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COMPARING IMPERFECTION RATIO AND
IMPERFECTION INDEX FOR GRAPH CLASSES

ARIE M.C.A. KOSTER' AND ANNEGRET K. WAGLER?

Abstract. Perfect graphs constitute a well-studied graph class with
a rich structure, reflected by many characterizations with respect to
different concepts. Perfect graphs are, for instance, precisely those
graphs G where the stable set polytope STAB(G) coincides with the
fractional stable set polytope QSTAB(G). For all imperfect graphs G
it holds that STAB(G) C QSTAB(G). It is, therefore, natural to use
the difference between the two polytopes in order to decide how far an
imperfect graph is away from being perfect. We discuss three different
concepts, involving the facet set of STAB(G), the disjunctive index of
QSTAB(G), and the dilation ratio of the two polytopes.

Including only certain types of facets for STAB(G), we obtain graphs
that are in some sense close to perfect graphs, for example minimally
imperfect graphs, and certain other classes of so-called rank-perfect
graphs. The imperfection ratio has been introduced by Gerke and Mc-
Diarmid [12] as the dilation ratio of STAB(G) and QSTAB(G), whereas
Aguilera et al. [1] suggest to take the disjunctive index of QSTAB(G)
as the imperfection index of G. For both invariants there exist no gen-
eral upper bounds, but there are bounds known for the imperfection
ratio of several graph classes [7,12].

Outgoing from a graph-theoretical interpretation of the imperfection
index, we prove that there exists no upper bound on the imperfection
index for those graph classes with a known bounded imperfection ra-
tio. Comparing the two invariants on those classes, it seems that the
imperfection index measures imperfection much more roughly than the
imperfection ratio; we, therefore, discuss possible directions for refine-
ments.
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486
1. INTRODUCTION

The stable set polytope STAB(G) of a graph G = (V, E) is defined as the convex
hull of the incidence vectors of all stable sets of G (in a stable set all nodes are
mutually nonadjacent). A canonical relaxation of STAB(G) is the fractional stable
set polytope QSTAB(G) given by all “trivial” facets, the nonnegativity constraints
x; > 0 for all nodes ¢ of G, and by the clique constraints
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for all cliques @ C V (in a clique all nodes are mutually adjacent). We have
STAB(G) € QSTAB(G) for any graph but equality for perfect graphs only [6].
According to a famous characterization recently achieved by Chudnovsky et al. [5],
that are precisely the graphs without chordless cycles Cog41 with & > 2, termed odd
holes, or their complements, the odd antiholes Cajy1 (the complement G has the
same nodes as G, but two nodes are adjacent in G iff they are non-adjacent in G).
In particular, perfect graphs are closed under taking complements (Perfect Graph
Theorem [16]). Perfect graphs turned out to be an interesting and important class
with a rich structure and a nice algorithmic behaviour, see [19] for a recent survey.
In particular, several parameters which are hard to evaluate in general can be
determined in polynomial time if G is perfect [13].

For all imperfect graphs G it follows that STAB(G) C QSTAB(G). It is natural
to use the difference between the two polytopes in order to determine how far a
certain imperfect graph is away from being perfect. We consider three ways to
classify imperfect graphs: by description of STAB(G), the imperfection ratio, and
the imperfection index.

Polytope descriptions. The first possibility is to extend the clique constraints
describing QSTAB(G) to rank constraints

> @ < al@) (2)
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associated with arbitrary induced subgraphs G’ = (V’,E’) in order to obtain
STAB(G) (here, a(G") denotes the cardinality of a maximum stable set in G’; we
have a(G’) = 1 iff G’ is a clique and also write (2) as z(G’, 1) < a(G")). That
way, several well-known graph classes are defined: near-perfect graphs [20] where
rank constraints associated with cliques and the whole graph are allowed only;
t-perfect graphs [6] resp. h-perfect graphs [13] where rank constraints associated
with edges, triangles, and odd holes resp. cliques of arbitrary size and odd holes are
used only; and rank-perfect graphs [21] including the rank constraints associated
with all induced subgraphs.

Further classes of rank-perfect graphs are line graphs [9] and antiwebs [22]. A
line graph is obtained by taking the edges of a given graph as nodes and connecting
two nodes iff the corresponding edges are incident. An antiweb K, is a graph
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with n nodes 0,...,n— 1 and edges ij iff K < |i —j| <n —k and i # j. Antiwebs
include all cliques K, = K, /1, all odd antiholes Copy1 = K412, and all odd
holes Cox1 = Kopy1/k- As common generalization of perfect, t-perfect, and h-
perfect graphs as well as antiwebs, the class of a-perfect graphs was introduced
in [23] as those graphs whose stable set polytopes are given by nonnegativity
constraints and rank constraints associated with antiwebs only.

