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A GAME THEORETICAL APPROACH
TO THE ALGEBRAIC COUNTERPART
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Abstract. The algebraic study of formal languages shows that ω-
rational sets correspond precisely to the ω-languages recognizable by
finite ω-semigroups. Within this framework, we provide a construc-
tion of the algebraic counterpart of the Wagner hierarchy. We adopt
a hierarchical game approach, by translating the Wadge theory from
the ω-rational language to the ω-semigroup context. More precisely,
we first show that the Wagner degree is indeed a syntactic invariant.
We then define a reduction relation on finite pointed ω-semigroups by
means of a Wadge-like infinite two-player game. The collection of these
algebraic structures ordered by this reduction is then proven to be iso-
morphic to the Wagner hierarchy, namely a well-founded and decidable
partial ordering of width 2 and height ωω.
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91A65.

Introduction

This paper is the first part of a series of two. Its content lies at the cross-
roads of two mathematical fields, namely the algebraic theory of ω-automata, and
hierarchical games, in descriptive set theory.

The basic interest of the algebraic approach to automata theory consists in the
equivalence between Büchi automata and some structures extending the notion
of a semigroup, called ω-semigroups [13]. These mathematical objects indeed
satisfy several relevant properties. Firstly, given a finite Büchi automaton, one
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can effectively compute a finite ω-semigroup recognizing the same ω-language,
and vice versa. Secondly, among all finite ω-semigroups recognizing a given ω-
language, there exists a minimal one – called the syntactic ω-semigroup –, whereas
there is no convincing notion of Büchi (or Muller) minimal automaton. Thirdly,
finite ω-semigroup appear to be a powerful tool towards the classification of ω-
rational languages: for instance, an ω-language is first-order definable if and only
if it is recognized by an aperiodic ω-semigroup [8,11,19], a generalization to infinite
words of Schützenberger, and McNaughton and Papert’s famous results [10,17].
Even some topological properties (being open, closed, clopen, Σ0

2, Π0
2, Δ0

2) can be
characterized by algebraic properties on ω-semigroups (see [15] or [13], Chap. 3).

Hierarchical games, for their part, aim to classify subsets of topological spaces,
in particular by means of the following Wadge reduction: given two topological
spaces E and F , and two subsets X ⊆ E and Y ⊆ F , the set X is said to be
Wadge reducible to Y iff there exists a continuous function from E into F such
that X = f−1(Y ), or equivalently, iff there exists a winning strategy for Player II
in the Wadge game W(X,Y ) [20,21]. The resulting Wadge hierarchy – the most
refined hierarchy in descriptive set theory – appeared to be specially interesting to
computer scientists, for it illuminates the study of classifying ω-rational languages.
In this context, two main questions arise when X Wadge reduces to Y :

– Effectivity: if X and Y are given effectively, is it then possible to provide an
effective computation of a continuous function f such that X = f−1(Y )?

– Automaticity: if X and Y are recognized by finite ω-automata, is there also
an automatic1 continuous function f such that X = f−1(Y )?

An extended literature exists on both questions. In particular, Klaus Wagner
answered positively to the second problem [22], and the restriction of the Wadge
hierarchy to ω-rational sets is in fact entirely known: it coincides precisely with
the original Wagner hierarchy – the most refined classification of ω-rational sets
–, namely a well-founded and decidable partial ordering of width 2 and height ωω.
The Wagner degree of any ω-rational set is furthermore efficiently computable [24].

Wagner’s original proofs rely on a graph-theoretic analysis of Muller automata,
away from the algebraic framework. Carton and Perrin [3–5] investigated the
algebraic reformulation of the Wagner hierarchy, a work carried on by Duparc and
Riss [7]. However, this new approach is not yet entirely satisfactory, for it fails to
provide an algorithm computing the Wagner degree of any ω-rational set directly
on its syntactic ω-semigroup.

Our papers fill this gap. We first show by a direct argument that the Wagner
degree is indeed a syntactic invariant. We then define a reduction on subsets of
finite ω-semigroups by means of an infinite game, without any direct reference to
the Wagner hierarchy. We show that the resulting algebraic hierarchy is isomorphic
to the Wagner hierarchy, and in this sense corresponds to the algebraic counterpart
of the Wagner hierarchy, In particular, this classification is a refinement of the
hierarchies of chains and superchains introduced in [3,5]. Moreover, we prove that

1i.e. computed by some finite automaton.
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the Wagner degree of any given subset of a finite ω-semigroup can be effectively
computed. The detailed description of this decidability procedure is given in the
second paper.

1. Preliminaries

1.1. Languages

Given a finite set A, called the alphabet, then A∗, A+, Aω, and A∞ denote
respectively the sets of finite words, nonempty finite words, infinite words, and
finite or infinite words, all of them over the alphabet A. The empty word is denoted
by ε. Given a finite word u and a finite or infinite word v, then uv denotes the
concatenation of u and v. Given X ⊆ A∗ and Y ⊆ A∞, the concatenation of X
and Y is defined by XY = {xy | x ∈ X and y ∈ Y }, the finite iteration of X by
X∗ = {x1 . . . xn | n ≥ 0 and x1, . . . , xn ∈ X}, and the infinite iteration of X by
Xω = {x0x1x2 . . . | xi ∈ X, for all i ∈ N}.

We refer to [13], p. 15, for the definition of ω-rational languages. The ω-rational
languages are exactly the ones recognized by finite Büchi, or equivalently, by finite
Muller automata [13].

1.2. Semigroups

A semigroup (S, ·) is a set S equipped with an associative binary operation on
S. When equipped with an identity element, a semigroup becomes a monoid. If
S is a semigroup, then S1 denotes S if S is a monoid, and S ∪{1} otherwise, with
the operation of S completed by the relations 1 · x = x · 1 = x, for every x ∈ S1.
A semigroup morphism is a map ϕ from a semigroup S into a semigroup T such
that ϕ(s1 · s2) = ϕ(s1) · ϕ(s2), for every s1, s2 ∈ S. A semigroup congruence on S
is an equivalence relation ∼ such that for every s, t ∈ S and every x, y ∈ S1, the
condition s ∼ t implies xsy ∼ xty. The quotient set S/∼ is naturally equipped
with a structure of semigroup, and the function which maps every element onto
its ∼-class is a semigroup morphism from S onto S/∼.

