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Abstract. We define H- and EH-expressions as extensions of reg-
ular expressions by adding homomorphic and iterated homomorphic
replacement as new operations, resp. The definition is analogous to
the extension given by Gruska in order to characterize context-free
languages. We compare the families of languages obtained by these ex-
tensions with the families of regular, linear context-free, context-free,
and EDT0L languages. Moreover, relations to language families based
on patterns, multi-patterns, pattern expressions, H-systems and uni-
form substitutions are also investigated. Furthermore, we present their
closure properties with respect to TRIO operations and discuss the
decidability status and complexity of fixed and general membership,
emptiness, and the equivalence problem.
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1. Introduction

The family REG of regular languages, defined as the family of languages ac-
cepted by (deterministic or nondeterministic) finite automata or, equivalently, gen-
erated by right-linear grammars, is one of the most important and well investigated
classes of formal languages. Regular expressions, which were originally introduced
by Kleene [21] and are a lovely set-theoretic characterization of regular languages,
are better suited for human users and therefore are often used as interfaces to
specify certain pattern or languages. E.g., in the widely available programming
environment Unix, regular (like) expressions can be found in legion of software
tools like, e.g., awk, ed, emacs, egrep, lex, sed, vi, etc., to mention a few of them.
The syntax used to represent them may vary, but the concepts are very much the
same everywhere.

Most of the above mentioned text-editing and searching programs add abbrevi-
ations and new operations to the basic regular expression notation from theoretical
computer science, in order to make it easier to specify patterns or languages. This
offers considerable convenience in both theory and practice. What concerns com-
mon abbreviations, as for instance, intersection and complement, they do not add
more descriptive power to regular expressions, but give more concise descriptions.
Besides the usage of meta-characters in Unix like expressions, the most signif-
icant difference to ordinary regular expressions is some sort of pattern repeating
operation – see [10] for further details. More precisely, it is possible to specify
patterns that are saved in a special holding space, used for further processing, on
the underlying word. For instance, the Unix regular expression \([ab]^*\)\1
describes the non-context-free language {ww | w ∈ {a, b}∗ }. Here \1 serves as a
holding space for the word that is matched by the regular expression enclosed in
brackets \( and \). This form of backreferencing was first introduced by [1]. A
more formal treatment of regular expressions with backreferencing can be found
in [24].

There have been some attempts to generalize Kleene’s well-known theorem,
which states that a language L is regular if and only if there is a regular expression r
with L = L(r), in one of the following directions: define an extension of regular
expressions and determine the associated family of languages (see, e.g., [15]) or
find the class of expressions for a given extension of the family of regular languages
(see, e.g., [12,23,29]) characterizing two-dimensional regular languages, recogniz-
able trace languages, and context-free (string) languages, respectively. On the
other hand, to our knowledge nothing comes close to the repeating or copy opera-
tion mentioned above. This brings us to the aim of this paper. Inspired by Gruska’s
substitution expressions [13], which were used to characterize the context-free lan-
guages, we introduce regular expressions enriched by some sort of copy operation,
which is close to the repeating feature of Unix regular like expressions.

A good formal language theoretic approach to those pattern repetition oper-
ations is given by the operation of homomorphic replacement. Homomorphic re-
placement is a concept well-known in computer science. We mention some areas
where it appeared in literature under various names within different contexts:
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for example, in van Wijngaarden grammars (W-grammars) homomorphic replace-
ment is called “consistent substitution” or “consistent replacement” [9]. In con-
nection with macro grammars [11] it is called “inside-out (IO) substitution”, in
Indian parallel grammars [27] the one-step derivation relation is nothing other then
a homomorphic replacement with a finite set, and in some algebraical approach
in formal language theory it appears as “call by value substitution”. Another as-
pect of homomorphic replacement was investigated by Albert and Wegner [2], who
considered H-systems.

In this paper, we study the usual language theoretic properties of regular ex-
pressions extended by homomorphic replacement, such as the descriptional power
in comparison with the well-known classes in the Chomsky hierarchy as well as
families of languages determined by mechanisms which are related to expressions
with homomorphic replacement, closure properties and the complexity status of
some decision problems for expressions with homomorphic replacement. In the
next section we introduce the necessary definitions. Then in Section 3 we compare
the power of substitution versus homomorphic replacement and in Section 4 we
relate the latter to some other concepts in the literature. Sections 5 and 6 are
devoted to the study of closure and decision problems as mentioned above. Fi-
nally in the penultimate section we summarize our results and state some open
problems.

2. Definitions

We assume the reader to be familiar with some basic notions of formal language
theory, as contained in [8]. Concerning our notations, for any set Σ, let Σ+ be the
free semigroup and Σ∗ the free monoid with identity λ generated by Σ. For a word
w ∈ Σ∗ let |w| denote the length of the word; in particular, |λ| = 0. Moreover,
for w ∈ Σ∗ and a ∈ Σ let |w|a denote the number of occurrences of a in w. Set
inclusion and strict set inclusion are denoted by ⊆ and ⊂, respectively. In partic-
ular we consider the following well-known formal language families generated by
regular (i.e., right-linear), linear context-free, context-free, and context-sensitive
Chomsky grammars which are denoted by REG, LIN, CFL, and CSL, respec-
tively. Moreover, the family of extended (extended deterministic, respectively)
tabled context-free Lindenmayer languages is denoted by ET0L (EDT0L, respec-
tively). The family of finite languages is denoted by FIN.

In this paper we are dealing with regular like expressions. Ordinary regular
expression are defined as follows:

Definition 2.1 (R-expressions). Let Σ be an alphabet. The regular expressions
(R-expressions) over Σ and the sets that they denote are defined recursively as
follows:

(1) ∅ is a regular expression and denotes the set L(∅) = ∅.
(2) λ is a regular expression and denotes the set L(λ) = {λ}.
(3) For each a ∈ Σ, a is a regular expression and denotes the set L(a) = {a}.
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(4) If r and s are regular expressions, then (r + s), (rs), and (r∗) are regular
expressions that denote the sets L(r+s) = L(r)∪L(s), L(rs) = L(r)·L(s),
and L(r∗) = L(r)∗, respectively.

(5) Nothing else is a regular expression.

It is well known that regular expressions exactly characterize the family of regular
languages REG. We call a language regular like expression language, if it can be
described by a regular like expression, i.e., a regular expression with an enhanced
set of operations as, e.g., union, concatenation, Kleene star, and iterated substitu-
tion or iterated homomorphic replacement. Both operations are defined formally
in the next section.

Besides the expressive power of regular like expressions, we also investigate some
complexity theoretical issues on these language families. We assume the reader
to be familiar with some basic notions of complexity theory, as contained in [3].
In particular we consider the following well-known chain of inclusions: NL ⊆ P ⊆
NP ⊆ PSPACE. Here NL is the set of problems accepted by nondeterministic
logarithmic space bounded Turing machines, and P (NP, respectively) is the set of
problems accepted by deterministic (nondeterministic, respectively) polynomially
time bounded Turing machines. Moreover, PSPACE is

⋃
k DSpace(nk).

Completeness and hardness are always meant with respect to deterministic log-
space many-one reducibilities. A problem A is said to be log-space many-one
equivalent or as hard as B, if and only if A reduces to B and B reduces to A.

We investigate the fixed membership, the general membership, the equivalence,
and the emptiness problem for regular like expression languages. The fixed mem-
bership problem for regular like expression languages is defined as follows:

• Fix a regular like expression r. For a given word w, is w ∈ L(r)?

A natural generalization is the general membership problem which is defined as
follows:

• Given a regular like expression r and a word w, i.e., an encoding 〈r, w〉, is
w ∈ L(r)?