Imperfection ratio. Gerke and McDiarmid [12] introduced the imperfection
ratio imp(QG) as the dilation ratio

imp(G) = min{t : QSTAB(G) C t STAB(G)}

of the two polytopes. We clearly have imp(G) = 1 iff G is perfect and imp(G) > 1
iff G is imperfect. Moreover, imp(G) = imp(G) holds for all graphs [12]. The
imperfection ratio is NP-hard to compute and unbounded in general [12]. So
far, there are upper bounds known for the imperfection ratio of only some graph
classes, including odd holes, t-perfect, h-perfect, and line graphs [12], antiwebs and
a-perfect graphs [7] (and the corresponding complementary classes). We introduce
two further graph classes and show that they have also a bounded imperfection

ratio, see Section 2.

Imperfection index. Aguilera et al. [1] investigated the antiblocking duality of
STAB(G) and QSTAB(G) by means of the disjunctive procedure introduced in [2]
(see Sect. 3). They observed that the disjunctive index of QSTAB(G) can be seen
as a measure of imperfection and suggest the imperfection index of G as

imp(G) = min{|J| : P;(QSTAB(G)) = STAB(G),J C V}

where P;(QSTAB(G)) = conv{z € QSTAB(G) : z; € {0,1},j € J}.

We have impy(G) = 0 iff G is perfect and imp;(G) = 1 if G is minimal imperfect
(that is G is not perfect but every proper induced subgraph is perfect). As precisely
the graphs G with imp;(G) < 1, we introduce the class of almost-perfect graphs
as those graphs G which admit one node whose removal yields a perfect graph.
This class clearly contains perfect and minimally impefect graphs, we present
further examples. Moreover, it is proved in [1] that imp;(G) = impr(G) holds for
all graphs. We present an alterative proof for this fact in terms of hypergraphs
(Sect. 3).

The stable set problem can be solved in polynomial time for graphs with imper-
fection index bounded by a constant: we can solve 2™PH() gtable set problems on
perfect graphs. In this perspective, it is unlikely to find many graph classes with
bounded imperfection index. In fact, we show that for all known graph classes
with bounded imperfection ratio, the imperfection index cannot be bounded, even
for some of them where the stable set problem can be solved in polynomial time
with the help of other approaches (e.g., t-perfect or line graphs). For this, we
investigate the behaviour of the imperfection index by means of taking disjoint
unions (Sect. 3), taking lexicographic products (Sect. 4), and substituting nodes
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by other graphs (Sect. 5). For the latter, we characterize how several classes of
rank-perfect graphs behave under substitution.

Hence, our results suggest that the value of the imperfection index is a less
intuitive measure on the closeness of the graph to perfectness than the imperfection
ratio (see Sect. 6). Several suggestions for refinements conclude this paper.

2. GRAPH CLASSES WITH BOUNDED IMPERFECTION RATIO

Gerke and McDiarmid [12] introduced the imperfection ratio originally as

Xf(Ga C)

imp(G) = max{ )

|c:V<G>HZ+},

i.e., as the maximum ratio of the fractional chromatic number and the clique
number in their weighted versions, taken over all positive integral weight vectors.

There does not exist a general upper bound on the imperfection ratio due to
the following reason. The so-called Mycielski graphs Gg, G1, Ga, . . . form a famous
series of graphs with w(G;) = 2 for all ¢, but x(G;) = 2+ [17] (where Gy = Ko,
G1 = C5, and Gy is the well-known Grotzsch graph). Larsen et al. [14] proved the
unexpected recurrence x f(Giy1) = x7(Gi) + ﬁ As imp(G) = @ holds for
any triangle-free graph G by [12], this implies

imp(G;) — oo for i — oo

and, thus, the Mycielski graphs Gg, G1,Go, ... form a sequence with unbounded
imperfection ratio.

However, there are also classes with bounded imperfection ratio. By [12], it
holds that

imp(G) = 21;—;1 : Cajq1 shortest odd hole in G}
whenever G is a line graph or h-perfect and
imp(G) = 22—;1 : 2k + 1 length of shortest odd (anti)hole in G}

for all co-h-perfect graphs G where STAB(G) is given by rank constraints asso-
ciated with cliques, odd holes, and odd antiholes only. As the Cj5 is the shortest
odd (anti)hole, this implies that imp(G) < % holds for all graphs G belonging to
one of these classes.