1.3. ω-semigroups

The notion of an ω-semigroup was first introduced by Pin as a generalization
of semigroups [12,14]. In the case of finite structures, these objects represent a
convincing algebraic counterpart to automata reading infinite words: given any
finite Büchi automaton, one can build a finite ω-semigroup recognizing (in an
algebraic sense) the same language, and conversely, given any finite ω-semigroup
recognizing a certain language, one can build a finite Büchi automaton recognizing
the same language.
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Definition 1.1 (see [13], p. 92). An ω-semigroup is an algebra consisting of two
components, S = (S+, Sω), and equipped with the following operations:

• a binary operation on S+, denoted multiplicatively, such that S+ equipped
with this operation is a semigroup;

• a mapping S+ × Sω −→ Sω, called mixed product, which associates with
each pair (s, t) ∈ S+ × Sω an element of Sω, denoted by st, and such that
for every s, t ∈ S+ and for every u ∈ Sω, then s(tu) = (st)u;

• a surjective mapping πS : Sω
+ −→ Sω, called infinite product, which is com-

patible with the binary operation on S+ and the mixed product in the fol-
lowing sense: for every strictly increasing sequence of integers (kn)n>0, for
every sequence (sn)n≥0 ∈ Sω

+, and for every s ∈ S+, then

πS(s0s1 . . . sk1−1, sk1 . . . sk2−1, . . .) = πS(s0, s1, s2, . . .),
sπS(s0, s1, s2, . . .) = πS(s, s0, s1, s2, . . .).

Intuitively, an ω-semigroup is a semigroup equipped with a suitable infinite
product. The conditions on the infinite product ensure that one can replace the
notation πS(s0, s1, s2, . . .) by the notation s0s1s2 . . . without ambiguity. Since an
ω-semigroup is a pair (S+, Sω), it is convenient to call +-subsets and ω-subsets
the subsets of S+ and Sω, respectively.

Given two ω-semigroups S = (S+, Sω) and T = (T+, Tω), a morphism of ω-
semigroups from S into T is a pair ϕ = (ϕ+, ϕω), where ϕ+ : S+ −→ T+ is a
morphism of semigroups, and ϕω : Sω −→ Tω is a mapping canonically induced by
ϕ+ in order to preserve the infinite product, that is, for every sequence (sn)n≥0 of
elements of S+, then

ϕω

(
πS(s0, s1, s2, . . .)

)
= πT

(
ϕ+(s0), ϕ+(s1), ϕ+(s2), . . .

)
.

An ω-semigroup S is an ω-subsemigroup of T if there exists an injective morphism
of ω-semigroups from S into T . An ω-semigroup S is a quotient of T if there exists
a surjective morphism of ω-semigroups from T onto S. An ω-semigroup S divides
T if S is quotient of an ω-subsemigroup of T .

The notion of pointed ω-semigroup can adapted from the notion of pointed
semigroup introduced by Sakarovitch [16]. In this paper, a pointed ω-semigroup
denotes a pair (S,X), where S is an ω-semigroup and X is an ω-subset of S. The
pair (S,Xc) will then stand for the pointed ω-semigroup (S, Sω\X). A mapping
ϕ : (S,X) −→ (T, Y ) is a morphism of pointed ω-semigroups if ϕ : S −→ T
is a morphism of ω-semigroups such that ϕ−1(Y ) = X . The notions of ω-
subsemigroups, quotient, and division can then be easily adapted in the context
of pointed ω-semigroups.

A congruence of an ω-semigroup S = (S+, Sω) [13] is a pair (∼+,∼ω), where
∼+ is a semigroup congruence on S+, ∼ω is an equivalence relation on Sω, and
these relations are stable for the infinite and the mixed products: if (s0, s1, . . .)
and (t0, t1, . . .) are sequences of elements of S+ such that si ∼+ ti, for each i ≥ 0,
then s0s1s2 . . . ∼ω t0t1t2 . . . , and if s, s′ ∈ S+ and x, x′ ∈ Sω such that s ∼+ s′
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and x ∼ω x
′, then sx ∼ω s

′x′. The quotient set S/∼ = (S/∼+, S/∼ω) is naturally
equipped with a structure of ω-semigroup. If (∼i)i∈I is a family of congruences
on an ω-semigroup, then the congruence ∼, defined by s ∼ t if and only if s ∼i t
for all i ∈ I, is called the lower bound of the family (∼i)i∈I . The upper bound
of the family (∼i)i∈I is then the lower bound of the congruences that are coarser
than all the ∼i.

Example 1.2. The trivial ω-semigroup, denoted by 1 = ({1}, {a}), is obtained
by equipping the trivial semigroup {1} with the infinite product π defined by
π(1, 1, 1, . . .) = a.

Example 1.3. Let A be an alphabet. The ω-semigroup A∞ = (A+, Aω) equipped
with the usual concatenation is the free ω-semigroup over the alphabet A [3].

Example 1.4. Let S = (S+, Sω) be a finite ω-semigroup. The morphism of ω-
semigroups ϕ : S∞

+ −→ S naturally induced by the identity over S+ is called the
canonical morphism associated with S.

In this paper, we strictly focus on finite ω-semigroups, those whose first compo-
nent is finite. It is proven in [13] that the infinite product πS of a finite ω-semigroup
S is completely determined be the mixed products of the form xπS(s, s, s, . . .) (de-
noted xsω). We use this property in the next examples, also taken from [13].