The equivalence problem is the following one:

• Given two regular like expressions r and s, does L(r) = L(s) hold?

Finally, the emptiness problem is defined as:

• Given a regular like expression r, is L(r) = ∅?
The general membership, the equivalence, and emptiness problem have regular
like expressions as inputs. Therefore we need an appropriate coding function 〈·〉
which maps, e.g., a regular like expression r and a string w into a word 〈r, w〉 over
a fixed alphabet Σ. We do not go into the details of 〈·〉, but assume that it fulfills
certain standard properties; for instance, that the coding of the alphabet symbols
is of logarithmic length.
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3. Substitution versus homomorphic replacement

In this section we introduce the homomorphic replacement operation and study
the expressive power of regular like expressions involving this new operation. We
compare the induced language family to the lower classes of the Chomsky hierarchy
and to the family EDT0L of languages generated by extended deterministic tabled
0L systems. Next we recall Gruska’s [13] approach to characterize the context-free
languages and then we define homomorphic replacement.

3.1. Substitution and iterated substitution

Recall the approach given by Gruska [13] in his seminal paper, where a-substitu-
tions and their iteration are the additional operations to regular expressions.

Let a be a letter and L1, L2 be languages. The a-substitution of L2 in L1,
denoted by L1 ←a L2, is defined by

L1 ←a L2 = { u1v1u2 . . . ukvkuk+1 | u1au2a . . . auk+1 ∈ L1,

a does not occur in u1u2 . . . uk+1, and v1, v2 . . . , vk ∈ L2 },

and the iterated a-substitution of language L, denoted by L←a , is defined by

L←a = {w ∈ L ∪ (L←a L) ∪ (L←a L←a L) ∪ · · · | word w

has no occurrence of letter a }

where any further bracketing is omitted since a-substitution is obviously associa-
tive.

Based on these operations an extension of regular expressions is defined.

Definition 3.1 (S- and ES-expressions). Let Σ be an alphabet. The regular ex-
pressions with substitution (S-expressions) and regular expressions with extended
substitution (ES-expressions) over Σ and the sets they denote are defined recur-
sively as follows:

(1) Every regular expression over Σ is an S- and ES-expression.
(2) If r and s are S- and ES-expressions, respectively, denoting the languages

L(r) and L(s), respectively, then (r + s), (rs), (r∗), and (r ←a s), for
some a ∈ Σ, are S- and ES-expressions, respectively, that denote the sets
L(r) ∪ L(s), L(r) · L(s), L(r)∗, and L(r)←a L(s), respectively.

(3) Let a ∈ Σ. If r is an ES-expression denoting the language L(r), then (r←a )
is an ES-expression that denotes the set L(r)←a .

(4) Nothing else is an S- or ES-expressions, respectively.
The set of languages described by S- and ES-expressions is denoted by SREG and
ESREG, respectively.

While SREG equals REG, which is easily seen, in [13], Gruska has shown that
ESREG coincides with the family CFL of context-free languages.
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3.2. Homomorphic and iterated homomorphic replacement

Homomorphic replacement was investigated by Albert and Wegner [2] and ap-
peared in the literature under various names within different contexts. For in-
stance, in van Wijngaarden grammars (W-grammars) homomorphic replacement
is called “consistent substitution” or “consistent replacement” [9]. In connection
with macro grammars [11] it is called “inside-out (IO) substitution”, in Indian
parallel grammars [27] the one-step derivation relation is nothing other then a
homomorphic replacement with a finite set, and in some algebraical approach in
formal language theory it appears as “call by value substitution”. The essential
feature of homomorphic replacement is copying. Thus, we introduce an operation
on languages which models this feature. Our definition was inspired by Gruska’s a-
substitution [13]. According to the definition of a-substitution, we have to replace
any occurrence of a by a word of L2, and it is allowed that different occurrences are
replaced by different words. We now modify this mechanism by the requirement
that any occurrence of a has to be replaced by the same word of L2.

Definition 3.2. Let a be a letter and L1, L2 be languages. The a-homomorphic
replacement of L2 in L1, denoted by L1 ⇐a L2, is defined by

L1 ⇐a L2 = { u1vu2 . . . ukvuk+1 | u1au2a . . . auk+1 ∈ L1,

a does not occur in u1u2 . . . uk+1, and v ∈ L2 }.

The reader may easily verify that the following lemma is valid.

Lemma 3.3. For each letter a, the operation ⇐a is associative, i.e.,
(
(L1 ⇐a L2)⇐a L3

)
=
(
L1 ⇐a (L2 ⇐a L3)

)
.

Observe, that the previous lemma is not true if we use different letters for the
replacement operation because

(
({b} ⇐a {a})⇐b {a}

)
= {a} �= {b} =

(
{b} ⇐a ({a} ⇐b {a})

)
.

We also consider the iterated version of homomorphic replacement.

Definition 3.4. Let a be a letter and L a language. The iterated a-homomorphic
replacement of L, denoted by L⇐a , is defined by

L⇐a = {w ∈ L ∪ (L⇐a L) ∪ (L⇐a L⇐a L) ∪ · · · | word w

has no occurrence of letter a }.

Due to Lemma 3.3 we do not have to specify the bracketing of the a-homomorphic
replacement operations in the previous definition. Note, if a is not in Σ, then for
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language L ⊆ Σ∗ we have L∗ = (La ∪ {λ})⇐a and L+ = (La ∪ L)⇐a . Here λ
denotes the empty word.

Homomorphic replacement is very powerful, because one can describe the non-
context-free language {ww | w ∈ {a, b}∗ } by {cc} ⇐c {a, b}∗. In fact, this shows
that the low levels of the Chomsky hierarchy are not closed under a-homomorphic
and iterated a-homomorphic replacement.

Theorem 3.5.
(1) The family of finite languages is closed under a-homomorphic replacement.

Neither the family of regular, linear context-free nor the family of context-
free languages is closed under a-homomorphic replacement.

(2) Neither the family of finite languages, regular, linear context-free nor the
family of context-free languages is closed under iterated a-homomorphic
replacement. �

Obviously, the family of recursively enumerable languages is closed under a-homo-
morphic replacement, but for the family of context-sensitive languages we have to
be careful whether the replacement is λ-free or not. In the λ-free case CSL is closed
under this type of operation what can readily be shown by a LBA construction. In
general this family is not closed under a-homomorphic replacement, because it is
possible to simulate arbitrary homomorphisms and the well-known fact that every
recursively enumerable language is a homomorphic image of a context-sensitive
language. We briefly summarize our results:

Theorem 3.6. The family of context sensitive languages is not closed under ar-
bitrary (iterated) a-homomorphic replacement, but is closed under λ-free one. Fi-
nally, the family of recursively enumerable languages is closed under a-homomorphic
and iterated a-homomorphic replacement.

Now we are ready to define the central notion of this paper, which is that of
regular expressions with (iterated) homomorphic replacement.

Definition 3.7 (H- and EH-expressions). Let Σ be an alphabet. The regular ex-
pressions with homomorphic replacement (H-expressions) and extended homomor-
phic replacement (EH-expressions), respectively, over Σ and the sets they denote
are recursively defined as follows:

(1) Every regular expression over Σ is also an H- and EH-expression, respec-
tively.

(2) If r and s are H- and EH-expressions, respectively, denoting the lan-
guages L(r) and L(s), respectively, then (r + s), (rs), (r∗), and (r ⇐a s),
for some a ∈ Σ, are H- and EH-expressions, respectively, that denote the
sets L(r) ∪ L(s), L(r) · L(s), L(r)∗, and L(r)⇐a L(s), respectively.