Note that odd (anti)holes are special partitionable graphs; that are graphs G
where, for any node v, the subgraph G — v can be partitioned into «(G) cliques of
maximum size w(G) or into w(G) stable sets of maximum size. We shall extend
the above results to a common superclass of perfect, t-perfect, h-perfect, and co-h-
perfect graphs: we call a graph G p-perfect if STAB(G) is given by rank constraints
associated with cliques and partitionable subgraphs only.



IMPERFECTION OF GRAPHS 489

Theorem 2.1. For any imperfect p-perfect graph G, we have

imp(G@) = max {% : G' C G minimally imperfect} .

Proof. Consider a p-perfect graph G having a partitionable graph P as induced
subgraph. By definition, it follows |P| = o/w’ + 1 = n/. Consider a vector = €
QSTAB(G). We have z(P) < % as each node of P can be covered w’ times by

’
o w

T’l, x (note that y belongs to

the n’ maximum cliques of P by [3]. Let y =
QSTAB(G) as —2«_ < 1). Now,

a’'w +1

y(P) = o' x(P) S aQw % = Oé/

holds, and thus y € STAB(G). It follows that QSTAB(G) C ““+LSTAB(G)
holds. This implies

imp(G) = max { O‘;“,’;Jfl :PCG partitionable}

and, since any partitionable graph contains a minimally imperfect one, the par-

titionable subgraph P C G with smallest cardinality (and, thus, maximal value
|P|

[P]-1

) is minimally imperfect. O

As the Cj is the smallest such partitionable graph, this implies imp(G) < % for
the larger class of p-perfect graphs, too.

A similar result was shown in [7] for antiwebs, a-perfect graphs, and a further
superclass of antiwebs, the near-bipartite graphs where the set of non-neighors of
every node splits into two stable sets. According to [7], for all such graphs G,

imp(G) = max{afl—;, c Kprjor € G}

where w’ = [n//a/] holds and, in addition, the imperfection ratio of an antiweb
is bounded by imp (K, /) < g The complements of antiwebs are called webs,
the complements of near-bipartite graphs are called quasi-line graphs (note that
they contain all line graphs). By the invariance of the imperfection ratio under
complementation, the imperfection ratio of any near-bipartite (resp. quasi-line)
graph is, therefore, characterized by means of its induced antiwebs (resp. webs)
only and is less than %

In addition, Gerke and McDiarmid [12] showed that the imperfection ratio of
planar graphs is bounded by % (and conjectured that it is in fact bounded by %)

Finally, we present a (rough) bound on the imperfection ratio for the class of
almost-perfect graphs:

Theorem 2.2. For any almost-perfect graph G, we have imp(G) < 2.

Proof. Let v be a node such that G — v is perfect. This implies x(G — v,¢) =
Xf(G —v,¢) = w(G — v,c) for all weight vectors ¢ > 0. On the other hand,
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Xf(G,c) < x(G,c) < x(G —wv,c) + ¢, and w(G,c) > max{w(G —v,¢), ¢y + Cure)}
with u(c) = arg max,,¢ y(v) cw holds, where N (v) is the set of neighbors of v in G.
Thus

Xxf(G,c) - X(G —v,¢)+ ¢, _ X(G —v,¢)+ ¢y <9
w(G,c) T max{w(G —wv,c), ¢}  max{x(G —v,c),cy + cye)}
holds for all ¢ > 0, which completes the proof. O

3. THE IMPERFECTION INDEX IN GRAPH THEORETICAL TERMS

Balas et al. [2] introduced the disjunctive procedure for binary linear programs
as a way to obtain a complete description of the integer polytope from the polytope
described by the linear relaxation. Let V' = {1,...,n} denote the set of binary
variables. A run of the procedure for variable x; consists of three steps: (i)
multiplication of the system of inequalities once by x; and once by 1 — z;; (ii)
linearization of the quadratic terms; and (iii) projection of the resulting system
back to the z-space. Balas et al. [2] prove that the resulting polyhedron P;(X)
equals conv{z € X : z; € {0,1}}. In fact, for a subset J = {i1,...,¢;} of the
variables,

Pj(X)=conv{z € X :2; € {0,1},j € J}
holds. Clearly, Py (X) = conv(X N{0,1}"), but also proper subsets can have this
property. This result allows to define the disjunctive index of a polytope X as the
minimum size of a set J C V such that P;(X) = conv(X N {0,1}").