Example 1.5. The pair S = ({0, 1}, {0ω, 1ω}) is an ω-semigroup for the opera-
tions defined as follows:

0 · 0 = 0 0 · 1 = 0 1 · 0 = 0 1 · 1 = 1

00ω = 0ω 10ω = 0ω 01ω = 1ω 11ω = 1ω.

Example 1.6. The pair T = ({a, b, c, ca}, {aω, (ca)ω, 0}) is an ω-semigroup for
the operations defined as follows:

a2 = a ab = a ac = a ba = a

b2 = b bc = c cb = c c2 = c

bω = aω cω = 0 aaω = aω a(ca)ω = aω

baω = aω b(ca)ω = (ca)ω caω = (ca)ω c(ca)ω = (ca)ω .

Wilke was the first to give the appropriate algebraic counterpart to finite au-
tomata reading infinite words [23]. In addition, he established that the ω-languages
recognized by finite ω-semigroups are exactly the ones recognized by Büchi au-
tomata, a proof that can be found in [23] or [13].

Definition 1.7. Let S and T be two ω-semigroups. One says that a surjective
morphism of ω-semigroups ϕ : S −→ T recognizes a subset X of S if there exists a
subset Y of T such that ϕ−1(Y ) = X . By extension, one also says in this case that
the ω-semigroup T recognizes X . In addition, a congruence ∼ on S recognizes the
subset X of S if the natural morphism π : S −→ S/∼ recognizes X .
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Proposition 1.8 (Wilke). An ω-language is recognized by a finite ω-semigroup if
and only if it is ω-rational.

Example 1.9. Let A = {a, b}, let S be the ω-semigroup given in Example 1.5,
and let ϕ : A∞ −→ S be the morphism defined by ϕ(a) = 0 and ϕ(b) = 1. Then
ϕ−1(0ω) = (A∗a)ω and ϕ−1(1ω) = A∗bω.

1.4. Topology

For any set A, the set Aω can be equipped with the product topology of the
discrete topology on A. The open sets of Aω are of the form WAω, for some
W ⊆ A∗. Given a topological space E, the class of Borel subsets of E is the
smallest class containing the open sets, and closed under countable union and
complementation. Flip sets are samples of non-Borel sets: a subset F of {0, 1}ω

is a flip set [1] if changing one bit of any infinite word shifts it from F to its
complement, or vice versa; more precisely, if the following formula holds

∀ x, y ∈ {0, 1}ω (∃! k ≥ 0 (x(k) 
= y(k))) ⇒ (x ∈ F ⇔ y 
∈ F ).

No flip set is Borel, since Borel sets satisfy the Baire property, whereas flip sets
do not [1]. Finally, for any set X and any index i ∈ {0, 1}, one sets

Xc(i) =

{
X if i = 0,
Xc if i = 1.

In addition, a pointed ω-semigroup (S,X) will be called Borel if the preimage
π−1

S (X) is a Borel subset of Sω
+ (where Sω

+ is equipped with the product topology
of the discrete topology on S+). Therefore, every finite pointed ω-semigroup is
Borel, since, by Proposition 1.8, its preimage by the infinite product is ω-rational,
hence Borel.

1.5. The Wadge hierarchy

Let A and B be two alphabets, and let X ⊆ Aω and Y ⊆ Bω. The Wadge
game W ((A,X), (B, Y )) [20] is a two-player infinite game with perfect information,
where Player I is in charge of the subsetX and Player II is in charge of the subset Y .
Players I and II alternately play letters from the alphabets A and B, respectively.
Player I begins. Player II is allowed to skip her turn – formally denoted by the
symbol “−” – provided she plays infinitely many letters, whereas Player I is not
allowed to do so. After ω turns each, players I and II respectively produced two
infinite words α ∈ Aω and β ∈ Bω. Player II wins W ((A,X), (B, Y )) if and only if
(α ∈ X ⇔ β ∈ Y ). From this point onward, the Wadge game W ((A,X), (B, Y ))
will be denoted W(X,Y ) and the alphabets involved will always be clear from the
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context. A play of this game is illustrated below.

(X) I : a0 a1 · · · · · · after ω moves−→ α = a0a1a2 . . .
↘ ↗

(Y ) II : b0 · · · · · · after ω moves−→ β = b0b1b2 . . .

Along the play, the finite sequence of all previous moves of a given player is
called the current position of this player. A strategy for Player I is a mapping
from (B ∪ {−})∗ into A. A strategy for Player II is a mapping from A+ into
B ∪ {−}. A strategy is winning if the player following it must necessarily win, no
matter what his opponent plays.

The Wadge reduction is defined via the Wadge game as follows: a set X is said
to be Wadge reducible to Y , denoted by X ≤W Y , if and only if Player II has a
winning strategy in W(X,Y ). One then sets X ≡W Y if and only if both X ≤W Y
and Y ≤W X , and also X <W Y if and only if X ≤W Y and X 
≡W Y . The
relation ≤W is reflexive and transitive, and ≡W is an equivalence relation. A set
X is called self-dual if X ≡W Xc, and non-self-dual if X 
≡W Xc. One can show
[21] that the Wadge reduction coincides with the continuous reduction, that is
X ≤W Y if and only if f−1(Y ) = X , for some continuous function f : Aω −→ Bω.

The Wadge hierarchy consists of the collection of all ω-languages ordered by the
Wadge reduction, and the Borel Wadge hierarchy is the restriction of the Wadge
hierarchy to Borel ω-languages. Martin’s Borel determinacy [9] easily implies
Borel Wadge determinacy, that is, whenever X and Y are Borel sets, then one of
the two players has a winning strategy in W(X,Y ). This key property induces
strong consequences on the Borel Wadge hierarchy: the ≤W -antichains have length
at most 2; the only incomparable ω-languages are (up to Wadge equivalence) of
the form X and Xc, for X non-self-dual; furthermore, the Wadge reduction is
well-founded on Borel sets, meaning that there is no infinite strictly descending
sequence of Borel ω-languages X0 >W X1 >W X2 >W . . . These results ensure
that, up to complementation and Wadge equivalence, the Borel Wadge hierarchy
is a well ordering. Therefore, there exist a unique ordinal, called the height of
the Borel Wadge hierarchy, and a mapping dW from the Borel Wadge hierarchy
onto its height, called the Wadge degree, such that dW (X) < dW (Y ) if and only
if X <W Y , and dW (X) = dW (Y ) if and only if either X ≡W Y or X ≡W Y c, for
every Borel ω-languages X and Y . The Borel Wadge hierarchy actually consists
of an alternating succession of non-self-dual and self-dual sets with non-self-dual
pairs at each limit level (as soon as finite alphabets are considered) [6,21].

