are such that Vi,x0 = 0,
which also means that the row of matrix V which corresponds to vertex x0 is equal
to (1, 0, ..., 0). Let us consider the ordered subhypergraph of H which is induced by
X−x0, and let us define, on the task set X−x0, the following duration function d′:

– d′(x) = d(x) − δ0 if x ∈ e0;
– d′(x) = d(x) otherwise.

Then it also follows from (E3) that the schedule Φ′ which is obtained by setting,
for every x in X − x0:

START(Φ′(x)) = START(Φ(x)) − δ0,

is a non preemptive dominant feasible schedule for the non preemptive instance
of GPPCSP which is defined by X − x0, E, ρ and d′. It gives rise, through
application of the ANTICHAIN-SEQ procedure of algorithm 1, to the weighted
subsequence U ′ = {ui, i = 1..n − 1, weight of ui = η(ui)}, and to the submatrix
V ′ of V which is induced by the removal of the V0 column and the x0 row. We
conclude by induction on n and we get (E2). �

340 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

Our next result deals with the general case (partially preemptive), with the
hypothesis that the cost function Cost is linear. Under this hypothesis, it makes
appear any GPPCSP instance related to an ordered hypergraph H , to a dura-
tion function d, and to a Preemption Threshold function P , as a search problem
defined on the P -Feasible Vertex Subset V − PPRH,d,P . It is non trivial and its
usefulness comes from the fact that it will allow us to deal with GPPCSP while
focusing on specific basis subsets, which are the main objects at the core of Linear
Programming.

Theorem 2.3 (general linear case antichain polyhedron theorem). Given an or-
dered hypergraph H = (X, E, ρ), a strictly positive duration function d, a preemp-
tion threshold function P , and a Eρ indexed vector C ≥ 0. Then there exists an
optimal solution Φ of the related linear GPPCSP instance such that the vector z
which derives from Φ belongs to the P -Feasible Vertex Subset V −PPRH,d,P .

Proof. Let Φ be some feasible schedule associated with the GPPCSP instance
defined by H, d, P and C, let z be some vector of ΛH,d which derives from Φ, and let
ACT (z) be the active edge subset of z. We know that the ordered subhypergraph
KH(ACT (z)) of the dual ordered hypergraph KH , which is induced by ACT (z),
is P -interval representable. Solving the following linear program:

LC
H,d(ACT (z)) :

{
Find a ACT (z) indexed vector t ≥ 0, such that,

for every x ∈ X,
∑

e∈ACT (z)/x∈e

te = d(x),

and which minimizes the quantity
∑

e∈ACT (z)/x∈e

Ce.te = d(x).
}

,

makes appear a subset A of ACT (z) and an optimal solution t∗ of LC
H,d(ACT (z))

such that:

– the restriction of t∗ to ACT (z)−A is null;
– the rank of the restriction of the matrix MH to the A indexed columns is

equal to Card(A).
– the ordered subhypergraph KH(A) of the dual ordered hypergraph KH

which is induced by A is P -interval representable.

We easily conclude by applying the Extension Lemma. �

The last result (Connectivity Theorem) of this section aims at telling us more
about the connectivity (in the sense of the adjacency relation which is defined on
the vertex set of any polyhedron: see Sect. 1.5.2), of the subset V−PPRH,d,P .
It should open the way to the resolution of the GPPCSP problem through the
design of local transformation algorithms whose execution would involve some walk
on the set V −PPRH,d,P .

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 341

Theorem 2.4 (antichain polyhedron connectivity theorem). Given an ordered
hypergraph H = (X, E, ρ), a strictly positive duration function d, and a preemption
threshold function P . The subset V −PPRH,d,P is connected in the sense of the
usual adjacency relation which exists between the vertices of the polyedron ΛH,d.

Proof. So let us consider our polyhedron Λε
H,d as well as some threshold preemption

function P and some vertex z in V − PPRH,d,P . We first have to introduce
some conventions. Let us remark that we can associate with z some basis subset
B = {e1, e2, .., eN=Card(X)}, such that: (E4)

– e1, .., eN ∈ Eρ define N linearly independent indexed column vectors
V1, V2, .., VN of the matrix MH ;

– there exists some feasible schedule Φ (for the GPPCSP instance related
to H, d and P), such that z derives from Φ;

– any edge e which is active for Φ belongs to B;
– the ordered subhypergraph KH(B) of the dual ordered hypergraph KH ,

is P -interval representable.
Since the ordered subhypergraph KH(B), induced from KH by B, is P -interval
representable, we may suppose that the edges ei, i = 1..n, have been indexed in
such a way that: (E5)

– if x ∈ ei and y ∈ ej are such that x ρ y then i < j;
– if x ∈ X , then the indices i such that x ∈ ei, are consecutive modulo P (x)

in the set {1..n}.
Let α be the largest i in 1..n, such that for any j < i, ej is a singleton, (Card(ej) =
1). For any j < α, we denote by xj the unique vertex (task) of ej.

Let us denote by B0 the trivial basis whose all components are singletons:
B0 = {{x}, x ∈ X}. We only need, in order to get our result, to prove the
following statement: (E6)

– there exists a sequence B0 = B0, B1..Bs = B, of basis subsets, which all
satisfy (E4), and which are such that, for any k = 0..s− 1, Bk and Bk+1

differ by at most one element.
Proceeding by refutation and by induction on α and on the sum

∑
i=1..n Card(ei),

we may suppose that (E6) is false and that z and B have been chosen in such a
way that: (E7)

– α is maximal;
– the sum

∑
i=1..n Card(ei) is the smallest possible, α being fixed.

A first case arises when α ≥ 2 and when there exists i ≥ α and γ < α such that
ei contains the vertex xγ such that eγ = {xγ}. In such a case, we denote by β
the largest value i such that xγ ∈ ei, and we replace eβ by e = eβ − {xγ}. Then
we obtain a new edge family B′ which keeps on satisfying (E4), and we get a
contradiction on the minimality of the quantity

∑
i=1..n Card(ei). So we suppose

(non trivial case) that either α = 1 or that no edge ei, i ≥ α, contains a vertex xγ

such that γ < α and eγ = {xγ}. (E8)
Then, the sketch of the remaining part of the proof is going to come as follows:

(E9)

342 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

– we are first going (first step) to turn the duration function d into another
one dε and the related vector z into another one zε, in such a way that zε

remains a basis vector associated with B in the related polyhedron Λε
H,d.

We shall do it in such a way that any antichain of B is going to be active
for z;

– this last property will next enable us (second step) to prove the existence
of a path Γε, which connects in Λε

H,d the vertex zε to some vertex z∗ε

and which only involves vertices of V −PPRH,d,P , in such a way that
the induction hypothesis (E7) may be applied to any basis B∗ε associated
with z∗ε;

– we conclude (last step) by making ε converge to 0 and by deducing our
result through a convergence argument based upon the finiteness of:
V −PPRH,d,P .