The imperfection index of a graph G is defined as the disjunctive index of
QSTAB(G). The following result directly follows from the definition. Here G[V —j]
denotes the subgraph of G = (V, E) induced by V' \ {j}.

Lemma 3.1 ([4]). P;(QSTAB(G)) = STAB(G) if and only if G[V — j] is perfect.
This immediatly implies:

Corollary 3.2. imp;(G) = 1 if and only if there exists a node j € V such that
G[V — j] is perfect.

This shows in particular that the almost-perfect graphs are exactly those graphs
G with and imperfection index at most one (as they are defined to admit one
node whose removal results in a perfect graph). Clearly, all perfect graphs G are
almost-perfect by impi(G) = 0 as well as all minimally imperfect graphs G by
imp(G) = 1 (note that in the latter graphs, removing any node yields a perfect
graph). A subclass of t-perfect graphs, the almost-bipartite graphs, forms a further
class with imperfection index at most one as they are defined to admit one node
whose removal yields a bipartite graph.

Note that the class of almost-perfect graphs clearly contains graphs other than
perfect, minimal imperfect, and almost-bipartite graphs, e.g., all odd wheels and
odd antiwheels (the latter are obtained as complete join of an odd antihole and a
single node).
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Lemma 3.1 can be generalized further as follows (this was independently ob-
served in [18] and [15]).

Lemma 3.3 ([15,18]). P;(QSTAB(G)) = STAB(G) if and only if GV — J] is
perfect.

Therefore, if P;(QSTAB(G)) = STAB(G), J is a subset of nodes meeting all
minimal imperfect subgraphs of G. By the Perfect Graph Theorem [16], an in-
duced subgraph G’ of G is minimally imperfect if and only if its complement G is
minimally imperfect. Hence, the same node-subset J meets all minimal imperfect
subgraphs in the complementary graph, which implies:

Corollary 3.4 ([1]). Let G = (V, E) be a graph. P;(QSTAB(G)) = STAB(G)

holds for a subset of nodes J C V if and only if Py(QSTAB(G)) = STAB(G).

Hence, the imperfection index is invariant under taking complements, as shown
before by Aguilera et al. [1].

We shall formalize the computation of the imperfection index further. For a
graph G = (V, E), we introduce the imperfection hypergraph Z(G) = (V, F) on the
same node set as G and all node subsets inducing minimally imperfect subgraphs
of G as hyperedges. Obviously, we have Z(G) = Z(G). For our purpose, we look
for a minimum node cover of Z(G), i.e., for a subset J C V meeting all hyperedges.
Obviously, any node cover of Z(G) corresponds to a subset J C V with G[V — J]
perfect resp. with Py(QSTAB(G)) = STAB(G). This implies that the imperfection

index of G equals the node cover number 7(Z(G)).
Lemma 3.5. For any graph G, imp1(G) = impr(G) = 7(Z(G)) = 7(Z(Q)).
From this graph-theoretical reformulation of impy(G), we infer:

Lemma 3.6. The number of disjoint minimally imperfect subgraphs of G is a
lower bound on impy(G).

Proof. Let S be a set of mutually disjoint subsets of V' that induce minimally
imperfect subgraphs. For all S € § we have to select at least one node in the node
cover. Thus, 7(Z(G)) is at least the size of S. O

Corollary 3.7. The imperfection index of a graph G equals the sum of the im-
perfection indices of its mazximal 2-edge-connected induced subgraphs.

Proof. Clearly, the imperfection index of a graph G is the sum of the imperfection
indices of its connected components (since the components of the hypergraph Z(G)
are defined on the same node subsets).

Now, let G be a connected graph and Z(G) the imperfection hypergraph as
defined above. Moreover, let e € E be such that G — e is not connected (e
is a bridge). Since the only minimally imperfect subgraphs are odd holes and
odd antiholes, Z(G) is not connected. In fact, Z(G) and Z(G — e) are isomorphic.
Hence, imp; (G) = imp(G'—e) and the result follows by iteration for all bridges and
application of the first part of the proof on the resulting non-connected graph. [
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As a consequence, we obtain that the imperfection index cannot be bounded
for several classes of graphs.

Theorem 3.8. For the following graph classes G, there exists no upper bound on
the imperfection index impi(G),G € G: t-perfect graphs (and therefore, also h-
perfect, p-perfect, a-perfect, rank-perfect graphs); line graphs (and therefore, also
quasi-line graphs); planar graphs.

