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COMPARISON OF ALGORITHMS IN GRAPH
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Abstract. We first describe four recent methods to cluster vertices
of an undirected non weighted connected graph. They are all based
on very different principles. The fifth is a combination of classical
ideas in optimization applied to graph partitioning. We compare these
methods according to their ability to recover classes initially introduced
in random graphs with more edges within the classes than between
them.
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Introduction

The partitioning problem in graphs has a long history we cannot detail here.
It becomes important in practice with the pagination of electronic circuits and
VLSI design [1]. There are also many contributions linked to the graph drawing
problem [4]. The initial aim of these clustering processes was to minimize the
number of inter-class edges to disconnect the graph. It has been reactivated these
last years in three domains:

• biological problems modelled by graphs as protein interaction networks
[2,3,7,13];
• the study of large networks, like WEB [18]; or
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• the definition of communities in social networks [14,20].
In these domains, the common aim is to put together vertices sharing a large
number of edges, making some high density zones, compared to the rate of edges
observed in the whole graph. Several ideas appeared these last years and lead to
algorithms based on different principles:

• the first one is linked to a density function associated to each vertex, which
is as large as there are many edges in its neighborhood [9];
• the second one is based on a dynamical weight function associated to the

edges, called betweenness in the article, and a pruning of the graph until
disconnection [14];
• the third one is the result of random walks from any vertex in the graph,

which is denoted Markov clustering (MCL) by the author van Dongen [11];
• the fourth one is based on a spectral decomposition of a matrix derived

from the adjacency matrix [21];
• finally, the fifth one is a classical strategy in clustering, I have adjusted,

optimizing a criterion adapted to the graph partitioning problem.
In this text we compare these five methods, applied to undirected none weighted
graphs, testing their ability to recover high density zones when they exist. Sim-
ilar studies appear recently as [20] or [6]. In this article, we realize simulations
generating random graphs where such dense classes have been introduced. After
partitioning, we evaluate in many ways the gap between the initial partition and
the computed one; four criteria are used. According to their average values, one
can decide which is the most appropriate algorithm, for graph partitioning.

This is not the usual strategy: often, the authors select a criterion, as the mod-
ularity (Newman, 2004) which now receives a great attention, and show that their
algorithm gives the best results (for this criterion) on very few “real” graphs con-
sidered as benchmark. One can think it is not sufficiently convincing, because this
appreciation depends on the type of graph and some parameter values, making
easy or difficult partitioning problems, and also on the number of tested graphs.
That’s why we define a precise generating model for graphs, with an initial clear
partition to recover and several criteria corresponding to many aspects of parti-
tion’s similarity, combining two types of algorithms, those for which the number
of classes is fixed and those for which it is free.

Notations are as follows: let X be a set of n vertices, E the set of m edges and
Γ = (X, E) the corresponding graph. It is assumed to be connected; otherwise its
different components are handled separately. For any part Y of X , let Γ(Y ) be
the set of vertices out of Y that are adjacent to Y

Γ(Y ) = {x ∈ X \ Y such that ∃y ∈ Y, (x, y) ∈ E},

and Γ(Y ) = Y
⋃

Γ(Y ). The neighborhood of x is Γ(x). The degree of vertex x
is denoted Dg(x) = |Γ(x)| and let δ be the maximum degree in the graph. The
internal edge set of a class Y ⊂ X is denoted

E(Y ) = {(x, y) ∈ E such that x ∈ Y and y ∈ Y }.
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1. Clustering by density

Clustering methods based on density have been introduced by Wishart in 1976;
the initial idea was to build classes around elements having many neighbors in a
threshold graph associated to a distance on X . It has not been largely developed
because, the simple degree was the single proposed density function, which gives
poor results, even if so, non convex or nested clusters can be recovered. Recently,
several authors – Rougemont & Hingamp [24] for simple graphs and Guénoche [16]
for distance arrays – have reactivated this approach.