In order to get the first step of the above sketch (E9), we consider some small
number ε > 0, and we define a vector zε by setting, for any edge e in B, zε

e =
ze + ε. This vector zε is a vertex of the polyhedron Λε

H,d which is defined by:
Λε

H,d = {z = (ze, e ∈ Eρ) ≥ 0 ∀x ∈ X,
∑

e/x∈e ze = d(x) + ε(x)},
where ε(x) is given by: ε(x) = ε. (number of edges ei, i = 1..n, such that x ∈ ei).

As a matter of fact, Λε
H,d is the antichain polyhedron related to the ordered

hypergraph H and to the duration function dε which, to any x in X , makes
correspond dε(x) = d(x) + ε(x). Introducing this small number ε allows us to deal
with a vertex zε of Λε

H,d which makes every element of B be active. Then the
feasible schedule Φ may be turned into a schedule Φε, which is feasible for the
GPPCSP instance defined by H, dε and P . We also may do in such a way that
Φε agrees with the (E5) hypothesis. That means that if we set, for every i = 1..n:

T ε
i = {t ∈ [0, +∞[such that ei =

{x ∈ X such that t is in the interior of the intervalΦε(x)}},

then the T ε
i are consecutive open intervals with length zε

ei
: if t ∈ T ε

i , if t′ ∈ T ε
j ,

and if i < j, then t < t′.
We deal with the second step of the above sketch (E9) by noticing that, because

of (E8), the square matrix defined by e1, .., eα−1 (columns) and by (
⋃

i=1..α−1{ei})
(rows) is the identical square matrix, and that, consequently, the square matrix
Π defined by eα, .., en (columns) and by X − (

⋃
i=1..α−1{ei}) (rows) is invertible.

Also, the submatrix defined by the rows X − (
⋃

i=1..α−1{ei}) and the columns
eα, .., en is null. Let us consider some vertex y0 which is in eα, and let us set:
J(y0) = {j = α..n, such that y0 ∈ ej}. Let us denote by β the largest index value
in J(y0), and let us define two edges f and f ′ of Eρ as follows:

– f = {y0};
– f ′ = eβ − {y0}.

Then we see that the edge family B∗ obtained after adding f and f ′ to B is such
that the subhypergraph KH(B∗) is P -interval representable. Let us then define

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 343

the following linear program LP ε:

LP ε :
{

Find a B∗ indexed vector z ≥ 0, such that, for every x ∈ X ,

∑
e∈B∗/x∈e

ze = d(x) + ε(x), and which maximizes the quantity zf

}
.

Clearly, the restriction to B∗ of the vector zε is a feasible solution of LPε and
defines a vertex of the polyhedron of LPε. Also, this vector zε is not an optimal
solution of LPε, since one may turn zε into a better feasible z′ solution of LPε,
by choosing a sufficiently small number δ and by setting:

– z′f = δ; z′f ′ = δ;
– z′eβ

= zeβ
− δ; z′e = ze for any e in B∗ − {f, f ′, eβ}.

Therefore, the Simplex Algorithm (see [43]) allows us to reach an optimal solution
z∗ε of LP ε by following some path Γε, which starts from vertex zε and which ends
in vertex z∗ε, in the constraint polyhedron of LP ε.

In order to conclude (last step of the above sketch (E9)), we see that e1, .., eα−1

must be in any basis subset associated with any vertex of Γε. Also, the antichain
f must be in any basis subset B∗ε associated with vertex z∗ε. Since the number
of possible basis subsets is finite, there exists a sequence εk, k = 0...∞, which
converges to 0, and which is such that the related paths Γεk, k = 0...∞, all induce
a same sequence B∗ = D0, D1..Dr = B of basis subsets, such that:

– for any j = 0..r and for any k = 0...∞, Dj is associated with some vertex
in Γεk ;

– for any j = 0..r − 1, the basis subsets Dj and Dj+1 differ by exactly one
element.

But then, it comes that every basis subset Dj, j = 0..r, may also be associated with
some vertex of ΛH,d, and is such that the subhypergraph KH(Dj), which is induced
by Dj from the dual ordered hypergraph KH , is P -interval representable. Thus
any basis subset Dj, j = 0..r, satisfies (E4). Also, edges e1, .., eα−1 and f must be
in B∗, and B∗ may be written according to (E5) under the form: B∗ = {f1..fn},
with: (E10)

– if x ∈ fi and y ∈ fj are such that x ρ y then i < j;
– if x ∈ X , then the indices i such that x ∈ ei are consecutive modulo P (x)

in the set {1..n};
– if i < α, then fi = ei ; fα = f .

Then we conclude: because of (E10) and of the (E7) hypothesis about the maxi-
mality of α, there exists a sequence of basis subsets B0 = B0, B1..Bq = B∗, which
all satisfy (E4) and which are such that, for any k = 0..q − 1, Bk and Bk+1 differ
by at most one element. By concatenating both sequences B0 = B0, .., Bq = B∗

and B∗ = D0, .., Dr = B, we get a contradiction on (E7) and the result. �

344 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

2.2. A short discussion about algorithms

We must first insist on the fact that, since this paper is essentially dedicated
to the theoretical study of the combinatorial structure of the GPPCSP problem,
we are not able to do much more here about algorithms than proposing a kind of
prospective discussion. Programming heuristics involving the management of the
LC

H,d linear program requires a lot of work, and we plan doing it in the context of
a specific contribution. Our feeling is that, since Theorem 2.3 allows us to rewrite
the linear GPPCSP problem as follows
{Given:

– an ordered hypergraph H = (X, E, ρ), and a duration function d;
– a preemption threshold integer valued function P , defined on X ;
– a cost vector C, with indexation on the valid antichain Eρ.

Find a vertex z in V −PPRH,d,P , some associated basis subset B, and some P -
interval representation τ∗ of the ordered subhypergraph KH(B), such that C.z is
the smallest possible },

then Theorem 2.4 should probably enable us to design local search proce-
dure whose execution would induce a well-driven walk on some connected subset
V−PPRH,d,P ′ , along the edges of V (ΛH,d). This intuition is based upon the
fact that even if elementary Simplex moves are not very powerful by themselves,
they can be controlled in many ways (primal-dual simplex method, Lagrangean
decomposition) which might eventually help the programmer in defining very large
neighbourhood, and thus in designing efficient algorithms. Still, we must admit
that we did not work enough about this part of the problem to fully confirm this
intuition.