(3) Let a ∈ Σ. If r is an EH-expression denoting the language L(r), then
(r⇐a ) is an EH-expression that denotes the set L(r)⇐a .

(4) Nothing else are H- and EH-expressions, respectively.
The set of languages described by H- and EH-expressions is denoted by HREG
and EHREG, respectively.
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If there is no danger of confusion, we omit out-most brackets. Let us give some
examples:

Example 3.8.

(1) cc ⇐c (a + b)∗ denotes the language {ww | w ∈ {a, b}∗ }, which is non-
context-free.

(2) (ab + aAb)⇐A describes the non-regular language { anbn | n ≥ 1 }.
(3) (a + AA)⇐A denotes the non-context-free language { a2n | n ≥ 0 }.

Next, consider the following chain of inclusions:

Theorem 3.9. REG ⊂ HREG ⊂ EHREG.

Proof. The inclusions are obvious; the strictness of the first one is seen from Exam-
ple 3.8, item (1) and the strictness of the second inclusion follows by Example 3.8,
item (3) together with the fact that every language in HREG is semi-linear. This is
because ordinary regular operations and, by easy calculations, also a-homomorphic
replacement preserves semi-linearity. �

In the following theorem we relate EHREG with the linear context-free lan-
guages and the family EDT0L. For further details on EDT0L languages we refer
to [25].

Theorem 3.10. LIN ⊂ EHREG ⊆ EDT0L.

Proof. Let G = (N, T, P, S) be a linear context-free grammar with the set of
nonterminals N = {A1, A2, . . . , An} and let S = A1. Then for 1 ≤ i ≤ n, we set

Gi =

⎛
⎝N \ {A1, A2, . . . , Ai−1}, T ∪ {A1, A2, . . . , Ai−1},

n⋃
j=i

Pj , Ai

⎞
⎠ ,

where Pi = {Ai → w | Ai → w ∈ P }. Moreover, for 1 ≤ i ≤ n, let si be the
EH-expressions with L(si) = {w | Ai → w ∈ P }. Then inductively define

rn = (sn)⇐An

and

ri =

((
. . .
((

s
⇐Ai

i ⇐An rn

)⇐An−1 rn−1

)
. . .

)
⇐Ai+1 ri+1

)⇐Ai

,

for 1 ≤ i ≤ n− 1. Then one can readily verify that L(Gi) = L(ri) for 1 ≤ i ≤ n,
which immediately implies L(G) = L(r1), because G1 equals G. This proves the
first inclusion which has to be strict by Example 3.8, item (3).

The second inclusion follows by the closure of EDT0L under the operations in
consideration, which can be shown by standard constructions. �
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In order to relate the families HREG and EHREG to the families of linear
context-free, context-free, and EDT0L languages, the following to lemmata are
needed.

Definition 3.11. We define the depth of an R- or H-expression over alphabet Σ
inductively by

(1) d(∅) = d(λ) = d(a) = 0 for any a ∈ Σ.
(2) If r and s are R- or H-expressions of depth d(r) and d(s), respectively,

then d(r + s) = d(r · s) = d(r ⇐a s) = d(r) + d(s) + 1 for a ∈ Σ.
(3) If r is an R- or H-expression of depth d(r), then d(r∗) = d(r) + 1.

For a language L ∈ HREG, we set

d(L) = min{ d(r) | L(r) = L }.

We say that an H-expression r is λ-free if it does not contain a subexpression
s⇐a u with L(u) = {λ}.

Lemma 3.12. For any H-expression r = (s ⇐a u) with L(u) = {λ} there is a
λ-free H-expression t such that L(t) = L(r) and d(t) ≤ d(s).

Proof. Let us assume that the lemma does not hold. Let K be the set of all H-
expressions r such that r is of the form r = (s⇐a u) with L(u) = {λ} and there is
no t for r satisfying the conditions of the lemma. By assumption, K is not empty.
Let k = min{ d(r) | r ∈ K }. We consider an H-expression r = (s ⇐a u) ∈ K
such that d(r) = k. Obviously, if s⇐a u in K, then s ⇐a λ is in K, too. By the
minimality of r with respect to the depth, we can assume without loss of generality
that r = (u⇐a λ).

Obviously, k ≥ 1. In case k = 1, then one of the following cases holds:

(1) If s = ∅, then L(s⇐a λ) = L(∅) and d(∅) = d(s).
(2) If s = λ, then L(s⇐a λ) = L(λ) and d(λ) = d(s).
(3) If s = a, then L(s⇐a λ) = L(λ) and d(λ) = d(s).
(4) If s = b for b ∈ Σ \ {a}, then L(s⇐a λ) = L(b) and d(b) = d(s).

Thus, let k > 1 and we distinguish the following four cases:

(1) Let s = s1 + s2 for some H-expressions s1 and s2 with d(s1) ≤ k − 2 and
d(s2) ≤ k − 2. Then we define the H-expressions t1 = (s1 ⇐a λ) and
t2 = (s2 ⇐a λ). Obviously, d(t1) ≤ k − 1 and d(t2) ≤ k − 1. By the
minimality of k, there exist λ-free H-expressions t′1 and t′2 with L(t′1) =
L(s1 ⇐a λ) and L(t′2) = L(s2 ⇐a λ), respectively, satisfying d(t′1) ≤ d(s1)
and d(t′2) ≤ d(s2). Thus, t′1 + t′2 fulfills

d(t′1 + t′2) = d(t′1) + d(t′2) + 1 ≤ d(s1) + d(s2) + 1 = d(s)



238 H. BORDIHN, J. DASSOW AND M. HOLZER

and

L(t′1 + t′2) = L(t′1) ∪ L(t′2)

= L(s1 ⇐a λ) ∪ L(s2 ⇐a λ) = L((s1 ⇐a λ) + (s2 ⇐a λ))

= L((s1 + s2)⇐a λ) = L(s⇐a λ) = L(r).

Moreover, because t′1 and t′2 are λ-free, expression t′1 + t′2 is λ-free, too.
Hence, t′1 + t′2 fulfills all conditions of the lemma in contrast to r ∈ K.

(2) Let s = s1s2 for some H-expressions s1 and s2 with d(s1) ≤ k − 2 and
d(s2) ≤ k − 2. In analogy to the first case above, we can show a contra-
diction which is left to the reader.

(3) Let s = s∗1 for some H-expressions s1 with d(s1) ≤ k − 2. Again, we can
show a contradiction analogously to the first case above.

(4) Let s = (s1 ⇐b s2) for some H-expressions s1 and s2 with d(s1) ≤ k − 2
and d(s2) ≤ k − 2. We consider the λ-free H-expressions t′1 and t′2 as in
the first case above. Therefore

L(t′1) = L(s1 ⇐a λ),
L(t′2) = L(s2 ⇐a λ) with d(t′1) ≤ d(s1) and d(t′2) ≤ d(s2). (1)

Moreover, if a �= b, then

L(t′1 ⇐b t′2) = L((s1 ⇐a λ)⇐b (s2 ⇐a λ))

= L((s1 ⇐b s2)⇐a λ) = L(s⇐a λ) = L(r). (2)

If a = b, for 1 ≤ i ≤ 2, we modify si to s′i by a renaming of a by a′

where a′ is a new letter and get the relations of Equations (1) and (2) for
the corresponding λ-free expressions t′1 and t′2.