1.1. Density function

A density function De is a map from X to R+ varying increasingly with the
number of vertices close to an element. In [9] several functions based on the
percentage of edges in the neighborhood of a vertex have been compared. The
core index introduced by Seidman [25] is also a typical density function. Let us
recall that a vertex x has a core value equal to the maximum k for which there
exist at least k vertices in Γ(x) having also a core index larger than or equal to
k. A maximal clique of p elements has core p − 1 and all the vertices in trees
have core 1. The core index can be calculated pruning recursively the graph from
minimum degree vertices, and a O(m) algorithm has been proposed by Batagelj
and Zaveršnik [5].

All the simulations realized with this kind of density functions are disappointing,
mainly because the density values are not spread enough, especially for the core
index. For this latter, the connected sets of nodes having the maximum core value
are not included in the initial classes of the random graphs (cf. Sect. 6). To recover
the more satisfying results obtained for distance matrices [16], we first evaluate
the Czekanovski-Dice distance between vertices. Its formula is

D(x, y) =
|Δ(Γ(x), Γ(y))|
|Γ(x)| + |Γ(y)|

where Δ denotes the symmetrical difference between two sets. We retain this local
dissimilarity (which is not a distance) because it is very accurate for graphs since
two vertices having no common adjacent vertex are at maximum distance value
(equal to 1), and consequently it can be computed in O(nδ3), which is linear in
the number of vertices, in sparse graph with bounded degre.

The density function in x is then defined from the average distance values
between x and its adjacent vertices

De(x) = 1−
∑

y∈Γ(x) D(x, y)

Dg(x)
·
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Table 1. Density values of the Test graph in Figure 1; the local
maximum values are printed in bold.

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
De .7 .7 .69 .69 .51 .72 .62 .8 .58 .59 .76 .6 .72 .49 .71

1.2. Clustering algorithm

The algorithm is in three steps:
First, the local maximum values of the density function are considered to iden-

tify the seeds of the classes. A seed can be a singleton or several connected vertices
sharing the same density value. The number of classes, denoted by p, is the num-
ber of seeds having a density larger than or equal to the average De (another
threshold can be chosen to get a number of classes close to the expected one).

In the second step, the seeds are extended: we recursively assign to each one
all the connected vertices having a density larger than the average and that are
adjacent to only one seed. Doing so, we avoid any ambiguity in the assignment,
postponing the decision when several are possible.

In the third step, these seeds are extended to make a partition (Q1, ...Qq). Each
remaining element x is assigned to one class maximizing criterion Ci:

Ci(x) =
|Γ(x)

⋂
Qi|

Dg(x)
·

Compared to the other methods, this algorithm is very fast. To find the local
maximum density values is in O(nδ2) and the assignment procedure is in O(nδ).
It allows the treatment of large graphs with a low density, (n ≈ 10 000). More, the
distance matrix D can be computed row after row evaluating the density function,
and it is not necessary to store D.

Example 1. All the algorithms will be applied to the graph of Figure 1. Here,
the Czekanovski-Dice distance values of the edges are indicated and the density
is printed in Table 1, giving an average De = .66. The local maximum values of
the density function are vertices {1, 2}, {8} and {11} making {1, 2, 3, 4}, {6, 8}
and {11, 13} as extended seeds. In the third step, elements 7, 8, 9 are assigned
to {6, 8} and 10, 12, 14 and 15 go with seed {11, 13}. Finally the partition
(1, 2, 3, 4|5, 6, 7, 8, 9|10, 11, 12, 13, 14, 15) is established as it was expected.

2. Disconnecting the graph

The principle of this method has been given by Newman [19]. It consists in an
iterative procedure in two steps:

• evaluate the weight Be(x, y) of any edge (x, y);
• eliminate the edge having the greatest weight.
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Figure 1. Test graph (n = 15 and m = 30) with the
Czekanovski-Dice distance values.