More precisely, one may notice that the moves related to the adjacency relation
which is defined on V (ΛH,d) are most often likely not to cause any change in the
value of the related cost value. As a matter of fact, the linear program LC

H,d is
likely to be most often strongly degenerated. Because of this, elementary moves
along the edges of V (ΛH,d), (basic iterations of the Simplex Algorithm) should
only be used as part of well-driven pathes (sequences of elementary moves) inside
the vertex set V (ΛH,d) of the ΛH,d polyhedron: according to this, a local search
heuristics for the GPPCSP problem will make the current vertex z move inside
V (ΛH,d) or inside the subsets V − PPRH,d,P while jumping, at any iteration of
the main search loop, from the origin of such a path until its extremity. Because
of this, we shall talk about micro-moves when talking about those elementary
moves, and we shall talk about operational moves when talking those well-driven
sequences of such micro-moves.

Several algorithmic schemes may be designed according to thoses guidelines,
and evaluating their efficiency will require a long time dedicated to sofware de-
velopment and test. One may think for instance in defining operational moves
as micro-move sequences which would aim at optimizing auxiliary cost functions
while avoiding forbidden valid antichains. As an example, let us describe the fol-
lowing algorithmic scheme of algorithm 2, called GPPCSP-SCHEDULE which
we implemented in [17], in the case when C = 1 and when P = 0 and P = +∞:

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 345

Algorithm 2 GPPCSP-SCHEDULE

1: FORBID ← Nil; Not Stop; Cur − Sol ← Undefined; Cur − V alue ←
Undefined;

2: while Not Stop do
3: Compute an optimal solution z, together with an associated basis subset

B of Eρ , of the linear program PL(FORBID):
{Find z in ΛH,d, such that ze = 0 for any e in FORBID, and which mini-
mizes z.C};

4: Turn B into a weighted antichain sequence B∗ which satisfies (C5), (C6)
and (C7) of the section 1.4 and which contains at least one basis subset;
B∗ defines a feasible schedule of the related GPPCSP instance; Let τ∗ a
P -interval representation of KH(B∗);

5: Compute an optimal feasible basis B1 for the linear program PL(Eρ−B∗):
{Find z in ΛH,d, such that ze = 0 for any e which is not in B∗, and which
minimizes z.C};

6: Not Stop1;
7: while Not Stop1 do
8: Search e ∈ B1 and f ∈ Eρ −B1 such that:

– KH(B1 − {e} + {f}) is P -interval representable and admits a
P -interval representation which is compatible with τ∗;

– Replacing B1 by B1− {e}+ {f} improves B1 in the sense of the
Simplex Algorithm (taking degeneracy into account);

9: if e and f exist then
10: replace B1 by B1− {e}+ {f}
11: else
12: Stop1;
13: end if
14: end while
15: Update Cur − Sol and Cur − V alue;
16: Remove some elements from FORBID;
17: Pick up a subset A of B −B1 and insert it into FORBID;
18: Update Stop;
19: end while

Algorithm 2 is not truly a local search algorithm, but rather a hybrid one.
The internal loop (lines 7-14) performs a local search on the neighbourhood struc-
ture which is directly induced by the Connectivity Theorem (the adjacency struc-
ture which associated with the vertex set of the polyhedron ΛH,d). But, globally,
GPPCSP-SCHEDULE performs some kind of random walk (main loop) while
handling non feasible solutions. At any iteration of the main loop, GPPCSP-
SCHEDULE computes a solution z of a restricted version of the linear program
LC

H,d, next turns it into a vertex of V −PPRH,d,P (a feasible schedule), and finally
performs the local search associated with the internal loop.

346 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

Table 1. Non preemptive case, P = 0.

PSPLIB30 Instances SOL/OPT Case of Equality SOL = OPT CPU (sec.)
All (480 instances) 1.90 % 291 67.5
Hard1 (341 instances) 2.67 % 152 95.0
Hard2 (240 instances) 3.37 % 77 93.6

Table 2. Non preemptive case, P =∞

PSPLIB30 Instances SOL/OPT Case of Equality SOL = OPT CPU (sec.)
All (480 instances) 0.15 % 442 9.9
Hard1 (341 instances) 0.21 % 303 13.9
Hard2 (240 instances) 0.30 % 202 17.4

The key instructions in GPPCSP-SCHEDULE are the instructions of lines 4,
16 and 17. We implemented the above scheme in [17] while using a very simple
heuristic for (I1). We will briefly discuss in the Section 4 the way some “exactness”
result may give rise to more sophisticated way of performing instruction of line 16.
As for the instructions of lines 16 and 17, we choosed not to remove any element
from FORBID and to select the half part of B −B1 made with the edges e with
smallest value ze.

We then performed tests on the RCPSP instances of the PSPLIB30 library
(see [29]), while using a Duron, 1 GHz, through a C++ code compiled by g++.
We addressed the cases P = 0 (non preemptive case) and the case P = +∞
(preemptive case). We got the following results, where SOL/OPT denotes the
gap (in percentage) between the optimal solution OPT and our own solution
SOL.

The results of Table 2.2 are acceptable, but they are far from being optimal,
and we feel that it should be possible to significatively improve those results by
refining instructions of lines 4 and 17. As we just told it, this paper does not claim
algorithmic efficiency, and turning the ideas which it contains into efficient algo-
rithms remains a challenge. Better experimental results can be obtained through a
combination of branch/bound and constraint propagation techniques (see Baptiste
and Demassey [6] on PSPLIB60) and also through specific insertion techniques (see
Artigues et al. [2,3]).

The results of Table 2.2 are rather good. Testing the preemptive case is difficult
(for instance in the case of the PSPLIB60), since in most cases, we do not really
know the value OPT of the optimal solution, and since few experimental results
exist. As a matter of fact, most experiments related to the premptive case (Djellab
[19], Josefowska et al. [26]) have been performed on the Multiprocessor Scheduling
Problem, which is a very specific case of the RCPSP Problem, and they involved
specifically designed algorithm. Since our algorithm is very generic, we did not
try to adapt it to the multiprocessor scheduling case.

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 347

3. Commutative ordered hypergraphs: a case when

optimal preemptive scheduling can be done through

linear programming

We focus now on preemptive scheduling, and on the way solving the linear
program:

L1
H,d : {Compute z in ΛH,d which minimizes the quantity 1.z}

may provide us with an optimal (or at least a good) solution of the preemptive ver-
sion of the Makespan Minimization GPPCSP problem (the case when P = +∞).
Since this paper is mainly dedicated to the theoretical analysis of the combinato-
rial structure of the GPPCSP problem, we shall not deal with this problem taken
as a whole, but we shall identify cases (Sect. 3.2) when the ordered hypergraph
H = (X, E, ρ) is such that, for any duration function d, the optimal value of the
program L1

H,d is equal to the optimal value of the GPPCSP instance defined
by H, d and P = +∞. Doing it will lead us to introduce a specific commutativ-
ity property, and to allow us to extend a former result of Moukrim and Quilliot
(see [36]), related to the k Processor Scheduling Problem, to more general prob-
lems (RCPSP, Scheduling with Disjunctive Constraints Problem or GPPCSP).
Though we do not deal here a lot with algorithms, one should be aware that the
main application of this theoretical study should be related to the design of recon-
struction heuristics, which will turn a feasible solution of the program L1

H,d into a
preemptive GPPCSP schedule. This point will be briefly discussed in Section 3.3.