Finally, the Borel Wadge hierarchy drastically refines the Borel hierarchy, since
Borel sets of finite Borel ranks admit Wadge degrees ranging from 1 to the first
fixpoint of the exponentiation of base ω1.

1.6. The Wagner hierarchy

In 1979, Wagner described a classification of ω-rational sets in terms of au-
tomata: the Wagner hierarchy [7,13,22]. This hierarchy has a height of ωω, and
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it is decidable. The Wagner degree of an ω-rational language can indeed be com-
puted by analyzing the graph of a Muller automaton accepting this language.
Moreover, the Wagner hierarchy corresponds precisely to the restriction of the
Wadge hierarchy to ω-rational languages.

Selivanov gave a complete set theoretical description of the Wagner hierarchy
in terms of boolean expressions [18], and Carton and Perrin [3,5] and Duparc and
Riss [7] studied the algebraic properties of this hierarchy.

2. The Wagner degree as a syntactic invariant

The syntactic pointed ω-semigroup of an ω-rational language is the unique (up
to isomorphism) minimal (for the division) pointed ω-semigroup recognizing this
language. In this section, we show that the Wagner degree is a syntactic invariant :
if two ω-rational languages have the same syntactic image, then they also have the
same Wagner degree. Therefore, the Wagner degree of every ω-rational language
can be characterized by some algebraic invariants on its syntactic image. The
description of these invariants will be presented in the second paper.

We first recall the notion of syntactic ω-semigroup. Given a subset X of an ω-
semigroup S, the syntactic congruence of X , denoted by ∼X , is the upper bound
of the family of congruences recognizing X , if this upper bound still recognizes
X , and is undefined otherwise. Whenever defined, the quotient S(X) = S/∼X

is called the syntactic ω-semigroup of X , the quotient morphism μ : S −→ S(X)
is the syntactic morphism of X , the set μ(X) is the syntactic image of X , and
one has the property μ−1(μ(X)) = X . The pointed ω-semigroup (S(X), μ(X))
will be denoted by Synt(X). One can prove that the syntactic ω-semigroup of
an ω-rational language is always defined [13], and that it satisfies the following
minimality property:

Proposition 2.1 (see [13], Cor. 8.10, p. 117). Let L be an ω-rational language.
An ω-semigroup S recognizes L if and only if S(L) is a quotient of S.

Example 2.2. Let K = (A∗a)ω be an ω-language over the alphabet A = {a, b}.
The morphism ϕ : A∞ −→ S given in Example 1.9 is the syntactic morphism of
K. The ω-subset X = {0ω} of S is the syntactic image of K.

Example 2.3. Let B = {a, b, c} and let L = (a{b, c}∗ ∪ {b})ω be an ω-language
over B. The finite ω-semigroup T given in Example 1.6 is the syntactic ω-
semigroup of L. The morphism ψ from B∞ into T defined by ψ(a) = a, ψ(b) = b,
and ψ(c) = c is the syntactic morphism of L . The ω-subset Y = {aω} of T is the
syntactic image of L.

We come to the main result of this section.

Proposition 2.4. Let K and L be two ω-rational languages of Aω and Bω, re-
spectively. If Synt(K) divides Synt(L), then K ≤W L.
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Proof. Let μ and ν be the syntactic morphisms of K and L, respectively. If
Synt(K) divides Synt(L), then there exist a pointed ω-semigroup (S, P ), an injec-
tive morphism ι : (S, P ) −→ Synt(L), and a surjective morphism σ : (S, P ) −→
Synt(K), as illustrated below:

σ

(A∞,K) (B∞, L)

Synt(K) (S, P ) Synt(L)
ι

g

fμ ν

In particular, since σ and ι are morphisms of pointed ω-semigroups, the equalities
σ−1(μ(K)) = P = ι−1(ν(L)) hold. Now, since A∞ is free and σ is surjective,
Corollary 4.7 of [13], p. 96 ensures that there exists a morphism of ω-semigroups
f : A∞ → S such that σ ◦ f = μ. Moreover, since μ is the syntactic morphism of
K, one has

f−1(P ) = f−1(σ−1(μ(K))) = μ−1(μ(K)) = K.

Thus f : (A∞,K) −→ (S, P ) is a morphism of pointed ω-semigroups. By compo-
sition, the mapping ι◦ f from (A∞,K) into Synt(L) is a also morphism of pointed
ω-semigroups. Once again, since A∞ is free and ν is surjective, there exists a
morphism of free ω-semigroups g = (g+, gω) : A∞ −→ B∞ such that ν ◦ g = ι ◦ f .
Moreover, since ν is the syntactic morphism of L, then

g−1(L) = g−1(ν−1(ν(L))) = f−1(ι−1(ν(L))) = f−1(P ) = K.

Finally, it remains to prove that gω : Aω −→ Bω is continuous. Let V Bω be an
open set of Bω, with V ⊆ B∗. Since g is a morphism, then g−1

ω (V Bω) = g−1
+ (V )Aω

which is an open set of Aω . Therefore K ≤W L. �
Corollary 2.5. If two ω-rational languages have the same syntactic pointed ω-
semigroup, then they have the same Wagner degree.