Proof. Let kCs be the disjoint union of k 5-holes. Then we obviously have
impy(kCs) = k and, in particular,

impy(kC5) — o0 if k — oo.

As such graphs kC5, k > 1 belong to the classes of t-perfect graphs as well as line
graphs as well as planar graphs, the result follows for all these classes and their
superclasses. O

Similar constructions are possible by linking odd holes through additional edges
to a chain; even in highly connected graphs many disjoint odd holes can occur:

Theorem 3.9. For the following graph classes G, there exists no upper bound on
the imperfection index impy(G),G € G: webs and antiwebs (and therefore, also
a-perfect, near-bipartite, and quasi-line graphs).

Proof. Let ?5k/(k+1) be the web with 5k nodes that is the complement of Ky, /(x1)-
Fori € {1,...,5k}, Ks5p/(r+1) contains the 5-hole C(i) = {i,i+k, i+ 2k, i+ 3k, i+
4k}. Hence, Ksj/(141) contains k disjoint 5-holes C'(i) for 1 <4 < k. This implies
that impy (?Sk/(kJrl)) > k and, in particular,

impl(?g,k/(kJrl)) — o0 if k — oo.

Thus, there is also no upper bound of the imperfection index for the classes of
webs and antiwebs as well as for any of their superclasses. O

4. THE IMPERFECTION INDEX AND LEXICOGRAPHIC PRODUCTS

The lexicographic product G1 x G of two graphs GG; and G5 is obtained by
substituting every node of G; by the graph G5. Let v be a node of a graph
(G1 then substituting v by another graph G2 means to delete v and to join every
neighbor of v in Gy to every node of Go. (Note that we exclude the two trivial
cases if Go = ) and if v does not have any neighbor.)

Gerke and McDiarmid [12] studied the behavior of the imperfection ratio under
taking lexicographic products G; x G2 and showed that

imp(G1 x G2) = imp(G1) - imp(Ga)
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holds. Thus, the imperfection ratio cannot be bounded for any class G of graphs
which is closed under substitution (and, therefore, closed under taking lexico-
graphic products) and contains at least one imperfect graph G as

imp(G") — oo for i — oo

if imp(G) > 1 (where G stands for G x ... x G, i times). A necessary condition for
a class G to have bounded imperfection ratio is, therefore, that G is closed under
substituting perfect graphs for nodes only.

We consider the behavior of the imperfection index under taking lexicographic
products G; x G5 as well.

Theorem 4.1. For two graphs G1, G2 we have
impr(G1 X G2) = |G| impi(G1) + (|G1| — imp1(G1)) - impr(Ga2).

Proof. Let W be an arbitrary set of nodes in GG; x G5 that meets each imperfect
subgraph. Let V' be the subset of nodes of G; = (V1, E1) such that W contains all
of the substitutes of v in G; X G2, and let U be the subset of W for which not all
substitutes of a node in G; are included. Suppose V{ does not meet all imperfect
graphs of G1. Let S; C V7 induce such an unmet imperfect subgraph. Define S
by selecting one substitute v € W for every node in S;. The subgraph of G; x G»
induced by S is isomorphic to G1[S] and hence imperfect. A contradiction and
thus [W — U| > |Gz|impi(G1).

Now consider a node v € V3 — V. The subgraph of G; x G2 induced by the
substitutes of v is isomorphic with Go and thus at least impr(G2) nodes have to
be included in U. We conclude

(W[ = |Gelimpr(G1) + (|G| — impr(G1))impr (G2)

accordingly.

To bound impy(G; x Ga) from above, define W as follows. Let V/ C Vj be a
minimum node subset of Gy = (V4, E1) such that G1[V; — V] is perfect. Similarly,
let Vi C V5 be a minimum node subset of Gy = (Va, E2) such that Go[Va — V5]
is perfect. For v € V{, let W contain all substitutes, whereas for v & V{, let W
contain only the substitutes isomorphic to V3. Hence, W is of the desired size.
Now, the graph G x Go — W is isomorphic with (G; — V{) x (G2 — V), and hence
G1 x Gy — W is perfect (since the lexicographic product of two perfect graphs is
perfect again [16]). O

Thus, also the imperfection index cannot be bounded for any class G of graphs
which is closed under substitution (and, therefore, closed under taking lexico-
graphic products) and contains at least one imperfect graph G. In contrary to the
imperfection ratio, we have even more:

Corollary 4.2. Let Gy be a graph. For any perfect graph G2, we have

impI(G1 X Gg) = |G2| 1mp1(G1)
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As this result clearly also applies to the two special cases, namely taking lexi-
cographic products where G is a clique (replicating every node of G1) or a stable
set (multiplying every node of G1), we immediatly obtain the following:

Corollary 4.3. Let G be a graph class containing one imperfect graph. If G is
closed under substituting perfect graphs for nodes, replication, or multiplication,
then there exists no upper bound for the imperfection index imp;(G),G € G.