3.1. Commutative ordered hypergraphs

For any pair (e, e′) in the antichain edge set Eρ, we set:

– MAX(e, e′) = {x ∈ e ∪ e′ such that there exists y in e ∪ e′ which satisfies
x ρT y};

– MIN(e, e′) = {y ∈ e ∪ e′ such that there exists x in e ∪ e′ which satisfies
x ρT y};

– EQ(e, e′) = (e ∪ e′)− (MAX(e, e′) ∪MIN(e, e′)).

Remark 3.1. Commutativity will aim at helping us turning any solution z of the
linear program L1

H,d into a feasible preemptive schedule. If e and e′ are two active
antichains associated with z, then MAX(e, e′) ∩ e and MIN(e, e′) ∩ e′ identify the
tasks which need to commute in order to avoid the existence of a circuit (e, e′, e)
in the sense of the relation τ , while EQ(e, e′) identifies those vertices which may
move from e to e′ (or conversely) without creating any new circuit.

We say that the ordered hypergraph H = (X, E, ρ) is weakly commutative if
for any pair (e, e′) in Eρ, it is possible to commute e and e′, that means if it is
possible to find f1..fq and f ′

1..f
′
p in Eρ, such that:

348 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

Figure 1. Before and after commutation.

– for any x ∈ EQ(e, e′), we have: (C8)

1/q.Card({i = 1..q such that x ∈ fi})+1/p.Card({j = 1..p such that x ∈ f ′
j}) = 1;

– for any i = 1..q, fi ⊂ EQ(e, e′) and for any j = 1..p, f ′
j ⊂ EQ(e, e′); (C9)

– for any i = 1..q, MIN(e, e′) ∪ fi ∈ Eρ ; for any j = 1..p, MAX(e, e′) ∪ f ′
j ∈

Eρ. (C10)
In such a case, we notice that the antichain set {MIN(e, e′) ∪ fi, i = 1..q} ∪
{MAX(e, e′) ∪ f ′

j, j = 1..p} does not contain any circuit in the sense of the dual
ordered hypergraph KH = (Eρ, F, τ).

Example 3.2 (a weakly commutative hypergraph). Let us consider the ordered
hypergraph H defined by:

– X = {A, B, C, D, E, F, G, H};
– A ρ C; B ρ D; C ρ E;
– E = the monotonic edge family whose maximal elements are e1 =
{A, D, E, F}, e2 = {B, C, G, H}, e3 = {C, D, F, H}, e4 = {C, D, E, G},
e5 = {A, B, F, H} and e6 = {A, B, E, G}.

The two antichains e1 and e2 define a circuit of KH . We may commute them by
setting q = 2 = p and: MIN(e1, e2) = {A, B}; f1 = {F, H}; f2 = {E, G}; f ′

1 =
{F, E}; f ′

2 = {H, G}.
The drawing of Figure 1 represents e1 = {A, D, E, F} and e2 = {B, C, G, H}

before and after commutation.

The main meaning of weak commutativity is that if e and e′ are two active
antichains associated with some feasible solution z of the linear program L1

H,d,
then the tasks inside e and e′ may be rearranged in such a way that the resulting
antichains do not define any circuit (in the sense of KH = (Eρ, F, τ)), and that the
makespan of z is not increased. Commutativity and strong commutativity impose
restrictions to the way this operation can be performed, which will enable us to
get a theoretical Exactness Theorem, as well as reconstruction algorithms.

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 349

If, for any pair (e, e′) as above, f1..fq, and f ′
1..f

′
p may be chosen in such a way

that one of the two following assertions (C11) or (C12) is true:
(C11): there exists j in {1..p} such that f ′

j ⊂ EQ(e, e′) ∩ e′;
(C12): there exists i in {1..q} such that fi ⊂ EQ(e, e′) ∩ e ;
then we say that H is commutative. In case (C11) is true, then we say that e is
the receiver of the commutation of e and e′, else we say that e′ is the receiver of
this commutation.

If it is possible, for any pair (e, e′) as above, to do in such a way that p = q = 1,
then we say that H is strongly commutative. Clearly, the strong commutativity
implies the commutativity, which in turn implies the weak commutativity.

Example 3.3 (a commutative hypergraph). Let us consider the ordered hyper-
graph H defined by:

– X = {A, B, C, D, E, F, G, H};
– F ρ B; F ρ A; C ρ E;
– E = the monotonic edge family whose maximal elements are e1 =
{A, B, C, D}, e2 = {E, F, G, H}, e3 = {E, A, C}, e4 = {D, F, C, G},
e5 = {D, F, C, H} and e6 = {D, F, G, H}.

Let us suppose that e = e1, and that e′ = e2. They define a circuit in the
subhypergraph KH , and they commute by considering that q = 3, that f1 =
{C, G}, f2 = {C, H}, f3 = {G, H} and that p = 1, with f ′

1 =the empty subset Nil.
In this case, e = e1 is the receiver of the commutation (since f ′

1 = Nil). We may
check that the ordered hypergraph which is defined by X, E and ρ is not strongly
commutative.

In case there exists a number k such that E is the set of the subsets of X
with no more than k elements (case of the k Processor Scheduling Problem), then
we see that H is commutative if for every pair (e, e′) in Eρ, neither MAX(e, e′)
nor MIN(e, e′) has more that k elements. In such a case, H is also strongly
commutative. One checks that, in any case, if the partial ordering ρ defines an
interval order (see [38]), then the ordered hypergraph H = (X, E, ρ) is strongly
commutative.

3.2. A theoretical result

Then we may state the following result, which tells us that if the weighted
ordered hypergraph H = (X, E, ρ) is commutative, then the optimal value of
the related preemptive version of the GPPCSP problem, may be computed by
solving the linear program L1

H,d. This result extends a former result of Moukrim
and Quilliot related to the specific case of the k-Processor Scheduling Problem
(see [36]). It also raises the problem of finding a recognition algorithm for the
Commutativity property. We did not adress this problem. As a matter of fact, we
considered that the most natural way to apply this result was to use it in order to
derive reconstruction procedures, which turns a solution of L1

H,d into a preemptive
feasible GPPCSP solution.

350 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

Theorem 3.4 (exactness theorem). Let H = (X, E, ρ) be some ordered hyper-
graph. Then two following statements (D1) and (D2) are true:

• (D1): If, for any integral duration function d ≥ 0, there exists a feasi-
ble schedule for the preemptive GPPCSP instance defined by H and d,
with its makespan equal to the optimal value of L1

H,d, then H is weakly
commutative;
• (D2): If H is commutative, then, for any integral duration function d ≥ 0,

there exists a feasible schedule for the preemptive GPPCSP instance de-
fined by H and d, with makespan equal to the optimal value of the program
L1

H,d.