Let L(t′1) �= {λ}. Then, in analogy to the above consideration, a con-
tradiction to the choice of r is obtained. Finally let L(t′2) = {λ}. Then

d(t′1 ⇐b t′2) ≤ d(s1) + d(s2) + 1 = d(s) < d(r). (3)

By the minimality of k, there is a λ-free H-expression t such that L(t) =
L(t′1 ⇐b t′2) and d(t) ≤ d(t′1). By Equations (1)–(3), we obtain L(t) = L(r)
and d(t) ≤ d(s1) ≤ d(s) ≤ d(r). Therefore t satisfies all conditions of the
lemma in contrast to the choice of r ∈ K. �

For an alphabet Σ, a partition C = (Σ1, Σ \ Σ1) and two letters a and b not in Σ
we define the morphism τC by

τC(x) =

{
a if x ∈ Σ1

b if x ∈ Σ \ Σ1.
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Let L be a language over Σ and a and b two letters not in Σ. Then L is called
an (a, b)-language iff there exist a partition C = (Σ1, Σ \ Σ1) of Σ such that the
following conditions hold:

Condition A1: τC(L) ⊆ a∗b∗.
Condition A2: τC(L) is infinite.
Condition A3: For any natural number n, D(a, n, L) = {m | anbm ∈ τC(L) }

is a finite set.
Condition A4: For any natural number n, D(b, n, L) = {m | ambn ∈ τC(L) }

is a finite set.

We note that if there exists a constant k ≥ 0 such that such that anbm ∈ τc(L)
implies |n−m| ≤ k, then conditions A3 and A4 are satisfied. The converse is not
true as one can see from the language { anbm | n ≤ m ≤ 2n }.

Before showing that any (a, b)-language is not an HREG language we need the
following statements on the behaviour of (a, b)-languages under the operation used
in the construction of HREG languages.

Lemma 3.13.

(1) If L1 ∪ L2 is an (a, b)-language, then L1 or L2 are (a, b)-languages.
(2) If L1 · L2 is an (a, b)-language, then L1 or L2 are (a, b)-languages.
(3) For any L, language L∗ is not an (a, b)-language.
(4) If the set L1 ⇐c L2 is an (a, b)-language, for some c, and L2 �= {λ},

then L1 or L2 are (a, b)-languages.

Proof.

(1) Let C be the partition for L1 ∪L2. Because τC(Li) ⊆ τC(L1 ∪L2) ⊆ a∗b∗

and D(x, n, Li) ⊆ D(x, n, L1 ∪ L2), for i ∈ {1, 2} and x ∈ {a, b}, condi-
tions A1, A3 and A4 hold for the languages L1 and L2, too. Moreover, the
infinity of τC(L1 ∪ L2) implies that at least one of the languages τC(L1)
and τC(L2) is infinite. Hence condition A2 holds for L1 or L2, too.

(2) Again, let C be the partition for L1 ·L2. Since τC(L1 ·L2) = τC(L1)·τC(L2)
and L1 ·L2 satisfies conditions A1 and A2, both factors τC(L1) and τC(L2)
are contained in a∗b∗ and one of the factors has to be infinite and the other
one is non-empty. Let us assume that L1 is infinite.

We prove that L1 satisfies condition A3. If A3 does not hold for L1, then
there is an integer n such that D(a, n, L1) is infinite. Let anbm ∈ τC(L1) for
some m ≥ 1. Let v be a word of L1 with τC(v) = anbm. Furthermore, let
w ∈ L2 and τC(w) = asbr. If s ≥ 0, then anbmasbr = τC(vw) ∈ τC(L1 ·L2)
in contrast to the validity of condition A1 for L1 · L2. If s = 0, then
m ∈ D(a, n, L1) iff m+r ∈ D(a, n, L1w), and thus D(a, n, L1w) is infinite.
By D(a, n, L1w) ⊆ D(a, n, L1L2) we obtain a contradiction to the validity
of condition A3 for L1 · L2.

Analogously, we prove that L1 satisfies condition A4. Combining these
facts, language L1 is an (a, b)-language By similar arguments we can show
that in case of infinity of L2. Thus, L2 is an (a, b)-language.
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(3) Let us assume that L∗ is an (a, b)-language, and let C be the partition
for L∗. Since τC(L∗) = (τC(L))∗ and τC(L∗) is infinite by condition A2,
τC(L) �= ∅ and τC(L) �= {λ}. Moreover, τC(L) ⊆ a∗b∗ since condition A1
holds for L∗. If τC(L) contains a word arbs with r ≥ 1 and s ≥ 1, then
arbsarbs ∈ (τC(L))2 ⊆ τC(L∗) in contrast to the validity of condition A1
for L∗. Hence τC(L) ⊆ a∗ or τC(L) ⊆ b∗. In the former case we get
ar ∈ τC(L) with r ≥ 1. Thus, {akr | k ≥ 0} ⊆ τC(L∗) and D(b, 0, L∗) is
infinite in contrast to the validity of condition A4 for L∗. Analogously, we
show a contradiction in the case that τC(L) ⊆ b∗.

(4) If |w|c = 0 for all w ∈ L1, then L1 ⇐c L2 = L1 and the statement is
shown. Thus, we can assume that there is a word w ∈ L1 with |w|c ≥ 1.

Again, let C = (Σ1, Σ\Σ1) be the partition. Obviously, τC(L2) ⊆ a∗b∗.
We consider the following three subcases:
(a) Let τC(L2) ⊆ a∗. If τC(L2) is infinite, then, for any w ∈ L1, language

τC(w ⇐c L2) is infinite, too. Therefore there is an integer n such
that D(b, n, w ⇐c L2) and hence D(b, n, L1 ⇐c L2) are infinite. This
contradicts condition A4 for L1 ⇐c L2.
Thus, we can assume that τC(L2) ⊆ a∗ is finite. We now prove
that L1 is an (a, b)-language w.r.t. the partition D = (Σ1 ∪ {c}, Σ \
(Σ1 ∪ {c})). Note that C = D is possible. Since c is substituted by
words of a∗ in L1 ⇐c L2, we obtain τD(L1) ⊆ a∗b∗, i.e., language L1

satisfies condition A1. Moreover, the infinity of τC(L1 ⇐c L2) and the
finiteness of τC(L2) imply the infinity of τD(L1). Hence condition A2
is fulfilled by L1.
Now assume that L1 does not satisfy condition A4. Then there is an
integer n such that D(b, n, L1) is infinite. Let k ≥ 0 be an arbitrary
integer. Since D(b, n, L1) is infinite, there is an integer k′ ≥ k such
that ak′

bn ∈ τD(L1). Let u be a word in L1 with τD(u) = ak′
bn.

Then, by L2 �= {λ}, the set τC(u⇐c L2) contains a word ak′′
bn with

k′′ ≥ k′ ≥ k. Thus, D(b, n, L1 ⇐c L2) is infinite, too, in contrast to
the validity of condition A4 for L1 ⇐c L2.
Now assume that L1 does not satisfy condition A3. Then there is an
integer n such that D(a, m, L1) is infinite. Let w be an element of L1

with τD(w) ∈ amb∗. Then w = w′w′′ for some w′ ∈ (V1 ∪ {c})∗ and
w′′ ∈ (V \ (V1 ∪ {c}))∗ with |w′| = m. Since there is a finite number
of different words w′ with w′ ∈ (V1 ∪ {c})∗ and |w′| = m, the infinity
of D(a, m, L1) implies the existence of a word w′ over Σ1 ∪ {c} of
length m such that

E = { τD(w′′) | w′′ ∈ (Σ \ (Σ1 ∪ {c}))∗, w′w′′ ∈ L1, τD(w′w′′) ∈ amb∗ }

is infinite. We set

F = {w′w′′ | w′w′′ ∈ L1 and τD(w′′) ∈ E }.
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Let
w′ = w1c

i1w2c
i2 . . . wrc

irwr+1

for some r ≥ 0 with wr+1 ∈ (Σ1 \ {c})∗ and wj ∈ (Σ1 \ {c})∗, ij ≥ 1
for 1 ≤ j ≤ r. Then

|w1w2 . . . wr+1|+ (i1 + · · ·+ ir) = m.