An efficient weight function has been defined by Newman [19], the edge-betweeness
Be : E �→ N. It corresponds to the number of pairs for which a shortest path, go
through the edge (x, y). We have tested:

Be(x, y) = |(z, t) ∈ X2such thatL(x, y) = L(x, z) + 1 + L(t, y)|,

where L(x, y) denotes the length of a shortest path between x and y. The weight
of an edge is at least equal to 1, which can also be its largest value, as for cliques.
Other functions, taking into account the number of shortest paths between any
two vertices, as the original betweeness function, have also been tested. It is easy
to understand that when there are high density zones, the few paths connecting
them receive the largest weights. It suffices to delete the corresponding edges to
get dense classes.

The Girwan-Newman method (2002) is a pruning algorithm removing itera-
tively the edges with maximum weight to shape clusters as connected compo-
nents. Clearly, these clusters are nested and a complete divisive hierarchy can be
established. To use it as a partitioning algorithm, the number of classes must be
given. If only p classes are searched, the procedure stops when there are at least
p components (there can be more because of ties in the last subdivision). The
practical problem of this careful procedure is the time complexity because it could
be necessary to perform O(n2) deletions to get the first subdivision. The author
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Figure 2. Test graph with the betweenness values. The edges
of a minimum spanning tree are in bold.

indicates a O(mn) algorithm to evaluate the weights of all the edges, but there
are O(m) steps for a complete hierarchy!

Observing that, when there are few connections between what will become
separate clusters, removing several edges in one step does not modify the result,
we adopt the following strategy:

• evaluate the betweenness function for the edges; let Bmax be its maximum
value;
• build a minimum spanning tree of this weighted graph; let Lmax be the

length of its longest edge;
• remove all the edges longer than or equal to threshold (Lmax + Bmax)/2.

With the Lmax threshold, the graph would be disconnected in one step. But this
rough procedure could give some uncorrect subdivisions. With value (Lmax +
Bmax)/2, the split appears when Bmax = Lmax and the number of steps is largely
reduced. But the average time to establish a partition remains very much longer
than the other methods described here.

Example 2. The betweenness values are depicted in Figure 2 and the edges
making a minimum spanning tree are enlarged. The maximum is reached for (5,
14) and (9, 12) (Bmax = 26) and the longest edges in the tree are (1, 10) and (3,
5) (Lmax = 17). Removing all the edges longer than or equal to Lmax would give
directly the three expected classes. Here, the careful and the rough strategies lead
to the same result.
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3. Markov clustering (MCL)

The idea of this method has been given by van Dongen [11]. It is based on the
following principle: a random walk in a graph is a path for which the next vertex
after x is selected at random in Γ(x). A random walk from a vertex belonging to a
high density zone, remains in the same zone, and the probability to reach another
one, after a great number of steps, is very small. Because the next adjacent
vertex is selected at random, according to a probability distribution, and as the
probability sum to reach them is equal to 1, this walk can be described as a Markov
process.

3.1. From the adjacency matrix to a stationary process

Let A be the adjacency matrix of graph Γ (A(x, y) = 1 iff (x, y) ∈ E). It is well
known that multiplying the adjacency matrix of a graph by itself determines the
number of paths of length 2, and so on when the power increases. To ovoid parity
dependence on the path length, all the loops are added. Let I denotes the identity
matrix; (A + I) is used instead of A.

The Markov matrix M associated to Γ is defined by M(x, y) = (A+I)(x,y)
Dg(y)+1 . It

is column stochastic (
∑

x∈X M(x, y) = 1), and it can be interpreted for each node
(a column y) as a probability to be attracted by its neighbors (row x such that
M(x, y) > 0). The random walks are simulated at each step by two operators: the
expansion operator is just the product of M by itself. The inflation operator Sr is
performed column after column. According to van Dongen, it has been introduced
to maintain a stochastic matrix and to reinforce the attracting strength of a row
(preserving the values ordering). Acting on column y,

M(x, y)← M(x, y)r∑
x∈X M(x, y)r

·

One iteration of the MCL algorithm is to multiply matrix M by itself and to apply
the Sr normalization. As any Markov matrix in a finite space, which is irreducible
and not periodic, the iterates of M have a limit, which is quickly reached, and the
algorithm stops when two consecutive matrices are identical.