Definition 3.5 (preliminary definitions). Those definitions will help us in moving
from a problem involving fractional numbers to a purely combinatorial problem
only involving valid antichain sequences. For any subset U of X , we set:

INF(U) = {x ∈ U such that no y exists in U which satisfies y ρT x,

where ρT is the transitive closure of ρ}.
We may, for any subset U of X , define SUP (U) by the same way, and proceed to
the same remark. We define a co-subset W of Eρ as being a subset inside which
any element may eventually appear several times. If W is such a co-subset, and if
e ∈ Eρ, then we denote by O(W, e) the number of times e appears inside W , and
we call this number the occurence number of e in W . The cardinality of such a
co-subset becomes equal to the sum of all the occurence numbers O(W, e). The
union of two co-subsets W ′ and W ′′ is a co-subset W such that, for any e in E,
O(W, e) = O(W ′, e) + O(W ′′, e).

Proof of (D1). Let us consider e and e′ in Eρ, together with some duration func-
tion d such that:

• d(x) = 1 for every x ∈ e ∪ e′;
• d(x) = 0, for any x ∈ X which is not in e ∪ e′;

This provides us with a situation such that:

– the optimal value of the linear program L1
H,d is equal to 2;

– any GPPCSP feasible schedule Φ related to H, d and P = +∞, must be
such that: for any x ∈MIN(e, e′), y ∈MAX(e, e′), x precedes y according
to Φ;

We know (because of the General Linear Case Antichain Polyhedron Th. 2.3)
that an optimal schedule Φ for the preemptive version of GPPCSP related to
H, d, P = +∞, and the makespan minimization criterion, may be chosen in such
a way that the vector z which derives from Φ through the ANTICHAIN-SEQ
construction of algorithm 1, is rational. Let us suppose that the makespan of such
a schedule Φ is equal to 2, and that q is an integer such that z may be written
z = z.(1.q), where Z is an integral vector. Then we may define two subsets F and
F ′ of Eρ by setting:

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 351

– f is in F , if there exists u in Eρ, such that u is active for Φ and may be
written u = f ∪MIN(e, e′). We count f , inside F , as many times as the
integral quantity Zu;

– f ′ is in F ′, if there exists u′ in Eρ, such that u′ is active for Φ and may
be written u′ = f ′ ∪MAX(e, e′). We count f ′, inside F ′, as many times
as the integral quantity Zu′ .

This construction makes Φ derive from a weak commutation of e and e′ through
F and F ′. We conclude.

Proof of (D2). Let us suppose that H is commutative and that d is a given integral
duration function. We first notice that:

(E11: For any pair a, b ∈ Eρ such that b ⊂ INF(X − a), we have:

(E11’): For any x ∈ b, the subset {y ∈ X such that y ρT x} of X is included into
a ∩ INF(X);

(E11”): b ⊂ INF(X) ∪ INF(X − INF(X)).

We must prove that if z is a vertex of ΛH,d, then it is possible to turn z into an
element of V −PRH,d without deteriorating its makespan. In order to do it, we
are going to proceed in several steps.

First step. We turn this problem, which involves rational numbers, into a purely
combinatorial problem which involves co-subsets. If {e1, ..., ep} is a subset of Eρ

such that p = Card(X), then {e1, ..., ep} defines a square submatrix of the con-
straint matrix MH of L1

H,d, and the determinant of this submatrix is called a
subdeterminant of MH . Let us denote by δ the largest subdeterminant of the
constraint matrix of the linear program L1

H,d, and let set ε = Index Value of
L1

H,d = 1/δ. Any vertex z of ΛH,d may be written z = ε.Z, where Z is an integral
vector, and we may denote by Q the integer which is such that optimal value of
L1

H,d = Q.ε. Then, we pick up z = ε.Z in ΛH,d such that Z is integral and Z.1 = Q.
Let z be a vertex of ΛH,d and let us set: W = {e ∈ Eρ such that ze �= 0}. We

may consider W as a co-subset of Eρ, in such a way that for any valid antichain
e ∈ W , the occurence number of e in W is equal to Ze. W may contain some
circuit in the sense of the dual ordered hypergraph KH = (Eρ, F, τ), and this
keeps us from converting in a straigthforward way z into a feasible preemptive
GPPCSP schedule. Still W is a co-subset such that:

– Card(W) = Q; (E12)
– for any x ∈ X , the number of valid antichains e in W which contain x is

equal to D(x) = δ.d(x). (E13)

We need to prove, in order to conclude, the existence of some co-subset W 0 of Eρ

such that (E12) and (E13) are true and such that W 0 does not contain any circuit
in the sense of the dual ordered hypergraph KH = (Eρ, F, τ).

Second step. We proceed by induction on the cardinality Q of the co-subset
W , and we simplify, through application of the induction hypothesis, the above
co-subset problem.

352 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

Let us consider some valid antichain e which is in W . If, for any x ∈ e, we set
de(x) = d(x) − ε, and if, for any y /∈ e, we set de(y) = d(y), then we turn d into a
reduced duration function de in such a way that:

– the optimal value of L1
H,de

is equal to ε.(Q− 1);
– de remains equal to the product of ε with an integral function De.

It means that the induction hypothesis may be applied to H and de, and that if e
is included into INF (X) or into SUP (X), then we become able to conclude.

It follows that we only need to prove that: (E14)
there exists some co-subset W1 of Eρ such that (E12) and (E13) are true, and
such that W1 contains some antichain e which is such that: either e ⊂ INF (X)
or e ⊂ SUP (X).

Third step. We keep on with the induction hypothesis, and we check that it
allows us to easily conclude except in the case when:

– for every antichain e in W , e ∩ INF (X) �= ∅ and e ∩ SUP (X) �= ∅;
– there exists u in W such that u ⊂ INF (X) ∪ INF (X − INF (X)).

In order to do it, let us suppose that some antichain e ∈ W is such that e ∩
INF (X) = ∅. Then we get, by applying our induction hypothesis to the hyper-
graph H and de, that there exists a co-subset W ′

1 such that: (E15)

– W ′
1 contains some antichain e′ which is such that: e′ ⊂ INF(X − e);

– Card(W ′
1) = Q− 1;

– for any x ∈ X , the number of valid antichains e in W ′
1 which contain x is

equal to D(x) − 1 = δ.(d(x) − ε) if x ∈ e and is equal to D(x) = δ.d(x)
otherwise.

But then, we deduce from e ∩ INF(X) = ∅ that e′ ⊂ INF(X) and the result. It
comes that, for any antichain e in W , we may suppose that e ∩ INF(X) is not
empty, as well as (symmetry) e ∩ SUP(X).