Thus, a sufficient condition for the non-existence of an upper bound on the
imperfection index is that the graph class G in question contains an imperfect
graph and is closed under substituting certain perfect graphs, whereas a necessary
condition for the existence of an upper bound on the imperfection ratio for G is
that G is closed under substituting perfect graphs for nodes only.

5. CLASSES OF RANK-PERFECT GRAPHS AND SUBSTITUTION

The results from the previous section motivate to study the behaviour of the
remaining graph classes of interest under substitution. So far, there are no bounds
known on the imperfection ratio or the imperfection index of near-perfect and
general rank-perfect graphs. On the one hand, we shall check whether these classes
are closed under substituting certain perfect graphs; on the other hand, we shall
ensure that substitution of imperfect graphs is not possible. This suggests to
characterize what happens to these classes under substitution. Note that such a
characterization gives, in addition, also some insight in how to construct graphs in
the corresponding classes. This is of particular interest, as none of the subclasses
of rank-perfect graphs is characterized in graph-theoretical terms yet (but only
in polyhedral terms by means of the facets of the stable set polytope). Thus, we
shall also address the behavior of h-perfect, co-h-perfect, p-perfect, and a-perfect
graphs under substitution.

For our purpose, we shall make use of the following result:

Theorem 5.1. [6,8] Let G be obtained by substituting a node v of a graph Gy =
(Vi, Ey) by a graph Gy = (Va, E2). Then a non-trivial inequality is facet-defining
for STAB(G) if and only if it can be scaled to be a facet product of the form

Z ajz; +al Z a?xj <1 (3)

i€Vi—v JjeEVS

where x(G;,a’) < 1 is a non-trivial facet of STAB(G;) for i =1,2.

Note that Chvatal [6] gave a linear description of STAB(G) outgoing from the
stable set polytopes of the original graphs, whereas Cunningham [8] proved later
that each of the inequalities found by Chvatal is indeed facet-defining. We study
the consequences of this theorem for several subclasses of rank-perfect graphs.
Throughout this section, all non-trivial inequalities are scaled to have right hand
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side equal to 1 (that means: only clique constraints keep unchanged, rank con-
straints 2(G', 1) < a(G’) turn to z(G',a) < 1 with a = (ﬁ, e a(é"))’ and
non-rank constraints have different non-zero coefficients).

Proposition 5.2. Consider a graph G obtained by substituting a node v of a graph
G1 by Ga. If there is a non-trivial, non-clique facet of STAB(G2) then STAB(G)
has a mon-trivial, non-rank facet.

Proof. Let G1 = (V1, Eq) and Gy = (Va, Es) and take the facet product

Z :E¢+Za?:cj§1

i€EQ—v JEV2

of a clique facet associated with @ C Vi, v € ) and a non-trivial, non-clique facet
2(G2,a%) < 1 of STAB(G2). Then there is a node k € Va with 0 < ai < 1 and
the above facet product has different non-zero coeffients: every ¢ € @Q — v has
coefficient 1 but 0 < a? < 1 (recall: we exclude the case that v does not have any
neighbor, hence there is a clique Q C V; with Q — v # (). Thus, the above facet
product is a non-trivial, non-rank facet of STAB(G). O

That means, whenever (G5 is imperfect, the graph obtained by substituting G2
for a node cannot be rank-perfect. Hence, none of the classes of rank-perfect
graphs (different from the class of perfect graphs) is closed under substitution.
In addition, we are interested which graphs G; and G2 are allowed in order to
produce a rank-perfect graph G by substitution.

Theorem 5.3. Let G be obtained by substituting a node v of Gi by Go. G is
rank-perfect if and only if G1 is rank-perfect and Gy is perfect.

Proof. Let G1 = (V1, Ey) and G = (Va, E3). Assume first that Gy is rank-perfect
and Gy is perfect. Then STAB(G1) admits only non-trivial facets z(G1,a') < 1
with a} € {0,c}. Each facet product

Z azlxi—i—aql, ijgl

i€Vi—v JEQ

of #(G1,a') < 1 with an arbitrary clique facet associated with @ C V5 has again
al € {0,c} as only coefficients. Thus, the only non-trivial facets of STAB(G) are
rank constraints.