Let v ∈ L2 with τC(v) = as. Then

D(a, |w1w2 . . . wr+1|+ (i1 + · · ·+ ir)s, F ⇐c v)

and therefore

D(a, |w1w2 . . . wr+1|+ (i1 + · · ·+ ir)s, L1 ⇐c L2)

are infinite which gives the desired contradiction.
(b) Let τC(L2) ⊆ b∗. We obtain a contradiction analogously to the first

case above.
(c) Let τC(L2) ⊆ a+b+. First let us assume that there is a word w ∈ L1

with at least two occurrences of c. Then the existence of a word
v ∈ L2 with τC(v) = arbs with r > 0 and s > 0 implies τC(w ⇐c v) =
u1a

rbsu2a
rbsu3 ∈ τC(L1 ⇐c L2) for some words u1, u2, u3 ∈ {a, b}∗,

i.e., condition A1 does not hold for L1 ⇐c L2 in contrast to our
supposition. Thus, we can assume that any word of L1 contains at
most one occurrence of c. Moreover, by analogous arguments, any
word w of L1 with |w|c = 1 has the form w = w1cw2 with w1 ∈ Σ∗1
and w2 ∈ Σ \ (Σ1 ∪ {c}).
Let τC(L2) be infinite. We prove that L2 is an (a, b)-language. Lan-
guage L1 contains a word w = w1cw2 with w1 ∈ Σ∗1 and w2 ∈
Σ \ (Σ1 ∪ {c}). If |w1| = r and |w2| = s, then τC(w) = ar+1bs

or τC(w) = arbs+1. In the sequel we only discuss the former case,
the latter one can be handled by analogous considerations. If L2 is
not an (a, b)-language, then one of the sets D(a, n, L2) or D(b, n, L2)
is infinite. This implies the infinity of D(a, n + r + 1, w ⇐a L2)
or D(b, n + s, w ⇐a L2). Therefore, D(a, n + r + 1, L1 ⇐a L2) or
D(b, n+s, L1 ⇐a L2) is infinite in contrast to the fact that L1 ⇐a L2

is an (a, b)-language.
Thus, let τC(L2) be finite. We show again, that L1 is an (a, b)-
language with respect to the partition D defined as above. Obviously,
τD(L1) is infinite and contained in a∗b∗. Now assume that L1 does not
satisfy condition A4. Then there is an integer n such that D(b, n, L1)
is infinite. Let k ≥ 0 be an arbitrary integer. Since D(b, n, L1) is in-
finite, there is an integer k′ ≥ k such that ak′

bn ∈ τD(L1). Let u

be a word in L1 with τD(u) = ak′
bn. Then, by L2 �= {λ}, the

language τC(u ⇐c L2) contains a word ak′′
bn with k′′ ≥ k′ ≥ k.

Thus, D(b, n, L1 ⇐c L2) is infinite, too, in contrast to the validity of
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condition A4 for L1 ⇐c L2. Analogously we prove that language L1

satisfies condition A3. �

Now we are ready to show that no (a, b)-language can be an HREG language.

Lemma 3.14. Any (a, b)-language is not an HREG language.

Proof. Let us assume that there is an (a, b)-language K in HREG. Let

k = min{ d(K) | K ∈ HREG and K is an (a, b)-language}

and let L be an (a, b)-language in HREG with d(L) = k. By Lemma 3.12, there
is an H-expression r constructed without steps of the form s ⇐c λ such that
L(r) = L. Then k ≥ 1 since (a, b)-languages are infinite by condition A2. Now,
by Lemma 3.13 there are H-expressions s and t with d(s) < k and d(t) < k such
that r = s + t or r = st or r = (s ⇐c t) for some c. By Lemma 3.13 we obtain
that L(s) or L(t) are (a, b)-languages in contrast to the definition of k. �

With the previous lemma we can show some incomparable results for the lan-
guage family HREG.

Theorem 3.15. Let X ∈ {CFL, LIN}. Then the family of languages X is incom-
parable to the family HREG.

Proof. By Theorem 3.9 it is sufficient to show that there is are languages K1 ∈
LIN \HREG and K2 ∈ HREG \CFL. Obviously, the linear context-free language
K1 = { cndn | n ≥ 1 } is an (a, b)-language. Thus, K1 /∈ HREG follows from
Lemma 3.14. If we choose K2 = {wcw | w ∈ {a, b}∗ }, we are, obviously, done. �

We have already seen that HREG contains non-context-free languages. On
the other hand, it is known, that the Dyck set is not an EDT0L language ([25],
Exercise 3.3, p. 205), and thus is not contained in HREG by Theorem 3.10. This
proves the following corollary.

Corollary 3.16. The language families CFL and EHREG are incomparable. �

4. Homomorphic replacement systems

and related mechanisms

In this section we discuss several aspects of homomorphic replacement which are
related to H- and EH-expressions. As already mentioned, homomorphic replace-
ment was investigated by Albert and Wegner [2] in the context of homomorphic
replacement systems. As we will see, homomorphic replacement with regular lan-
guages in the sense of Albert and Wegner is a special case of H-expressions. These
systems are defined as follows:

Definition 4.1 (H-systems). A homomorphic replacement system (H-system) is
a quadruple H = (Σ1, Σ2, L1, ϕ) with meta-alphabet Σ1, terminal alphabet Σ2,
such that Σ1 ∩ Σ2 = ∅, meta-language L1 ⊆ Σ∗1, and a function ϕ : Σ1 → 2Σ∗

2
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which assigns to each a ∈ Σ1 a language ϕ(a) ⊆ Σ∗2. Instead of ϕ(a) we shall write
also La.

The language of an H-system H = (Σ1, Σ2, L1, ϕ) is defined as

L(H)={h(w) |w∈L1 and h is a homomorphism with h(a)∈ϕ(a) for all a∈Σ1}.

The family of H-system languages with regular meta-languages and regular lan-
guages La, for every a ∈ Σ1, is denoted by H(REG, REG).

Recently a restricted form of homomorphic replacement systems, so called pat-
tern or multi-pattern languages [20,22] have gained interest in the formal language
community. Pattern (multi-pattern, respectively) languages are languages gener-
ated by H-systems with the following restrictions:

(1) L1 is a singleton (or a finite language, respectively),
(2) there is a partition of Σ1 into Σ′1 and Σ′′1 , and
(3) ϕ(a) ⊆ Σ2 is a singleton for a ∈ Σ′1 and ϕ(b) = Σ∗2 for b ∈ Σ′′1 .

Let PAT (MPAT, respectively) denote the family of all pattern (multi-pattern,
respectively) languages.

Obviously, multi-pattern languages are a subset of H(FIN, REG), the family of
H-system languages with finite meta-languages and regular languages La for every
a ∈ Σ1. Because the H(REG, REG) language { (anb)m | n, m ≥ 1 } generated
by the H-system H = ({A, B}, {a, b}, L1, ϕ) with L1 = { (AB)m | m ≥ 1 } and
ϕ(A) = a+ and ϕ(B) = b, doesn’t belong to H(FIN, REG), which was shown in [2],
we obtain the following theorem, where the first strict inclusion is due to [20]:

Theorem 4.2. PAT ⊂MPAT ⊂ H(REG, REG).