By the same way, we may suppose that W is such that there exists u ∈ W with:
u ⊂ INF (X) ∪ INF(X − INF(X)). If it is not true, we may pick up e in W , and
apply the induction hypothesis to H and de, and get W ′

1 such that (E15) above is
true. Then it comes that there exists u in W ′

1 such that u ⊂ INF(X − e), which
also means such that u ⊂ INF(X) ∪ INF(X − INF(X)). We only need to replace
W by {e} ∪W ′

1 in order to get the result.

Fourth (last) step. We are going to choose W in such a way that it may be
viewed as extremal in relation to the rearrangement problem defined by (E14).
Then we shall commute well chosen antichains of W , and, while using a linear
programming trick, we shall contradict this extremality assumption. This will
allow us to conclude.
More precisely, by considering W and u as above, and by applying the induction
to H and to du, we get W ′

1 such that (E15) above is true. By replacing W by
{u} ∪W ′

1, we may do in such way that W and u ∈ W satisfy: (E16)

* u ⊂ INF(X) ∪ INF(X − INF(X)).

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 353

* W may be written W = {u} ∪W ′
1 in such a way that:

– W ′
1 does not contain any circuit in the sense of the dual ordered

hypergraph KH = (Eρ, F, τ);
– Card(W ′

1) = Q− 1;
– For any x ∈ X , the number of valid antichain u in W ′

1 which contain
x is equal to: D(x) − 1 = δ.(d(x) − ε) if x ∈ u and to D(x) = δ.d(x)
otherwise;

* u ∩ INF(X − INF(X)) is minimal for the inclusion relation.

Since W ′
1 does not contain any circuit in the sense of the relation τ , we may

label the elements of W ′
1 by setting W ′

1 = v1..vQ−1 in such a way that for any
i, j = 1..Q− 1, vi τ vj implies i < j.

In case no i exists such that vi τ u, then we are done, else we may pick up i0,
which is such that vi0 τ u, and which is the largest possible with this property. If
i0 < Q− 1, then we may conclude by applying the induction hypothesis on X, E
and ρ and on the duration function d∗ defined, for any x ∈ X , by:

d∗(x) = d(x) − (Card(N(x)).ε,

where N(x) is the set N(x) = {i = i0 + 1, ..., Q − 1, such that x ∈ vi}. So we
suppose now (non trivial case), that i0 = Q − 1, and we try to commute u and
v = vQ−1. This means that we apply the commutativity hypothesis to u and v:
this makes appear f1..fk, and g1..gp in Eρ, such that (constraints C8, C9, C10,
C11, C12):

– for any x ∈ EQ(u, v), 1/k.Card({i = 1..k/x ∈ fi}) + 1/p.Card({j =
1..p/x ∈ gj}) = 1;

– for any i = 1..k, fi ⊂ EQ(u, v) and for any j = 1..p, gj ⊂ EQ(u, v);
– for any i = 1..k, MIN(u, v)∪fi belongs to Eρ ; for any j = 1..p, MAX(u, v)∪

gj belongs to Eρ ;
– one of the two following assertions (E17.1) or (E17.2) is true:

(E17.1): there exists j in {1..p} such that gj ⊂ EQ(u, v) ∩ v;
(E17.2): there exists i in {1..k} such that fi ⊂ EQ(u, v) ∩ u.

Two cases must be considered:

• First case. (E17.1) above is true (u is the receiver of the commutation
of u and v). We may suppose that g1 ⊂ EQ(u, v) ∩ v, and we set h1 =
f1 ∪MAX(u, v). In such a case, we deduce from (E16) that any element
in h1 is also in SUP (X), since any element of MAX(u, v) is in SUP (X),
as well as any element of EQ(u, v)∩v. Also, we may deduce some optimal
solution z∗ of L1

H,d by setting, for any valid antichain e in Eρ:
– Ae = Card({s = 1..Q− 2 such that e = vs});
– Be = Card({i = 1..k such that e = fi ∪MAX(u, v)});
– Ce = Card({j = 1..p such that e = gj ∪MAX(u, v)});
– z∗e = ε.[Ae + 1/k.Be + 1/p.Ce].

This solution is such that z∗h1
�= 0. The vector z∗ may not be a vertex of

the polyedron ΛH,d, but it can be expressed as a barycentric combination

354 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

of vectors which are in V (ΛH) and which are optimal solutions of the linear
program L1

H,d. That means that there exists a vertex z′ of ΛH , which is
an optimal solution of L1

H,d, and which is such that z∗h1
�= 0. It becomes

sufficient to replace z by z′ in order to conclude.
• Second case. (E17.2) above is true (v is the receiver of the commutation

of u and v). We may suppose that f1 ⊂ EQ(u, v) ∩ u and we set h1 =
f1 ∪MIN(u, v).

In such a case, we deduce from (E16) that h1 ⊂ INF (X − INF (X))
and that h1 ∩ INF (X − INF (X)) is strictly included into u ∩ INF (X −
INF (X)). (E18)

Also, by proceeding by the same way as for the first case, we see that
there must exist a vertex z′ of ΛH,d, which is an optimal solution of L1

H,d,
and which is such that z∗h1

�= 0. We conclude by deducing from (E18) a
contradiction on the minimality of u ∩ INF (X − INF (X)). �

3.3. A few words about reconstruction procedures

As was done in [35] by Moukrim and Quilliot in the case of the k Processor
Scheduling Problem, we may derive from the above results several reconstruction
procedures. These procedures take in input a valid antichain weighted sequence U
which only satisfies the duration constraint C5 of section 1.2, and turn it, in the
case when the ordered hypergraph H = (X, E, ρ) is commutative, into a feasible
schedule Φ of the related preemptive makespan minimization GPPCSP instance,
in such a way that the makespans of U and Φ are equal. In the general case, it
will be possible to turn these procedures into heuristic reconstruction procedures,
which compute an efficient feasible GPPCSP schedule from a solution of the
linear program L1

H,d.
We are going to describe here in a simplified way such a reconstruction pro-

cedure SCHEDULE-RECONSTRUCT (algorithm 3), which acts in the case
when the ordered hypergraph H is strongly commutative. This procedure is
normally designed in order to handle weighted valid antichain sequences. Still, in
order to simplify its description, we are going to turn those lists into fixed size
arrays. In order to do this, we consider an optimal solution z = ε.Z ∈ V (ΛH,d) of
L1

H,d such that Z is integral. We denote by Q the quantity Z.1 = Q, and we do as
in the proof of the above theorem: that means that we set W (z) = {e ∈ Eρ such
that ze �= 0}, and that we consider W (z) as a co-subset of Eρ, in such a way that
for any valid antichain e ∈ W (z), the occurence number of e in W (z) is equal to
Ze. Then we turn W (z) into an array AR, with indexation on the set 1..Q, and
with values in Eρ, and we act on AR in order to make it such that:
if i, j in 1..Q are such that AR[i] τ AR[j], (in the sense of the hypergraph KH =
(Eρ, F, τ)), then i < j; (E19)

we do it through a well-driven sequence of applications of the following operator
COMMUTE:
COMMUTE(i, j, i < j in {1..Q}):

Compute f and g subsets of EQ(AR[i], AR[j]) in such a way that:

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 355

Figure 2. Array and induced graph before and after commutation.