3.2. Attractors and classes

The result is a stochastic idempotent matrix M . Often, in a column y there
is one element x for which M(x, y) = 1.0 and all the other values are equal to
0.0. Element x is said to be the attractor of y and, in that case, x is also its
own attractor. Very often, there is a value in column y which is close to 1.0 and
the complementary part denotes the attraction of another element. Rarely, the
attraction is equally shared by several elements to constitute a class of attractors.

In this method, an attractor (or a set of equilibrate attractors) plus the set of
attracted elements constitute a class. The number of classes is unpredictable and
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Table 2. Initial Markov matrix corresponding to the test graph.

Table 3. Final idempotent matrix of the Markov process.

cannot be specified. MCL seems to produce a large number of classes when the
rate of edges in the graph is low, but just one class when it is high. Parameter
r > 1 is not fixed, and it has a great influence on the number of classes (cf. Sect. 6).
According to Brohée and van Helden [6], a preliminary study to fix r is necessary.
Here, we set r = 2 which is the best integer value for the Test graph.

Example 3. The initial Markov matrix corresponding to the Test graph is printed
in Table 2. Vertex 1 is equally attracted by vertices 1, 10, 2, 3, and 4, ... etc.

After seven iterations we obtained the idempotent matrix of Table 3. The
positive values define three connected components that are the final classes: {1,
2, 3, 4}, {10, 11, 12, 13, 14, 15} (all the elements are attracted by 12), and {5, 6,
7, 8, 9} (all attracted by 8).
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4. Spectral subdivision

A very new method has been proposed by Newman [21]. The idea is not to
maximize the number of intra class edges, but the difference between this number
and its expected value “in equivalent networks having edges placed at random”.
For that, the matrix B derived from the adjacency matrix A is used. The B(x, y)
term is the difference between A(x, y) minus the expected probability of an edge
between x and y.

In his article, Newman deals with graphs considered as “scale free”, the proba-
bility of an edge being proportional to the degrees of both ends. For this model,
he establishes

B(x, y) = A(x, y)− Dg(x)Dg(y)
2m

·
The aim is to maximize the function

F =
∑

k=1,..p

∑
(x,y)∈Pk

B(x, y)

over nested partitions established by a hierarchical clustering process. The pro-
posed algorithm is a divisive method starting from a single class and subdividing
all the classes with more than one element. The subdivision of a class is made,
while F increases, according to the spectral decomposition of matrix B. The
resulting classes depend on the components of the eigenvector associated to the
largest eigenvalue (whatever is its sign). Each subdivision is in three steps:

• the adjacency matrix, the degrees of internal edges of this class and the B
matrix are established;
• the principal eigenvector is computed;
• the current class is subdivided in two subclasses corresponding to the

positive and the negative component values.

In our simulations (cf. Sect. 6), we select random graphs according to the mixture
Erdös-Reyni model; the probability of an edge is uniformly equal to 2m

n(n−1) and
does not depend on the degree values. We have compared the original function B
and

B′(x, y) = A(x, y)− 2m

n(n− 1)
·

As the results are clearly better with formula B′, for our random graphs, we keep
this latter to apply the same algorithm. Here, the divisive process is stopped when
the number of required classes is reached.

Example 4. At the first iteration the following principal eigenvector is computed,
giving a first subdivision: {1, 2, 3, 4, 5, 6, 8, 9}, {10, 11, 12, 13, 14, 15}.