Moreover, by the fact that (ab)∗ is not a multi-pattern language but belongs
to H(REG, REG) one concludes that the family of pattern and multi-pattern lan-
guages are incomparable with the family REG, LIN, and CFL of regular, linear
context-free, and context-free languages, respectively. Now consider the following
chain of strict inclusions:

Theorem 4.3. REG ⊂ H(REG, REG) ⊂ HREG.

Proof. The first inclusion is obvious; the strictness is seen from the non-regular
language { anban | n ≥ 1 } generated by the H-system H = ({A, B}, {a, b}, L1, ϕ)
with L1 = {ABA} and ϕ(A) = a∗ and ϕ(B) = b.

Let L ∈ H(REG, REG). Then there is an H-system H = (Σ1, Σ2, L1, ϕ) with
regular meta-language L1 and regular languages La for all a ∈ Σ1, such that
L = L(H). Without loss of generality we assume that Σ1 = {a1, . . . , an}.

Since L1 (La for a ∈ Σ1, respectively) is regular there exists a regular ex-
pression r1 (ra for a ∈ Σ1, respectively) such that L1 = L(r1) (ϕ(a) = L(ra),
respectively). Because Σ1 ∩Σ2 = ∅ it is easy to see that the H-expression

((
. . .
((

r1 ⇐a1 ra1

)⇐a2 ra2

)
. . .

)
⇐an ran

)
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exactly describes language L. This shows that H(REG, REG) ⊆ HREG.
It remains to show that the inclusion is proper. By Albert and Wegner [2] it

was shown that the language

{ (anb)m#(anb)m | n, m ≥ 1 } �∈ H(REG, REG).

The reader may verify, that the H-expression(
(A#A)⇐A

(
B+ ⇐B

(
a+b

)))
or

(((
A#A

)⇐A B+
)
⇐B (a+b)

)

describes this language. Thus, the claim follows. �
We want to stress that Theorem 3.15 can be generalized as follows. We state

the result without proof.

Theorem 4.4. Let X ∈ {CFL, LIN} and Y ∈ {HREG,H(REG, REG)}. Then
the family of languages X is incomparable to the family of languages Y .

A slightly more general class than H(REG, REG) was introduced and inves-
tigated by Birget and Stephen [5]. They define a uniform substitution to be a
function SH : Σ1 → 2Σ2 , which is determined by a set H of homomorphisms
Σ∗1 → Σ∗2 as follows: for w ∈ Σ1, we define SH(w) = {ϕ(w) | ϕ ∈ H } and for a
language L in Σ∗1 set SH(L) = {ϕ(w) | w ∈ L and ϕ ∈ H }. Then let RECREG
be the class of languages of the form SH(L), where L is regular and H is a recog-
nizable set of homomorphisms form Σ∗1 to Σ2, i.e., for Σ1 = {v1, . . . , vn} the set
{ϕ(v1)# . . . #ϕ(vn) ∈ (Σ2 ∪ {#})∗ | ϕ ∈ H } is a regular subset of (Σ2 ∪ {#})∗,
where # is a symbol not in Σ2. By Mezei’s theorem (see, e.g., [5], p. 257,
Thm. A.1), the set {ϕ(v1)# . . . #ϕ(vn) ∈ (Σ2 ∪ {#})∗ | ϕ ∈ H } is regular if
and only if it is equal to a finite union of sets of the form L1# . . .#Ln, where
each Li, for 1 ≤ i ≤ n, is regular. Using this fact, one can easy see that RECREG
is a subset of HREG. Moreover, the inclusion is strict, because the above used lan-
guage to separate H(REG, REG) from HREG is also not a member of RECREG
([5], p. 253, Ex. 1). Thus, we have shown the following theorem:

Theorem 4.5. RECREG ⊂ HREG.

A more direct way to generalize H(REG, REG) systems is to iterate the inser-
tion process which leads us to the definition of

H∗(REG, REG) =
∞⋃

n=0

Hn(REG, REG),

where H0(REG, REG) = REG and

Hn(REG, REG) = {L(H) | H = (Σ1, Σ2, L1, ϕ) with

L1 in Hn−1(REG, REG) and ϕ(a) in REG for all a ∈ Σ1}
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if n ≥ 1. At first glance we show that H∗(REG, REG) is sandwiched in between
H(REG, REG) and HREG.

Theorem 4.6. H(REG, REG) ⊂ H∗(REG, REG) ⊆ HREG.

Proof. The first inclusion is obvious and its strictness is seen as follows. By Albert
and Wegner [2] it was shown that the language { (anb)m#(anb)m | n, m ≥ 1 } �∈
H(REG, REG). The reader may verify, that the H-system H = ({B}, {a, b}, L1, ϕ)
with the H(REG, REG) meta-language L1 = {Bm#Bm | m ≥ 1 } and the regular
language ϕ(B) = { anb | n ≥ 1 } describes this language.

For the inclusionH∗(REG, REG) ⊆ HREG we proceed as follows. In case n = 0
and n = 1 we have already seen that Hn(REG, REG) ⊆ HREG. So let n ≥ 1 and
assume that Hn(REG, REG) ⊆ HREG by induction hypothesis.

Let L ∈ Hn+1(REG, REG). Then there is a H-system H = (Σ1, Σ2, L1, ϕ)
with L1 ∈ Hn(REG, REG) and ϕ(a) ∈ REG for all a ∈ Σ1 such that L = L(H).
We assume that Σ1 = {a1, . . . , an}. By induction hypothesis there exists H-
expression r1 (ra for a ∈ Σ1, respectively) such that L1 = L(r1) (ϕ(a) = L(ra),
respectively). Because Σ1 ∩Σ2 = ∅ it is easy to see that the H-expression

((
. . .
((

r1 ⇐a1 ra1

)⇐a2 ra2

)
. . .

)
⇐an ran

)

exactly describes language L. This shows that L ∈ HREG. �

Recently a particular extension of regular expressions and patterns so called
pattern expressions were investigated by Câmpeanu and Yu [6]. For readability
we slightly adapt their notation. Pattern expressions are based on regular patterns
which are defined as follows:

Definition 4.7. Let Σ and V be two disjoint alphabets. A regular expression
over Σ∪ V is called a regular pattern over Σ with variables from V . The language
associated with a regular pattern r over Σ ∪ V is the language L(r) ⊆ (Σ ∪ V )∗.

Next we define pattern expressions:

Definition 4.8. Let Σ and V be two disjoint alphabets with V = {x0, x1, . . . , xn}.
A pattern expression p over Σ with variables from V is a finite set of equations of
the form xi = pi, for each 0 ≤ i ≤ n, where xi ∈ V is a variable and pi is a regular
pattern over Σ with variables from {xi+1, . . . , xn}.

The language of the pattern expression p is defined as

L(p) =

((
. . .
((

L(p0)⇐x1 L(p1)
)⇐x2 L(p2)

)
. . .

)
⇐xn L(pn)

)

and the family of languages described by pattern expressions is abbreviated by
PATEXP.
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Observe that from the definition of pattern expressions it follows that the last
regular pattern (at least pn) is always a regular expression.

If there is no danger of confusion we simply write p = (p0, x1 = p1, . . . , xn = pn)
to denote the regular pattern expression p described by the finite set of equations
{x0 = p0, x1 = p1, . . . , xn = pn} over Σ with variables from V = {x0, x1, . . . , xn}.

New we show that pattern expressions exactly describe the languages from the
family H∗(REG, REG) and vice versa.

Theorem 4.9. H∗(REG, REG) = PATEXP.

Proof. The inclusion from left to right is seen by induction on n. In case n = 0
and n = 1 obviously, Hn(REG, REG) ⊆ PATEXP. So let n ≥ 1 and assume by
induction hypothesis that Hn(REG, REG) ⊆ PATEXP.