Conversely, if G is supposed to be rank-perfect then Go has to be perfect (oth-
erwise STAB(G2) has a non-trivial facet different from a clique constraint and
STAB(G) has a non-rank facet by Prop. 5.2). G; has to be rank-perfect (oth-
erwise STAB(G1) has a non-trivial, non-clique facet and its facet product with
an arbitrary clique facet of STAB(G2) yields a non-trivial, non-clique facet of
STAB(G)). O

Thus, precisely substituting perfect graphs for nodes preserves rank-perfectness
and substituting imperfect graphs for nodes in near-perfect, h-perfect, a-perfect,
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or p-perfect graphs cannot preserve the membership in those classes, too. We
are interested whether there are further requirements in order to obtain graphs
belonging to one of these classes by substitution.

Note that Shepherd [20] showed that the class of near-perfect graphs is closed
under replication (i.e., the special case of substitution where G5 is a clique). We
ensure that there is no other way to produce a near-perfect graph by substitution.

Theorem 5.4. Let G be obtained by substituting a node v of Gi by Go. G is
near-perfect if and only if either G1 and Gy are perfect or G1 is near-perfect and
G is a clique.

Proof. The if-part follows from Shepherd [20], thus we only have to treat the
only if-part. Let G; = (V4,Eq) and Ga = (Va, E3). Clearly, if G is supposed
to be perfect then G; and Gs have to be perfect due to Gi,Go C G. Hence
assume that G is near-perfect and imperfect. Then G5 has to be perfect, otherwise
STAB(G2) has a non-trivial facet different from a clique constraint and G is not
rank-perfect by Proposition 5.2. G imperfect and G perfect implies G; imperfect,
hence STAB(G1) has a non-trivial, non-clique facet x(G1,a') < 1. In particular,
there is a node k € V; with 0 < a}, < 1. Consider the facet product

Z a}xi—i—a}ijj <1

i€Vi—v JjEQ

of 2(G1,a') < 1 with an arbitrary clique facet associated with @ C V5. Then the
facet product is a non-trivial, non-clique facet of STAB(G) by 0 < a}, < 1 and,
thus, the full rank facet as G is near-perfect. Therefore, all coefficients are equal
to alg) and a} = ﬁ for all i € V; and Q = Vs follows. Hence, x(G1,a') <1
is the full rank facet of STAB(G;) (note o(G) = a(G1) by Q = V2) and its only

non-trivial facet different from a clique constraint, and G» is a clique. g

Finally, we also address the behavior of the remaining subclass of rank-perfect
graphs under substitution. We obtain the following result for p-perfect graphs:

Theorem 5.5. Let G be obtained by substituting a node v of G1 by G3. G 1is
p-perfect if and only if G1 is p-perfect and either v is not contained in any par-
titionable subgraph of G1 and Gs is perfect or v is contained in a partitionable
subgraph of G and G2 is a stable set.

Proof. Let G; = (V1, E1) and Gy = (Va, E2). Assume first G to be p-perfect. If
v is not contained in any partitionable subgraph P of G; and G» is perfect, then
STAB(G) has besides facets of STAB(G;) with vanishing coefficient for v only
products of trivial or clique facets, hence G is p-perfect. If G is a stable set, the
assertion follows since multiplication preserves p-perfectness: if Gg is stable then
all non-trivial facets of STAB(G2) are clique constraints associated with a single
node and all facet products (3) of STAB(G) are obtained by simply replacing v
by a node of G (i.e., STAB(G) contains |G3| copies of every facet z(Gy,a') <1
of STAB(G;) with al # 0).
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Now, suppose G to be p-perfect. Then G5 is perfect by Proposition 5.2 (other-
wise G is even not rank-perfect). Consider the facet product

Z a}xi—i—a}ijj <1

i€Vi—v JjEQ

of an arbitrary non-trivial facet x(G7,a') < 1 of STAB(G1) and a clique facet
associated with @ C V,. Since G is p-perfect, every facet product is either a clique
constraint (then z(Gy,a') < 1 is a clique facet) or a rank constraint associated
with a partitionable subgraph P (then x(Gq, al) < 1 is the facet associated with
P with either al =0 or al # 0 and |Q| = 1). That means: G; is p-perfect and, if
v is contained in a partitionable subgraph of G1, then G5 is a stable set. O

The latter result includes the classes of h-perfect and co-h-perfect graphs (as
odd holes and odd antiholes are special partitionable graphs). A similar argumen-
tation applies to all a-perfect graphs (since the facet-defining antiwebs play the
same role in a-perfect graphs as the partitionable subgraphs in p-perfect graphs).
In particular, taking lexicographic products with stable sets preserves the mem-
bership in all those classes. Thus, we can summarize the results from this section
as follows (the last point gives an alternative proof for assertions of Th. 3.8):

Corollary 5.6. There exists no upper bound for the imperfection index of the
following graph classes:

o rank-perfect graphs (closed under substituting perfect graphs for nodes);

e near-perfect graphs (closed under replication);

e h-perfect, co-h-perfect, p-perfect, a-perfect graphs (closed under multiplica-
tion).