Largest eigenvalue –3.109 Eigenvector
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For the second iteration, we subdivide class 1 (the largest one) computing the
main eigenvector of matrix B′ which gives the natural partition:

1 2 3 4 5 6 7 8 9
1 : -0.44 0.56 0.56 0.56 -0.44 -0.44 -0.44 -0.44 -0.44
2 : 0.56 -0.44 0.56 0.56 -0.44 -0.44 0.56 -0.44 -0.44
3 : 0.56 0.56 -0.44 0.56 0.56 -0.44 -0.44 -0.44 -0.44
4 : 0.56 0.56 0.56 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44
5 : -0.44 -0.44 0.56 -0.44 -0.44 0.56 -0.44 0.56 0.56
6 : -0.44 -0.44 -0.44 -0.44 0.56 -0.44 0.56 0.56 -0.44
7 : -0.44 0.56 -0.44 -0.44 -0.44 0.56 -0.44 0.56 0.56
8 : -0.44 -0.44 -0.44 -0.44 0.56 0.56 0.56 -0.44 0.56
9 : -0.44 -0.44 -0.44 -0.44 0.56 -0.44 0.56 0.56 -0.44

Largest eigenvalue 2.759
Eigenvector
1 2 3 4 5 6 7 8 9

-1.00 -0.82 -0.82 -1.00 0.59 0.80 0.59 1.00 0.80

5. A classical optimization method

In the PartOpt algorithm, we try to minimize a criterion over the set Pp of all
the partitions of X in p classes. Our criterion is defined as an inertia function
	 : Pp → R evaluated from the Czekanovski-Dice distance. Given a partition,
P = (P1, P2, ...Pp) in which P (x) is the class number of x, 	(P ) is the sum, over
all the elements, of the square of the average distance to the others elements in its
class:

	(P ) =
∑
x∈X

(∑
y∈P (x) D(x, y)

|P (x)| − 1

)2

·

Another valuable distance on graphs has been proposed by Pons and Latapy [22].
It is defined as the euclidean distance between transition probability vectors. These
later are established after random walks in the graph as in the MCL procedure, but
there is no inflation operator. For vertex x the composants are the probabilities
to reach any y from x after a small number of steps. We compare it to the
Czekanovski-Dice distance but we get not so good results whatever was the length
of the walk.

The optimization procedure is a simple Tabu-search heuristic. At each step, one
element is transferred into another class. For each element, which is not a singleton,
a new class is selected at random and the resulting variation of 	 is computed.
The moving element is determined as the one which minimizes the variation, even
if it is positive, and this element is fixed within this class during a few steps
(the length of the tabou list). Each iteration requires O(n2) operations. After n
unsuccessful trials to decrease 	, the best partition is kept. We have tested that
this 	 criterion gives results equivalent to those of other criteria as the percentage
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of internal edges. This very simple algorithm surpasses several others optimization
strategies, for different types of data, according to first simulations [15].

To apply this method, an initial partition and the number of classes are re-
quired. For the initial partition, the class number of each element is randomly
selected between 1 and p. When the number of classes is to determine, sub opti-
mal partitions for p = 2, 3, ... etc. are established until the modularity function Q,
introduced by Newman and Girwan [20], decreases. Its formula is

Q =
∑

k=1,..p

ek − a2
k

where ek is the percentage of edges within class Pk (ek = |E(Pk)|
m ) and ak is the

percentage of edges having at least one end in Pk, the inter-class edges contributing
for 1/2 to each class (ak = |E(Pk)|+1/2|Γ(Pk)|

m ). This quantity Q measures the
fraction of intra-class edges minus the expected value if the m edges were put at
random. It quantifies how much the partition fit to the graph and it is often used
to determine the number of natural clusters [12,20,22]. As we shall see in the
simulation section, it works perfectly well, much better than the famous Calinski-
Harabash rule [17] or other rules based on criterion variations.