Proof. An immediate consequence of Proposition 2.4. �

3. The SG-hierarchy

We define a reduction relation on pointed ω-semigroups by means of an infinite
two-player game. This reduction induces a hierarchy of Borel ω-subsets, called the
SG-hierarchy. Many results of the Wadge theory [20] also apply in this framework
and provide a detailed description of the SG-hierarchy.

Let S = (S+, Sω) and T = (T+, Tω) be two ω-semigroups, and let X ⊆ Sω and
Y ⊆ Tω be two ω-subsets. The game SG((S,X), (T, Y )) [2] is an infinite two-player
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game with perfect information, where Player I is in charge of X , Player II is in
charge of Y , and players I and II alternately play elements of S+ and T+ ∪ {−},
respectively. Player I begins. Unlike Player I, Player II is allowed to skip her
turn – denoted by the symbol “−” –, provided she plays infinitely many moves.
After ω turns each, players I and II produced respectively two infinite sequences
(s0, s1, . . .) ∈ Sω

+ and (t0, t1, . . .) ∈ Tω
+ . Player II wins SG((S,X), (T, Y )) if and

only if πS(s0, s1, . . .) ∈ X ⇔ πT (t0, t1, . . .) ∈ Y . From this point onward, the game
SG((S,X), (T, Y )) will be denoted by SG(X,Y ) and the ω-semigroups involved will
always be known from the context. A play in this game is illustrated below.

(X) I : s0 s1 · · · · · · after ω moves−→ (s0, s1, s2, . . .)
↘ ↗

(Y ) II : t0 · · · · · · after ω moves−→ (t0, t1, t2, . . .)

A player is said to be in position s if the product of his/her previous moves
(s1, . . . , sn) equals s. Strategies and winning strategies are defined as usual.

Now given two pointed ω-semigroups (S,X) and (T, Y ), we say that X is SG-
reducible to Y , denoted byX ≤SG Y , if and only if Player II has a winning strategy
in SG(X,Y ). We then naturally set X ≡SG Y if and only if both X ≤SG Y and
Y ≤SG X , and also X <SG Y if and only if X ≤SG Y and X 
≡SG Y . The
relation ≤SG is reflexive and transitive, and ≡SG is an equivalence relation. From
this point forward, we say that X and Y are equivalent if X ≡SG Y . They are
incomparable if X 
≤SG Y and Y 
≤SG X .

First of all, we mention an elementary result showing that the empty set and
the full space are incomparable and reducible to any other set. Some other basic
properties follow.

Proposition 3.1. Let S = (S+, Sω) be an ω-semigroup and let X ⊆ Sω.
(1) If X 
= Sω, then ∅ ≤SG X.
(2) If X 
= ∅, then Sω ≤SG X.
(3) ∅ and Sω are incomparable.

Proof.
(1) We describe a winning strategy for Player II in the game SG(∅, X). At the

end of the play, the infinite product of the infinite sequence played by I
cannot belong to ∅. Hence, the winning strategy for II consists in playing
an infinite sequence (s0, s1, s2, . . .) such that πS(s0, s1, s2, . . .) 
∈ X . This
is indeed possible, since X 
= Sω.

(2) Similarly, we describe a winning strategy for Player II in the game SG

(Sω, X). At the end of the play, the infinite product of the infinite sequence
played by I certainly belongs to Sω. Therefore, II wins the game by playing
an infinite sequence (s0, s1, s2, . . .) such that πS(s0, s1, s2, . . .) ∈ X . This
is possible, since X 
= ∅.

(3) We first show that Player II has no winning strategy in the game SG(∅, Sω).
At the end of the play, the infinite product of I’s infinite sequence does
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clearly not belong to ∅, whereas the infinite product of II’s infinite sequence
obviously belongs to Sω. Therefore ∅ 
≤SG Sω. The same argument shows
that Sω 
≤SG ∅. �

Proposition 3.2. Let (S,X) and (T, Y ) be two pointed ω-semigroups.
(1) X ≤SG Y if and only if Xc ≤SG Y c.
(2) X and Xc are either equivalent or incomparable.
(3) If X <SG Y , then Y 
≤SG X and Y c 
≤SG X.

Proof.
(1) By definition of the winning conditions of the SG-game, a strategy is

winning for Player II in SG(X,Y ) if and only if it is also winning for this
same player in SG(Xc, Y c).

(2) Either X ≤SG Xc, or X 
≤SG Xc. If X ≤SG Xc, then (1) shows that
Xc ≤SG X , thus X ≡SG Xc. If X 
≤SG Xc, then (1) shows that
Xc 
≤SG X , hence X and Xc are incomparable. Proposition 3.1 pro-
vides an example of two complementary incomparable sets, namely the
empty and the full sets.

(3) If X <SG Y , then Y 
≤SG X by definition. Now, assume that Y c ≤SG

X . Then the relations Y c ≤SG X and X <SG Y imply Y c <SG Y , a
contradiction with (2). �

Example 3.3. The ω-subsets X and Y respectively given in Examples 2.2 and 2.3
satisfy X ≤SG Y . Indeed, Player II has the following winning strategy in the game
SG(X,Y ). First of all, regardless of Player I’s initial move, Player II answers with
the element a. Afterwards, as long as Player I stays in position 1, Player II plays
the element c. If this situation persists until the end of the play, players I and II
respectively produce the elements 1ω 
∈ X and acω = 0 
∈ Y , and Player II wins
the game. Now, if Player I reaches position 0, then Player II stays in position
a, but answers as follows: when Player I plays 1, Player II plays c, and when
Player I plays 0, Player II plays ca. Hence, at the end of the play, two cases may
occur: either players I and II respectively produce the elements 01ω = 1ω 
∈ X and
acω = 0 
∈ Y , and therefore Player II wins the game; or players I and II respectively
produce the elements 00ω = 0ω ∈ X and a(ca)ω = aω ∈ Y , and Player II also wins
the game.

Borel Wadge determinacy implies the determinacy of SG-games for any Borel
winning ω-subsets.