Let L ∈ Hn+1(REG, REG). Then there is a H-system H = (Σ1, Σ2, L1, ϕ)
with L1 ∈ Hn(REG, REG) and ϕ(a) ∈ REG for all a ∈ Σ1 such that L = L(H).
We assume that Σ1 = {a1, . . . , as}. By induction hypothesis there exists a pat-
tern expression p = (p0, x1 = p1, . . . , xm = pm) over Σ1 with variables from
{x0, x1, . . . , xm}, for some m, such that L1 = L(p). Moreover, since ϕ(a) is regu-
lar for all a ∈ Σ1 we find regular patterns qa over Σ2 with no variables such that
ϕ(a) = L(qa). Because Σ1 ∩ Σ2 = ∅ it is easy to see that the pattern expression

p′ = (p0, x1 = p1, . . . , xm = pm, a1 = qa1 , . . . , as = qas)

exactly describes language L since

L =

((
. . .
((

L1 ⇐a1 ϕ(a1)
)⇐a2 ϕ(a2)

)
. . .

)
⇐as ϕ(as)

)

=

((
. . .
((

L(p)⇐a1 L(qa1)
)⇐a2 L(qa2)

)
. . .

)
⇐as L(qas)

)

= L(p′).

This shows that Hn(REG, REG) ⊆ PATEXP for each n ≥ 0.
Next consider PATEXP ⊆ H∗(REG, REG). This inclusion is shown by induc-

tion on the number of variables used in a pattern expression. The base cases n = 0
and n = 1 are trivial and left to the reader. So let n ≥ 1 and assume by induction
that hypothesis that for every pattern expression p using n variables belongs to
H∗(REG, REG).

Let L ∈ PATEXP be a language described by a pattern expression p = (p0, x1 =
p1, . . . , xn = pn) over Σ using variables from {x0, x1, . . . , xn}. Consider the pattern
expression not using variable xn, i.e., the expression

p′ = (p0, x1 = p1, . . . , xn−1 = pn−1)

over Σ ∪ {xn} using variables {x0, x1, . . . , xn−1}. By induction hypothesis there
exists a H-system H = (Σ1, Σ ∪ {xn}, L1, ϕ) with L1 ∈ Hm(REG, REG), for
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some m, and ϕ(a) ∈ REG for all a ∈ Σ1, such that L(p′) = L(H). In order to get
rid of the letter xn in the words of L we have to replace them by words from L(pn).
Since it is required that the meta- and terminal language have to be disjoint we
define the two H-systems as follows. Let Σ′ = { a′ | a ∈ Σ } with Σ ∩ Σ′ = ∅
and assume that x′n is a new variable not contained in {x0, x1, . . . , xn}. Define
H1 = (Σ ∪ {xn}, Σ′ ∪ {x′n}, L(H), ϕ1) with ϕ1(a) = a′ if a ∈ Σ and ϕ1(xn) = x′n
otherwise. Finally define H2 = (Σ′∪{x′n}, Σ, L(H1), ϕ2) with ϕ2(a′) = a if a′ ∈ Σ′

and ϕ(x′n) = L(pn). By easy calculations one sees that L = L(H2) which proves
our claim. Hence, PATEXP ⊆ H∗(REG, REG). �

5. Closure and non-closure properties

In this section we study some closure properties of the classes HREG and
EHREG. We find that the family HREG is not a TRIO. First, we start our
investigations with a fairly easy theorem.

Theorem 5.1. The language families HREG and EHREG are closed under ho-
momorphisms, reversal, union, concatenation, and Kleene star.

Proof. The closure under union, concatenation, and Kleene star is trivial, and the
closure under reversal may be easily seen by induction on H- and EH-expressions,
respectively. The details are left to the reader.

For the closure under homomorphism we do as follows: let r be an EH-expression
over Σ and h : Σ∗ → Σ∗ a homomorphism. We construct an expression r′ over Σ
such that L(r′) = h(L(r)) holds.

By induction on r we argue in the following way. If r is of the form ∅ (λ,
a, for some a ∈ Σ, respectively), then r′ = ∅, (r′ = λ, r′ = a1 + · · · + an if
h(a) = a1 . . . an, for ai ∈ Σ and 1 ≤ i ≤ n, respectively). In case r = s + t (r = st,
r = s∗, respectively), then by induction hypothesis, there exists s′ and t′ such
that L(s′) = h(L(s)) and L(t′) = h(L(t)). Thus, we set r′ = s′ + t′ (r′ = s′t′,
r′ = (s′)∗, respectively). Finally, if r = (s ⇐a t) (r = s⇐a , respectively), then
by induction hypothesis again, there exists s′ and t′ such that L(s′) = h′(L(s))
and L(t′) = h(L(t)), where h′(b) = h(b) if b ∈ Σ \ {a} and h′(b) = a otherwise.
Then, we set r′ = (s′ ⇐a t′) (r′ = s′⇐a , respectively). This completes the
construction and shows that the language families HREG and EHREG are closed
under homomorphism. �

Next we consider closure under intersection with regular sets. The below given
argument re-proves, in passing, also intersection closure of the family REG.

Theorem 5.2. The family HREG is closed under intersection with regular lan-
guages.
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Proof. Let r be an H-expression and R a regular language over Σ. Then there
exists a finite monoid (M, ·), a homomorphism h : Σ∗ → M , and a set F ⊆ M ,
such that w ∈ R if and only if h(w) ∈ F .

For m ∈ M let [m] denote the set {w ∈ Σ∗ | h(w) = m }, which is regular for
any m ∈ M . Because of R = ∪m∈F [m], it sufficient to construct an expression r′

over Σ such that L(r′) = L(r) ∩ [m] for some m ∈ M . To this end we perform
induction on r.

If r is of the form ∅ (λ, a, for a ∈ Σ, respectively), then set r′ = ∅ (r′ = λ if
λ ∈ [m] and r′ = ∅ otherwise, r′ = a if a ∈ [m] and r′ = ∅ otherwise, respectively).
In case r = s + t, we set r′ = s′ + t′, where s′ (t′, respectively) is an H-expression
such that L(s′) = L(s) ∩ [m] (L(t′) = L(t) ∩ [m], respectively), which exist by
induction hypothesis. If r = st or r = s∗, then we do as follows. Note, that by
induction hypothesis again, there are H-expressions s′m1

(t′m2
, respectively), for

m1, m2 ∈ M , with L(s′m1
) = L(s) ∩ [m1] (L(t′m2

) = L(t) ∩ [m2], respectively).
Now in the former case, i.e., r = st, we set

r′ =
∑

m=m1·m2

(s′m1
t′m2

).

In the latter case, i.e., r = s∗, we generalize the above given argument. Consider
the language L = {m = m1 . . .mn | m1 · . . . ·mn ∈M } over M∗. Obviously, L
is regular, therefore there exists an equivalent regular expression over M . Now,
we can describe r′ by taking this regular expression and substitute smi , for each
mi ∈ M , in that particular expression. As in the previous case, the reader may
verify that the constructed r′ satisfies L(r′) = L(r) ∩ [m].

Finally consider r = (s ⇐a t). By induction hypothesis, there exist expres-
sions s′m1,m2

, for m1, m2 ∈M , with L(s′m1,m2
) = L(s) ∩ [m1, m2], where [m1, m2]

equals the equivalence class [m1] of the regular language R′, which is defined as R,
i.e., via the monoid M and the set F ⊆ M , except that we alter the homomor-
phism h on letter a such that h(a) = m2. Moreover, we also have expressions t′m3

,
for m3 ∈M , such that L(t′m3

) = L(t) ∩ [m3]. Putting all things together, expres-
sion r′ reads as

r′ =
∑

m1∈M

(
s′m,m1

⇐a t′m1

)
.