The PartOpt algorithm

(1) From Γ = (X, E), compute the Czekanovski-Dice distance on X .
(2) p = 1; BestQ = 0.
(3) While (Q increases)

• select a random partition with p + 1 classes;
• apply the Tabu-search procedure to get a sub-optimal partition P ;
• evaluate the Modularity function Q(P );
• if (Q(P ) > BestQ) {p = p + 1, P∗ = P , BestQ = Q(P )}.

(4) The retained partition is P∗ obtained at the previous step and containing
p classes.

Example 5. For the graph test, the successive iterations give:

Initial value of the criterion : 7.61
Nb. of classes 2 : {1,2,3,4,5,6,7,8,9 | 10,11,12,13,14,15}
BestCrit 4.12 Mod = .347
Nb. of classes 3 : {1,2,3,4 | 5,6,7,8,9 | 10,11,12,13,14,15}
BestCrit 1.72 Mod = .458
Nb. of classes 4 : {1,2,3,4 | 5,6,7,8,9 | 10,11,14 | 12,13,15}
BestCrit 1.22 Mod = .404

The algorithm stops because the modularity decreases and the natural partition
in 3 classes is established.
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6. Validation by simulation

In order to evaluate the ability of these methods to detect high density zones,
we try to recover such classes initially introduced in a graph. We first develop a
generator of random graphs in which there are dense clusters having more edges
within the classes – the internal edges – than between elements in separate classes
– the external ones.

6.1. A Generator of random graphs

Each vertex belongs to one class which is a high density zone compared to the
whole graph. Our generator of random graphs depends on four parameters:

• n: the number of vertices;
• p: the number of initial classes in the graph;
• pi: the internal edge probability;
• pe: the external edge probability.

In order to get such a random graph, we begin with a random partition of X in p
classes, denoted P = (P1, .., Pp), having a variable number of elements per class,
but which are balanced in the average. Next, for each pair of elements, we select at
random a real number between 0 and 1, and we add the corresponding edge if and
only if this number is lower than or equal to pi (resp. pe) when the two elements
are in identical (resp. different) classes. This is the Erdös-Reyni procedure applied
within the classes and also to G for the external edges.

Each clustering algorithm returns a partition Q = (Q1, ..., Qq). The number of
classes can be fixed (and q = p) or it can be freely determined by the algorithm,
possibly giving q �= p. Let qj = |Qj | and Q(x) be the class number of x.

6.2. Quality of the classes compared to the initial partition

In order to compare the five algorithms described above, we evaluate how far is
Q from P using four criteria which do not impose to have p = q. The two first ones
are not symmetrical; they compare the classes of Q to those of P and the results
would not be the same if P was compared to Q. The third one is the classical
Rand index corrected for chance (Hubert and Arabie, 1985) and the fourth is an
editing distance between partitions.

• τe: the percentage of elements which belong to their corresponding class
in P . We first map the classes of Q onto those of P evaluating ni,j =
|Pi

⋂
Qj |. We define the class in P corresponding to Qj, denoted Pσ(j),

as the one that contains the greatest number of elements of Qj ; that is
nσ(j),j ≥ ni,j for all i from 1 to p. So defined, σ is not a permutation,
since two classes in Q can share the same corresponding class, for instance
when a class in P is subdivided into two classes in Q

τe =
∑

j=1,..q

|Qj

⋂
Pσ(j)|
|Qj| ·
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• τp: the percentage of joined pairs in Q that are also joined in P . Let π(P )
be the set of joined pairs in partition P

τp =
|π(P ) ∩ π(Q)|
|π(Q)| ·

• The Rand index corrected for chance, denoted Rc, is based on three values:
r is the number of common joined pairs in P and Q (r = |π(P ) ∩ π(Q)|),
the expected value Exp(r) over the partitions of the same type as P and
Q and the maximum value Max(r). The authors adopt the formula:

Rc(P, Q) =
r − Exp(r)