– f and g are disjoint and f ∪ g = EQ(AR[i], AR[j]);
– MIN(AR[i], AR[j]) ∪ f and MAX(AR[i], AR[j]) ∪ g are in Eρ; (E20)
– Either f ⊂ (EQ(AR[i], AR[j])∩AR[j]) or g ⊂ (EQ(AR[i], AR[j])∪AR[j]);
– If (E18) holds with f = (EQ(AR[i], AR[j]) ∩AR[j]) and g = (EQ(AR[i],

AR[j])∩AR[j]) then f = (EQ(AR[i], AR[j])∩AR[j]) and g = (EQ(AR[i],
AR[j]) ∩AR[j]);

Replace AR[i] by MIN(AR[i], AR[j]) ∪ f ;
Replace AR[j] by MAX(AR[i], AR[j]) ∪ g;

We control the way this operator is applied through the following predicate
GOOD-PATTERN:

GOOD-PATTERN(i, j, k, l, i ≤ l < k ≤ j in {1..Q}):
GOOD-PATTERN is true if:

– there does no exist s, t such that i ≤ s < t ≤ k − 1 and AR[t] τ AR[s];
– AR[k] τ AR[l], and l is maximal in {i..k − 1} with this property.

Example 3.6. The array AR represented in Figure 3.3 (with Q = 5) makes appear
that GOOD-PATTERN(1, 5, 4, 2) is true. We commute AR[2] and AR[4], while
supposing that E is made with the subsets of X with cardinality no more that 4.
The first drawing represents the complete array AR, together with the graph which
is induced by {AR[1]..AR[5]} and by the relation τ . The second drawing represents
AR[2] and AR[4] after they commuted, together with the resulting induced graph.

Then the procedure SCHEDULE-RECONSTRUCT comes as in algorithm 3:

We let the reader come back to the proof of the Exactness Theorem 3.4 and check
that this procedure turns z into an array AR such that (E19) is true, that means
turns z into a preemptive GPPCSP feasible schedule whose makespan is equal to
1.z. Also, one will check that, in case the hypergraph H = (X, E, ρ) is not strongly

356 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

Algorithm 3 SCHEDULE-RECONSTRUCT

Require: a vertex z of ΛH,d which is an optimal solution of the linear program
L1

H,d

1: Turn W (z) into a valid antichain array AR, with indexation on the set {1...Q},
as described above

2: Initialize a Stack STACK with one level, which contains the index pair (1, Q);
3: while NotEmpty(STACK) do
4: Let (i, j) be the index pair Top(STACK);
5: Look for k and l such that GOOD-PATTERN(i, j, k, l);
6: if k and l do not exist then
7: Pop(STACK)
8: else
9: COMMUTE(l, k);

10: end if
11: if AR[l] is the receiver of this commutation then
12: Push the pair (i, k − 1) at the top of STACK
13: else
14: Push the pair (l + 1, k) at the top of STACK
15: end if
16: end while

commutative, an eventual failure of the SCHEDULE-RECONSTRUCT pro-
cess will make appear a valid antichain pair (AR[i], AR[j]) which cannot strongly
commute.

In the specific case when GPPCSP is the k processor scheduling problem, that
means when the relation E is defined by: A ⊂ X is in E iff Card(A) ≤ k, then
this procedure may be simplified as in algorithm 4 (proof left to the reader).

Algorithm 4 K-Proc-SCHEDULE-RECONSTRUCT

Require: a vertex z of ΛH,d which is an optimal solution of the linear program
L1

H,d

1: Turn W (z) into a valid antichain array AR, with indexation on the set {1...Q},
as described above

2: Not Stop
3: while Not Stop do
4: Look for k and l such that GOOD-PATTERN(1, Q, k, l)
5: if k and l do not exist then
6: STOP
7: else
8: COMMUTE(l, k);
9: end if

10: end while

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 357

This last algorithm may be compared with the Moukrim/Quilliot algorithm
of [35]. As we told it, it is possible to turn the above procedure SCHEDULE-
RECONSTRUCT into a heuristic procedure, which computes an efficient fea-
sible GPPCSP schedule from a solution of the linear program L1

H,d. We do it
by extending the COMMUTE operator in such a way that it acts on non valid
antichains, and by rearranging a weighted not valid antichain sequence which sat-
isfies constraints (C5) and (C6) of Section 1.2, in such a way that it becomes a
valid antichain sequence which satisfies (C5) and (C6).

4. Conclusion

We just introduced here a combinatorial framework involving hypergraphs and
partially ordered sets, in order to make easier dealing with a parallelism con-
strained scheduling problem. This framework tends to unify preemptive and non
preemptive models. We used it in order to get theoretical results related to the
structure of the feasible sets which may be derived from those models, and in
order to design an algorithmic scheme which works in a heuristic way on both
preemptive and non preemptive parallelism constrained scheduling problems.

Still, we almost did not deal here with algorithmic aspects of scheduling. Some
questions may be set: for instance, would it be possible to impose, inside the
statement of the general Connectivity Theorem, some bound on the makespan
allowed for the schedules which derive from the vertices of the set V −PPRH,d,P .
The existence of such bounds would then provide the basis for the design of efficient
GPPCSP local search procedures designed in order to produce a well driven walk
on the set V −NPRH,d. Also, would it be possible to design an algorithm, endowed
with some kind of exactness property, which would efficiently turn an element of
V − PRH,d into an element of V −NPRH,d.

References

[1] J.F. Allen, Towards a general theory of action and time Art. Intel. 23 (1984) 123–154.
[2] C. Artigues and F. Roubellat, A polynomial activity insertion algorithm in a multiresource

schedule with cumulative constraints and multiple nodes. EJOR 127-2 (2000) 297–316.
[3] C. Artigues, P. Michelon and S. Reusser, Insertion techniques for static and dynamic resource

constrained project scheduling. EJOR 149 (2003) 249–267.
[4] K. R.Baker, Introduction to Sequencing and Scheduling. Wiley, NY (1974).
[5] P. Baptiste, Resource constraints for preemptive and non preemptive scheduling. MSC The-

sis, University Paris VI (1995).
[6] P. Baptiste, Demassey, Tight LP bounds for resource constrained project scheduling. OR

Spectrum 26 (2004) 11.
[7] S. Benzer, On the topology of the genetic fine structure Proc. Acad. Sci. USA 45 (1959)

1607–1620.
[8] C. Berge, Graphes et Hypergraphes. Dunod Ed., Paris (1975).
[9] J. Blazewiecz, K.H. Ecker, G. Schmlidt and J. Weglarcz, Scheduling in computer and man-

ufacturing systems. 2th edn, Springer-Verlag, Berlin (1993).
[10] K.S. Booth and J.S. Lueker, Testing for the consecutive ones property, interval graphs and

graph planarity using PQ-tree algorithms. J. Comp. Sci. 13 (1976) 335–379.