Theorem 3.4 (SG-Borel Determinacy). Let (S,X) and (T, Y ) be two Borel pointed
ω-semigroups. Then the game SG(X,Y ) is determined.

Proof. By definition, since (S,X) and (T, Y ) are Borel, the sets π−1
S (X) and

π−1
T (Y ) are Borel subsets of Sω

+ and Tω
+ , respectively. In addition, a given player

has a winning strategy in the game SG(X,Y ) if and only if this same player has a
winning strategy in the game W(π−1

S (X), π−1
T (Y )). Borel determinacy for Wadge

games leads to the conclusion. �
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We now extend the properties of the Wadge reduction to the SG-reduction:
the ≤SG-antichains have length at most 2, and the ≤SG-relation is well-founded
on Borel ω-subsets. A description of the resulting hierarchy of Borel ω-subsets
follows.

Proposition 3.5. Let (S,X) and (T, Y ) be two Borel pointed ω-semigroups.
(1) (Wadge’s Lemma) Either X ≤SG Y or Y ≤SG Xc.
(2) If X and Y are incomparable, then X ≡SG Y c.
(3) The ≤SG-antichains have length at most 2.

Proof.

(1) Either X ≤SG Y or X 
≤SG Y . If X 
≤SG Y , then Player II has no winning
strategy in SG(X,Y ). Hence, by determinacy, Player I has a winning
strategy σ in this game. This induces the following winning strategy for
Player II in SG(Y,Xc): she plays σ(ε) on her first move, and then, she
answers to every current position (x0, . . . , xn) of Player I by the move
σ(x0 . . . xn−1). Thus Y ≤SG Xc.

(2) If X 
≤SG Y and Y 
≤SG X , then (1) implies both Y ≤SG Xc and X ≤SG

Y c. Therefore Y ≤SG Xc and Xc ≤SG Y , which means Xc ≡SG Y .
(3) Let X , Y , and Z be ω-subsets such that X 
≤SG Y and Y 
≤SG Z. Then

point (1) shows that Y ≤ Xc and Z ≤SG Y c. Hence Z ≤SG Y c and
Y c ≤ X , and therefore Z ≤SG X . �

Proposition 3.6 (Martin, Monk). The partial ordering ≤SG is well-founded on
Borel pointed ω-semigroups.

Proof. Towards a contradiction, assume there exists an infinite strictly descend-
ing sequence of Borel pointed ω-semigroups ((Si, Xi))i≥0, i.e. X0 >SG X1 >SG

X2 >SG . . ., where Si = (Si,+, Si,ω) andXi ⊆ Si,ω for all i ≥ 0. By Proposition 3.2
(3), the relation Xn >SG Xn+1 implies Xn 
≤SG Xn+1 and Xc

n 
≤SG Xn+1, for all
n ≥ 0. Therefore, by determinacy, Player I has the winning strategies σ0

n and σ1
n

in the respective games SG(Xn, Xn+1) and SG(Xc
n, Xn+1), for all n ≥ 0. Now,

for any α ∈ {0, 1}ω, consider the infinite sequence of strategies (σα(n)
n )n≥0, and

the infinite sequence of games (SG(Xc(α(n))
n , Xn+1))n≥0 related as follows: in the

game SG(Xc(α(k))
k , Xk+1), Player I applies his winning strategy σα(k)

k and Player
II copies Player I’s moves of the next game SG(Xc(α(k+1))

k+1 , Xk+2). Therefore, in

the first game, Player I applies his winning strategy σα(0)
0 . Since it is a strategy

for Player I, it gives the first letter a0
0 before Player II has ever played anything.

Then Player II copies Player I’s first move a1
0 of the second game, and Player I

answers with his winning strategy. And so on and so forth for every move and
every game. This infinite sequence of games is illustrated below. Big and small
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arrows respectively denote the actions of playing and copying.

I
σ

α(0)
0
� II I

σ
α(1)
1
� II I

σ
α(2)
2
� II · · ·

a0
0 a1

0 a2
0

↘ ↙ ↘ ↙ ↘
a1
0 a2

0 a3
0

↙ ↙ ↙
a0
1 a1

1 a2
1

↘ ↙ ↘ ↙

a1
1 a2

1

↙ ↙
a0
2 a1

2

↘ ↙

a1
2

↙
a0
3

Let xα = a0
0a

0
1a

0
2 . . . be the infinite word played by Player I in the first game, let

ϕ : {0, 1}ω −→ Sω
0,+

be defined by ϕ(α) = xα, and let

ψ = πS0 ◦ ϕ : {0, 1}ω −→ S0,ω

be defined by ψ(α) = πS0(xα) = πS0(a0
0, a

0
1, a

0
2, . . .). We show that ϕ is continuous.

By definition of these chained games, the k first letters of xα only depend on the k
first letters of α, since we completely do not need the games number k+1, k+2, . . .
to determine xα[0, k]. Thus, for any U ⊆ S∗

0,+, one has ϕ−1(USω
0,+) = V {0, 1}ω,

with V ⊆ {0, 1}∗, hence the preimage by ϕ of an open set is an open set, which
proves that ϕ is continuous. Now consider F = ψ−1(X0) = ϕ−1(π−1

S0
(X0)). By

construction of these chained games, F is a flip set, because if α and α′ only differ
by one position (meaning if there exists a unique i such that α(i) 
= α′(i)), then
α ∈ F if and only if α′ 
∈ F . On the other hand, the set F is also Borel, since
π−1

S0
(X0) is by definition Borel and ϕ is continuous. �

The collection of Borel ω-subsets ordered by the ≤SG-relation is called the
SG-hierarchy, in order to underline the semigroup approach. Notice that the
restriction of the SG-hierarchy to Borel ω-subsets of free ω-semigroups is exactly
the Borel Wadge hierarchy. When restricted to the Borel ω-subsets of finite ω-
semigroups, this hierarchy will be called the FSG-hierarchy, in order to underline
the finiteness of the ω-semigroups involved. Propositions 3.5 and 3.6 show that,
up to complementation and ≤SG-equivalence, the SG-hierarchy is a well ordering.
Therefore, there exist a unique ordinal, called the height of the SG-hierarchy,
and a mapping dSG from the SG-hierarchy onto its height, called the SG-degree,