Max(r) − Exp(r)

with Exp(r) = |π(P )|×|π(Q)|
n(n−1)/2 and Max(r) = 1

2 (|π(P )| + |π(Q)|). Note that
this index can take negative values corresponding to partitions that are
independent.
• τt is the transfer distance value divided by n. This distance counts the

minimum number of transfers, of one element from one class to another,
possibly a new class, that are necessary to transform P into Q. This
distance between any two partitions has been proposed by Regnier [23]
and Day [10] and recently studied (and bounded according to the class
cardinality) by Charon et al. [8]. It is well adapted to very close partitions
because a small number of transfers reveals partitions that are practically
identical. Its value is obtained realizing a matching of the classes of P onto
those of Q which maximizes the number of common elements in matched
classes.

6.3. Results

There are two series of tests: the first one corresponds to methods in which the
number of classes is fixed. In that case, the pruning, the spectral and the optimi-
sation methods are compared. When the number of classes is free, the density, the
Markov and the optimisation methods are compared. For both series, in Table 4,
the external density is fixed to pe = .1 and the internal density (percentage of
edges) decreases, until the computed partitions becomes too far from the initial
ones. In Table 5, it is the converse; the internal edge probability is fixed to pi = .5
and the external one increases.

These figures are average values obtained from 200 random graphs of 100 ver-
tices distributed in 3 classes, that are only balanced in the average; the degree
values typically span from 3 to more that 10. In the following tables, the rows cor-
respond to the algorithms and the columns to the four criteria introduced before.

The number of classes is fixed

When pi = .5 and pe = .1 all these methods are very satisfying and the initial
classes are perfectly recovered (one or two transfers). But when the gap between
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Table 4. The internal edge probability go decreasing.

pi = .4, pe = .1 pi = .35, pe = .1 pi = .3, pe = .1
τe τp Rc τt τe τp Rc τt τe τp Rc τt

Pruning .96 .94 .92 .03 .91 .85 .80 .09 .80 .70 .60 .20
Spectral .95 .91 .88 .05 .93 .86 .80 .07 .88 .78 .69 .12

Optimization .99 .98 .97 .01 .98 .96 .95 .02 .94 .89 .84 .06

Table 5. External edge probability increases.

pi = .5, pe = .15 pi = .5, pe = .2 pi = .5, pe = .25
τe τp Rc τt τe τp Rc τt τe τp Rc τt

Pruning .98 .96 .95 .02 .93 .87 .84 .07 .85 .75 .67 .15
Spectral .96 .91 .89 .04 .92 .85 .80 .08 .89 .78 .69 .13

Optimization .99 .99 .98 .01 .98 .96 .95 .02 .94 .89 .83 .06

Table 6. Internal edge probability decreases.

pi = .4, pe = .1 pi = .35, pe = .1 pi = .3, pe = .1
τe τp Rc τt τe τp Rc τt τe τp Rc τt

Density .83 .76 .56 .25 .79 .70 .45 .33 .71 .59 .29 .44
Markov .93 .87 .82 .08 .83 .73 .58 .22 .60 .47 .22 .43

Optimization .99 .98 .97 .01 .97 .95 .93 .03 .95 .90 .85 .06

these probabilities decreases, the optimization method clearly becomes the best
one. It is obvious for the harder cases, when pi = .5 and pe = .25 or for pi = .3
and pe = .1.