358 J. DAMAY, A. QUILLIOT AND E. SANLAVILLE

[11] P.Brucker and S. Knust, A linear programming and constraint propoagation based lower
bound for the RCPSP. EJOR 127 (2000) 355–362.

[12] P. Brucker, S. Knust, A. Schoo and O. Thiele, A branch and bound algorithm for the
resource constrained project scheduling problem. EJOR 107 (1998) 272–288.

[13] J. Carlier and P. Chretienne, Problèmes d’ordonnancements : modélisation, complexité et
algorithmes. Masson Ed., Paris (1988).

[14] M. Carter, A survey on practical applications of examination timetabling algorithms. Oper.
Res. 34 (1986) 193–202.

[15] M. Chein and M. Habib, The jump number of Dags and posets. Ann. Discrete Math. 9
(1980) 189–194.

[16] E. Demeulemeester and W. Herroelen, New benchmark results for the multiple RCPSP.
Manage. Sci. 43 (1997) 1485–1492.

[17] J. Damay, Techniques de resolution basées sur la programmation linéaire pour
l’ordonnancement de projet. Ph.D. Thesis, Université de Clermont-Ferrand, (2005).

[18] J. Damay, A. Quilliot and E. Sanlaville, Linear programming based algorithms for preemp-
tive and non preemptive RCPSP. EJOR 182 (2007) 1012–1022.

[19] K. Djellab, Scheduling preemptive jobs with precedence constraints on parallel machines.
EJOR 117 (1999) 355–367.

[20] D. Dolev and M.K. Warmuth, Scheduling DAGs of bounded heights. J. Algor. 5 (1984)
48–59.

[21] P. Duchet, Problèmes de représentations et noyaux. Thèse d’Etat Paris VI (1981).
[22] B. Dushnik and W. Miller, Partially ordered sets. Amer. J. Math. 63 (1941) 600–610.
[23] D.R. Fulkerson and J.R. Gross, Incidence matrices and interval graphs. Pac. J. Math. 15

(1965) 835–855.
[24] S.P. Ghosh, File organization: the consecutive retrieval property. Comm. ACM 9 (1975)

802–808.
[25] R.L. Grahamson, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnoy-Khan, Optimization and

approximation in deterministic scheduling: a survey. Ann. Discrete Math. 5 (1979) 287–326.
[26] J. Josefowska, M. Mika, R. Rozycki, G. Waligora and J. Weglarcz, An almost optimal

heuristic for preemptive Cmax scheduling of dependant task on parallel identical machines.
Annals Oper. Res. 129 (2004) 205–216.

[27] W. Herroelen, E. Demeulemeester and B. de Reyck, A classification scheme for project
scheduling, in Project Scheduling: recent models, algorithms and applications. Kluwer Acad
Publ. (1999) 1–26.

[28] D.G. Kindall, Incidence matrices, interval graphs and seriation in archaeology, Pac. J. Math.

28 (1969) 565–570.
[29] R. Kolisch, A. Sprecher and A. Drexel, Characterization and generation of a general class of

resource constrained project scheduling problems, Manage. Sci. 41, (10), (1995) 1693–1703.
[30] L.T. Kou, Polynomial complete consecutive information retrieval problems. SIAM J. Com-

put. 6 (1992) 67–75.
[31] E.L. Lawler, K.J. Lenstra, A.H.G. Rinnoy-Kan and D.B. Schmoys, Sequencing and sched-

uling: algorithms and complexity, in Handbook of Operation Research and Management
Sciences, Vol 4: Logistics of Production and Inventory, edited by S.C. Graves, A.H.G.
Rinnoy-Kan and P.H. Zipkin, North-Holland, (1993) 445–522.

[32] F. Luccio and F. Preparata, Storage for consecutive retrieval. Inform. Processing Lett. 5
(1976) 68–71.

[33] A. Mingozzi, V. Maniezzo, S. Ricciardelli and L. Bianco, An exact algorithm for project
scheduling with resource constraints based on a new mathematical formulation. Manage.
Sci. 44 (1998) 714–729.

[34] R.H. Mohring and F.J. Rademacher, Scheduling problems with resource duration interac-
tions. Methods Oper. Res. 48 (1984) 423–452.

[35] A. Moukrim and A. Quilliot, Optimal preemptive scheduling on a fixed number of identical
parallel machines. Oper. Res. Lett. 33 (2005) 143–151.

POLYHEDRAL REFORMULATION OF A SCHEDULING PROBLEM 359

[36] A. Moukrim and A. Quilliot, A relation between multiprocessor scheduling and linear pro-
gramming. Order 14 (1997) 269–278.

[37] R.R. Muntz and E.G. Coffman, Preemptive scheduling of real time tasks on multiprocessor
systems. J.A.C.M. 17 (1970) 324–338.

[38] C.H. Papadimitriou and M. Yannanakis, Scheduling interval ordered tasks. SIAM J. Com-
put. 8 (1979) 405–409.

[39] J.H. Patterson, A comparizon of exact approaches for solving the multiple constrained re-
source project scheduling problem. Manage. Sci. 30 (1984) 854–867.

[40] A. Quilliot and S. Xiao, Algorithmic characterization of interval ordered hypergraphs and
applications. Discrete Appl. Math. 51 (1994) 159–173.

[41] N. Sauer and M.G. Stone, Rational preemptive scheduling. Order 4 (1987) 195–206.
[42] N. Sauer and M.G. Stone, Preemptive scheduling of interval orders is polynomial. Order 5

(1989) 345–348.
[43] A. Schrijver, Theory of Linear and Integer Programming. Wiley, NY (1986).
[44] P. Van Hentenryk, Constraint Programming. North Holland (1997).

	Introduction
	The GPPCSP problem and the related antichain polyhedron
	Temporal phases, schedules, preemptive numbers
	The GPPCSP scheduling problem
	Ordered hypergraphs
	Expression of a GPPCSP Schedule as a weighted valid antichain sequence
	The antichain polyhedron H,d
	Specific vertex subsets of the vertex set V(H,d)

	Structural properties of the antichain polyhedron H,d
	Some theoretical results
	A short discussion about algorithms

	Commutative ordered hypergraphs: a case when optimal preemptive scheduling can be done through linear programming
	Commutative ordered hypergraphs
	A theoretical result
	A few words about reconstruction procedures

	Conclusion
	References