456 J. CABESSA AND J. DUPARC

Figure 1. The shape of the SG-hierarchy.

such that dSG(X) < dSG(Y ) if and only if X <SG Y , and dSG(X) = dSG(Y ) if
and only if either X ≡SG Y or X ≡SG Y c, for every Borel ω-subsets X and Y .
It directly follows from the Wadge analysis that the SG-hierarchy has the same
familiar “scaling shape” as the Borel or Wadge hierarchies: an increasing sequence
of non-self-dual sets with self-dual sets in between, and with non-self-dual pairs
at each limit level (as soon as finite alphabets are considered), as illustrated in
Figure 1, where circles represent the ≡SG-equivalence classes of Borel ω-subsets,
and arrows stand for the <SG-relation.

4. The FSG and the Wagner hierarchies

This section shows that the FSG-hierarchy is precisely the algebraic counterpart
of the Wagner hierarchy. Consequently, the FSG-hierarchy has a height of ωω, and
it is decidable.

Let S = (S+, Sω) be a finite ω-semigroup, and let ϕ : A∞ −→ S be a surjective
morphism of ω-semigroups, for some finite alphabet A. Then every ω-subset X of
Sω can be lifted on an ω-rational language ϕ−1(X) of Aω . The next proposition
proves that this lifting induces an embedding from the FSG-hierarchy into the
Wagner hierarchy.

Proposition 4.1. Let (S,X) and (T, Y ) be two finite pointed ω-semigroups., and
let ϕ : A∞ −→ S and ψ : B∞ −→ T be two surjective morphisms of ω-semigroups,
where A and B are finite alphabets. Then

X ≤SG Y if and only if ϕ−1(X) ≤W ψ−1(Y ).

Proof.
(⇒) Given a winning strategy σ for Player II in SG(X,Y ), we describe a winning
strategy τ for this same player in the game W

(
ϕ−1(X), ψ−1(Y )

)
. Assume Player

I is in position (a0, . . . , an). Then II computes the move σ(ϕ(a0), . . . , ϕ(an)).
If it is not a skipping move, she chooses a finite word vn such that ψ(vn) =
σ(ϕ(a0), . . . , ϕ(an)), keeps it in mind while she finishes to play letter by letter the
finite words she had previously chosen, and then plays vn letter by letter. If it is
a skipping move, then either she finishes to play letter by letter the finite words she



THE ALGEBRAIC COUNTERPART OF THE WAGNER HIERARCHY: PART I 457

had previously chosen, or she skips her turn if it is already done. This strategy is
illustrated below:

SG-game Wadge game

I (X)
σ
� II (Y )

ϕ(a0) σ(ϕ(a0))
ϕ(a1) σ(ϕ(a0), ϕ(a1))

...
...

...
...

...
...

ϕ,ψ←−−−−

I (ϕ−1(X))
τ
� II (ψ−1(Y ))

a0 ...
...

⎫⎪⎬
⎪⎭ v0a1

...

...

...

...

⎫⎪⎬
⎪⎭ v1

...
...

It remains to prove that this strategy is winning for Player II. Since ϕ and ψ are
surjective morphisms of ω-semigroups, one obtains

a0a1a2 · · · ∈ ϕ−1(X) ⇔ ϕ(a0a1a2 · · · ) ∈ X

⇔ ϕ(a0)ϕ(a1)ϕ(a2) · · · ∈ X

⇔ σ(ϕ(a0))σ(ϕ(a0), ϕ(a1)) · · · ∈ Y

⇔ ψ(v0)ψ(v1)ψ(v2) · · · ∈ Y

⇔ v0v1v2 · · · ∈ ψ−1(Y ).

Consequently, ϕ−1(X) ≤W ψ−1(Y ).

(⇐) Given a winning strategy σ for Player II in W
(
ϕ−1(X), ψ−1(Y )

)
, we describe

a winning strategy τ for this same player in SG(X,Y ). Assume Player I is in
position (s0, . . . , sn). Then Player II chooses a finite word un = un,0 . . . un,kn

of ϕ−1(sn), and computes the successive elements of Bω σ(u0, . . . , un−1, un,0),
σ(u0, . . . , un−1, un,0, un,1), and so on and so forth. After that, she successively
plays the images by ψ of these moves when they are non-skipping, and she skips
her turn otherwise. This strategy is illustrated as follows:

Wadge game SG-game

I (ϕ−1(X))
σ
� II (ψ−1(Y ))

u0

⎧⎪⎨
⎪⎩

...

...

σ(u0,0)
σ(u0,0, u0,1)

...

u1

⎧⎪⎨
⎪⎩

...

...

...

...
...

ϕ,ψ−−−−→

I (X)
τ
� II (Y )

s0 ψ ◦ σ(u0,0)
s1 ψ ◦ σ(u0,0, u0,1)
...

...

...
...

...
...
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It remains to prove that the strategy τ is winning for Player II. Since ϕ and ψ are
surjective morphisms of ω-semigroups, one has

s0s1s2 · · · ∈ X ⇔ ϕ(u0)ϕ(u1)ϕ(u2) . . . ∈ X

⇔ u0u1u2 . . . ∈ ϕ−1(X)
⇔ u0,0 · · ·u0,k0u1,0 . . . u1,k1 . . . ∈ ϕ−1(X)

⇔ σ(u0,0)σ(u0,0, u0,1) . . . ∈ ψ−1(Y )
⇔ ψ (σ(u0,0)σ(u0,0, u0,1) . . .) ∈ Y

⇔ ψ(σ(u0,0))ψ(σ(u0,0, u0,1)) . . . ∈ Y.