The number of classes is free

Once again, the optimisation procedure is the best of them three. For pi = .5
and pe = .1 the MCL procedure recovers practically every time the correct number
of classes, with r = 2. But when the gap between pi and pe decreases, the r-value
must be adjusted with many trials to get an average number of classes close to 3.
For instance, for pi = .3, pe = .1, with r = 2 we get 8.4 elements per class in
the average, but with r = 1.95 we get only 3.6. In fact r should be adapted to
each graph, but we only do in the average. For Table 6, the retained r values are
respectively 2.1, 2.05 and 1.95. For Table 7, with r = 2, all the vertices would
be joined together into a single class as soon as pe ≥ .15; here again, after many
trials, we keep respectively 2.4, 2.55, and 2.75. The density method gives also
poor results even if the number of classes remains reasonable. Remarkably, the
optimization one has the same performance as when the number of classes is fixed,
because this latter is practically always recovered. But we must admit that it is
so because there is a small number of classes with a few tens of elements; with
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Table 7. External edge probability increases.

pi = .5, pe = .15 pi = .5, pe = .20 pi = .5, pe = .25
τe τp Rc τt τe τp Rc τt τe τp Rc τt

Density .73 .64 .44 .29 .58 .48 .21 .42 .48 .40 .08 .52
Markov .86 .80 .69 .16 .64 .51 .30 .38 .50 .39 .10 .52

Optimization .99 .98 .97 .01 .98 .95 .95 .03 .93 .87 .82 .07

Table 8. Results of the PartOpt method applied to sparse
graphs of 200 vertices.

� of classes fixed � of classes free
p pi pe τe τp Rc τt τe τp Rc τt

4 .15 .03 .94 .89 .86 .06 .95 .90 .87 .06
4 .10 .01 .95 .90 .87 .05 .94 .90 .86 .06
5 .15 .03 .87 .78 .73 .13 .86 .76 .70 .14
5 .10 .01 .86 .77 .72 .14 .86 .76 .70 .15

200 vertices in 10 classes in the initial graph, it would not be the same, except for
pi = .5 and pe = .1, making obvious denses clusters.

The PartOpt performances remain satisfying when classes are unbalanced, and
when n increases or when graphs becomes more sparse. In this last table, n = 200
and the number of classes is fixed to 4 or 5. The internal and external probabilities
lead to graphs with average density between .06 and .03. The values of the same
criteria tend to prove that the optimization algorithm can be applied to sparse
graphs.

7. Conclusion

According to Tables 4 to 8, graph partitioning could appear as an easy problem,
since the five methods based on different principles provide acceptable results in
the average, except MCL when the density is high. It is time to admit that this
simulation process is driven to get a clear preference. It would not be so clear
if, for instance, the initial classes contain less than a few tens of vertices, if the
average density was lower than .2 or if the number of classes was larger than 10. In
any of these cases all the algorithms fail to recover the graph structure, beginning
with the correct number of classes, and the comparison between them would be
hazardous.

Finally, new and promising ideas fail to recover existing classes in graphs, when
the contrast between high density zones is not clear. A simple good old stochastic
optimization procedure gives the best results without an extensive study of its
parameters (the number of initial partitions, or the number of iterations without
improvements, here equal to n, and the length of tabu lists, always equal to 5).
The computing time is also satisfying since a sample of 100 graphs of 100 vertices
is analyzed in 15” and for graphs of 200 vertices, it takes around 100” (when the
number of classes is free) using an ordinary desk computer.
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[23] S. Régnier, Sur quelques aspects mathématiques des problèmes de classification automatique.

ICC Bulletin (1964).
[24] J. Rougemont and P. Hingamp, DNA microarray data and contextual analysis of correlation

graphs. BMC Bioinformatics 4 (2003) 15.
[25] S.B. Seidman, Network structure and minimum degree. Social Networks 5 (1983) 269–287.
[26] D. Wishart, Mode analysis: generalization of nearest neighbor which reduces chaining effects,

in Numerical taxonomy, Academic Press (1976) 282–311.


	Introduction
	Clustering by density
	Density function
	Clustering algorithm

	Disconnecting the graph
	Markov clustering (MCL)
	From the adjacency matrix to a stationary process
	Attractors and classes

	Spectral subdivision
	A classical optimization method
	Validation by simulation
	A Generator of random graphs
	Quality of the classes compared to the initial partition
	Results

	Conclusion
	References