6. CONCLUDING REMARKS

In this paper, we have studied three different ways to classify imperfect graphs
according to their closeness to perfect graphs. Several classes of graphs are defined
by their limited number of classes of facet defining inequalities different from trivial
and clique inequalities. The imperfection ratio has been shown to be bounded for
p-perfect graphs in this paper and for several other classes in previous papers. The
imperfection index has been shown to be unbounded for all those classes for which
the imperfection ratio has been shown to be bounded, cf. Tabel 1 which gives an
overview of the results achieved.

An open question is whether there exist a graph class such that the imperfection
index of all members is bounded by a constant k& with 1 < k& < oo (other than
perfect graphs and those defined by a constant). The stable set problem could be
solved in polynomial time on such classes straightforward.

Since the imperfection index cannot be bounded even for classes of graphs
where the stable set problem can be solved in polynomial time (e.g., t-perfect or
line graphs), it is fair to conclude that the disjunctive index of QSTAB(G) is a too
rough measure for intuitively determining the closeness of a graph G to the class
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TABLE 1. Summary of the bounds.

Graph class G | sup{imp(G) : G € G} | sup{imp:(G) : G € G}

perfect =1 =0

minimal imperfect < % =1

almost-bipartite < % <1

almost-perfect <2 <1
5

t-perfect <3 00
5

h-perfect <3 0
5

p-perfect <3 o0
: 5

line <3 00

antiwebs/webs <3 00
3

a-perfect <3 o0
. . 3

near-bipartite <3 00
. . 3

quasi-line <3 o0
11

planar <% 00

near-perfect 77 00

rank-perfect 7?7 0

general 00 00

of perfect graphs. Possible refinements could be obtained as follows:

e The imperfection index can be redefined for (2-)connected graphs only. In
this way the kC5 example cannot be taken anymore. However, the odd
holes can be connected with each other without loss of generality, and thus
the new imperfection index would still not be bounded for all the above
graph classes.

e The disjunctive procedure can be carried out with any linear combination
mx of the variables and a value my. The resulting polytope is then defined
as

Py (X) =conv({r € X i1z <mo} U{z € X : mx > 1o + 1}).

For any near-perfect graph G and (2) with V/ = V and my = a(G) as
mx < o, it directly follows P; ) (QSTAB(G)) = STAB(G). If we define
the genearalized disjunctive index to be equal to the minimum number
of times the procedure have to be applied before obtaining STAB(G), the
generalized disjunctive index would equal one in this case. The right choice
of the pairs (7, mp) is however unclear in general. Moreover, kCj still needs
k applications of the disjunctive procedure before STAB(G) is reached.
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e The unboundedness of the imperfection index for classes of graphs bases
in all the above cases on the increase of the number of nodes in the graph
without leaving the class (disjoint union, substitution, replication, multi-
plication). Scaling the imperfection index by the number of nodes n = |V|
could resolve this problem.

We, therefore, suggest to consider the normalized imperfection index

impy(G) .

imp, (G) = p

As there are no imperfect graphs with four or less nodes, imp;(G) can be at most
n — 4, and thus scaling yields a value imp, (G) € [0, 1).
All perfect graphs are exactly the graphs with imp,(G) = 0; all almost-perfect

graphs satisfy imp,(G) < % Even for kC5,k > 1, we obtain as normalized

imperfection index % = 0.2, independent of k. Taking the lexicographic

product of k 5-holes yields a sequence with

imp ((C5)*)
(C5)¥|

(since impy((Cs)*) = 5% — 4% whereas |(C5)¥| = 5*), which is consistant with the
fact that also the imperfection ratios of these graphs tend to infinity. It is, however,
interesting to observe that for the Mycielski graphs Gy, G, G2, . .. the quotient of
imperfection index and number of nodes tends to %, whereas their imperfection
ratios cannot be bounded.

—1if k— o0
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