Therefore, X ≤SG Y . �

The previous proposition shows that the Wadge reduction on ω-rational lan-
guages and the SG-reduction on ω-subsets recognizing these languages coincide.
This property holds in particular for ω-rational languages and their syntactic im-
ages, as mentioned in Corollary 4.2 below. In addition, Corollary 4.2 and Propo-
sition 2.4 prove that the SG-relation on subsets of ω-semigroups is weaker than
the division relation, and is the appropriate algebraic counterpart of the Wadge
reduction on ω-rational languages.

Corollary 4.2. Let K and L be two ω-rational languages and let μ(K) and ν(L)
be their syntactic images. Then K ≤W L if and only if μ(K) ≤SG ν(L).

Proof. Since μ and ν are syntactic morphisms, one has μ−1(μ(K)) = K and
ν−1(ν(L)) = L. Proposition 4.1 leads to the conclusion. �

Example 4.3. Consider the ω-subsets X and Y , and the ω-rational languages
K and L respectively given in Examples 2.2 and 2.3. Example 3.3 shows that
X ≤SG Y , and hence K ≤W L.

As another consequence, the SG-degree of an ω-subset is invariant under surjec-
tive morphism, and in particular under syntactic morphism. Therefore, syntactic
finite pointed ω-semigroups are minimal representatives of their ≤SG-equivalence
class.

Corollary 4.4. Let μ : S −→ T be a surjective morphism of finite ω-semigroups,
let Y ⊆ Tω, and let X = μ−1(Y ). Then X ≡SG Y .

Proof. Let ϕ : S∞
+ −→ S be the canonical morphism of ω-semigroups associated

with S, and let ψ = μ◦ϕ : S∞
+ −→ T . The mapping ψ is a surjective morphism of

ω-semigroups. It satisfies ψ−1(Y ) = ϕ−1 ◦ μ−1(Y ) = ϕ−1(X), thus in particular,
ϕ−1(X) ≡W ψ−1(Y ). Proposition 4.1 then shows that X ≡SG Y . �

Finally, the following theorem proves that the Wagner and the FSG-hierarchies
are isomorphic. The required isomorphism is the mapping which associates every
ω-rational language with its syntactic image. Therefore, the Wagner degree of an
ω-rational language and the SG-degree of its syntactic image are the same.
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Theorem 4.5. The Wagner hierarchy and the FSG-hierarchy are isomorphic.

Proof. Consider the mapping from the Wagner hierarchy into the SG-hierarchy
which associates every ω-rational language with its syntactic image. We prove
that this mapping is an embedding. Let K and L be two ω-rational languages,
and let X = μ(K) and Y = ν(L) be their syntactic images. Corollary 4.2 ensures
that K ≤W L if and only if X ≤SG Y . We now show that, up to ≡SG-equivalence,
this mapping is onto. Let X be an ω-subset of a finite ω-semigroup S = (S+, Sω),
let μ : S −→ S(X) be the syntactic morphism of X , and let Y = μ(X) be its
syntactic image. Corollary 4.4 ensures that X ≡SG Y . Now, let also ϕ : S∞

+ −→ S
be the canonical morphism associated with S+, and let L = ϕ−1(X). Then the
morphism of ω-semigroups ψ = μ ◦ϕ : S∞

+ −→ S(X) is the syntactic morphism of
L [13], and one has ψ(L) = Y ≡SG X . �

As a corollary, we show that the FSG-hierarchy is decidable: for every ω-subset
X of the hierarchy, one can effectively compute the Cantor normal form of base ω
of the ordinal dSG(X).

Corollary 4.6. The FSG-hierarchy has height ωω, and it is decidable.

Proof. By the previous theorem, the FSG-hierarchy and the Wagner hierarchy
have the same height, namely ωω. In addition, given an ω-subset X of a finite
ω-semigroup S = (S+, Sω), one can effectively compute the SG-degree of X as
follows. Let ϕ : S∞

+ −→ S be the canonical morphism associated with S+, and let
L = ϕ−1(X). Theorem 4.5 shows that the SG-degree of X is equal to the Wagner
degree of L. Furthermore, the Wagner degree of L can be effectively computed as
follows. First, one can effectively compute an ω-rational expression describing L =
ϕ−1(X) ([13], Cor. 7.4, p. 110). Next, one can shift from this rational expression
to some finite Muller automaton recognizing L (see [13], Chap. I, Sects. 10.1, 10.3,
and 10.4). Finally, the Wagner degree of the ω-language recognized by a finite
Muller automaton is effectively computable [22]. �

Example 4.7. Consider the ω-subsetsX and Y respectively given in Examples 2.2
and 2.3. The algorithm given in the second paper will show that dSG(X) = ω and
dSG(Y ) = ω2. In addition, since these sets are the syntactic images of the ω-
languages K = (A∗a)ω and L = (a{b, c}∗ ∪ {b})ω, Theorem 4.5 shows that this
result can also be obtained by computing the Wagner degrees of the ω-languages
K and L [7,13,22].

Conclusion

This work is a first step towards the description of the algebraic counterpart
of the Wagner hierarchy. First, we proved that the Wagner degree of ω-rational
languages is a syntactic invariant. Afterwards, we defined a reduction relation
on finite pointed ω-semigroups, and showed that the resulting algebraic hierarchy
is indeed isomorphic to the Wagner hierarchy. Consequently, this hierarchy has
a height of ωω, and it is decidable. But the decidability procedure presented in
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Corollary 4.6 relies on Wagner’s naming procedure, and in this sense withdraws
from the purely algebraic context.

The second paper fills this gap by describing the algebraic invariants which
characterize the Wagner degree of ω-rational languages. More precisely, we intro-
duce a graph representation of finite pointed ω-semigroups, as well as a graphical
decidability procedure computing the SG-degree of every such algebraic structure.
Therefore, the Wagner degree of every ω-rational language can be computed di-
rectly on its syntactic image.

Acknowledgements. The authors wish to express their deep gratitude to Jean-Eric Pin
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the first author.
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