This completes our construction. �

Finally, on the remaining TRIO operation inverse homomorphism we also get
a non-closure result for H-expression languages.

Theorem 5.3. The family HREG is not closed under inverse homomorphisms.

Proof. Consider the H-expression r = (A#A) ⇐A a∗, which describes the lan-
guage { an#an | n ≥ 0 }. Define two homomorphisms g : {a, b, #}∗ → {a, b}∗
and homomorphism h : {a, b, #}∗ → {a, b}∗ as follows: g(a) = a, g(b) = b,
and g(#) = λ. Moreover, set h(a) = a, h(b) = a, and h(#) = #. Then
g(h−1(L(r))∩ a∗#b∗) equals { anbn | n ≥ 0 }, which does not belong to the family
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Table 1. Closure properties of some language families.

Language family
Operations REG = SREG HREG EHREG CFL = ESREG
Union Yes Yes Yes Yes
Homomorphism Yes Yes Yes Yes
Inverse homomorphism Yes No ? Yes
Intersection

with regular sets
Yes Yes ? Yes

Concatenation Yes Yes Yes Yes
Kleene star Yes Yes Yes Yes
Reversal Yes Yes Yes Yes

HREG by Theorem 4.4. Since H-expressions are closed under homomorphism and
intersection with regular languages, our claim follows. �

For completeness we summarize the closure properties of some considered lan-
guage families in Table 1. Unfortunately, at this point it remains open whether
the family EHREG is closed under intersection with regular languages and in-
verse homomorphisms. The non-closure under the TRIO operations destroys the
hope to get a nice characterization of HREG languages in terms of an one-way
automaton model. This is because most automata in formal language theory as,
e.g., pushdown automata, stack automata, queue automata, can be characterized
in terms of automata with abstract storage. As shown by Dassow and Lange [7]
automata with abstract storage imply a Chomsky-Schützenberger like theorem of
the described language family, i.e., every language from the family can be written
as h(g−1(D) ∩ R), where g and h are homomorphisms, R is a regular language,
and D is protocol language of the abstract storage type.

6. Complexity theoretical issues

In this section we study some complexity theoretical problems for H- and EH-
expressions. We start with the fixed membership problem, showing that it is
NL-complete for both H- and EH-expression languages. The below given theorem
nicely contrasts the NC1-completeness for ordinary regular languages [4].

Theorem 6.1. The fixed membership problem for H- and EH-expressions is NL-
complete.

Proof. The fixed membership problem for EDT0L systems is known to be NL-
complete [18]. Since, by Theorem 3.10 we have EHREG ⊆ EDT0L, the fixed
membership problem for both H- and EH-expressions is in NL, too. In order to
prove NL-hardness, we reduce some special case of the graph accessibility problem,
which is known to be NL-complete (see, e.g., [14]) to the fixed membership problem
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for H-expressions. This problem is defined as follows: given an ordered directed
graph G = (V, E) with out-degree two, where V = {1, 2, . . . , n} is the set of nodes,
E ⊆ V × V is the set of edges, and (i, j) in E implies that i ≤ j. Is there a path
from node 1 to node n in G?

The below given construction follows the lines of Sudborough [28]. Let

1##1$1j11##1$1j12##12$1j21##12$1j22# . . . #1n$1jn1##1n$1jn2##1n,

be the coding of the graph G, where (i, ji1) and (i, ji2) are edges in E. The graph
accessibility problem for G is reduced to the fixed membership problem for the
expression

r =
((

a#
(
#1+$1+#

)∗#a$
)
⇐a 1+

)∗
over Σ = {0, 1, a, #, $}.

Obviously, the coding of G can be computed in logarithmic space. In words of
L(r), one subword of L(s), where

s =
(
a#
(
#1 + $1+#

)∗#a$
)
⇐a 1+,

corresponds to one block between two markers, more precisely beginning with the
second part of a marked couple and ending with the first part of the next marked
couple. Therefore, it is easily seen that the coding of G belongs to L(r) if and
only if there is a (ordered) path from 1 to n in G. This proves our claim. �

In the next theorem we turn our attention to the general membership problem.
There we were not able to exactly characterize its complexity, and we can only
give some lower and upper bound.

Theorem 6.2. The general membership problem both for H- and EH-expressions
is NP-hard and belongs to PSPACE.

Proof. Analogously to the argument in the proof of Theorem 6.1, the contain-
ment in PSPACE is inherited from the general membership problem for EDT0L
systems [19].

For lower bound, it is sufficient to reduce the well-known NP-complete sat-
isfiability problem for Boolean formulas in conjunctive normal form (SAT) to
the general membership problem for H-expressions. Let a Boolean formula f =
C1 ∧ C2 ∧ . . . ∧ Cm, for some m ≥ 1, be given, where Ci, for 1 ≤ i ≤ m, is a
disjunction of variables or negated variables from {x1, . . . , xn}.

From f we compute an instance for the general membership problem of H-
expressions as follows: first set for 1 ≤ i ≤ m the H-expressions

ri =
∑

xj is in Ci

xj +
∑

x̄j is in Cj

x̄j
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over the alphabet {x1, . . . , xn, x̄1, . . . , x̄n}. Then let

s0 = x1x̄1#x2x̄2# . . . #xnx̄n#$r1#r2# . . .#rm#
and inductively define

si+1 =
((

si ⇐xi+1

(
λ + 1

))⇐x̄i+1

(
λ + 1

))
,

for 0 ≤ i < n, over the alphabet Σ = {x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n, #, $, 1}.
Finally, let 〈sn, w〉 be the instance of the general membership problem for H-
expressions, where w = (1#)n$(1#)m.

Clearly, the above specified instance is computed in logarithmic space from
a suitable description of f . Moreover, to each literal of the form xi occurring
in f a Boolean value is assigned by replacing it consistently by 1 (λ, respectively)
corresponding to true (false, respectively). Analogously, to each literal of the
form x̄i occurring in f a Boolean value is assigned. After these replacements, the
string w belongs to L(sn) if and only if (1) the Boolean assignment is a correct
one, i.e., where xi and x̄i evaluate not equally, for 1 ≤ i ≤ n, which is checked
in the part left to the $ in w and (2) each of the clauses Ci, for 1 ≤ i ≤ m, is
satisfiable, which is tested in the left-hand part of w. Therefore, we have w is in
L(sn) if and only if f is satisfiable. �

The next theorem holds trivially.

Theorem 6.3. Let r be an H-expression (EH-expression, respectively) and let r′

be the S-expression (ES-expression, respectively) obtained from r by replacing ev-
ery ⇐ by ← (and every ⇐ by ←) and vice versa. Then L(r) = ∅ if and only if
L(r′) = ∅. �

We use the above given theorem to prove that the emptiness problem for H-
and EH-expression is P-complete.

Theorem 6.4. The emptiness problem for both H- and EH-expressions is P-
complete.

Proof. Given an ES-expression r, one can construct an equivalent context-free
grammar by induction on r, mainly following the idea given in [13], Theorem 2.7.
This construction can be done in deterministic logarithmic space. Therefore, the
emptiness problem for ES-expressions is not harder then the emptiness problem for
context-free grammars, i.e., it can be solved in polynomial time by a deterministic
Turing machine [17]. Due to Theorem 6.3, even the emptiness problem for EH-
expressions and hence for H-expressions can be solved within this time bound.
This proves the containments in P.

In order to show P-hardness, it is sufficient to reduce the P-complete emptiness
problem for context-free grammars to the emptiness problem for H-expressions
or, due to Theorem 6.3, for S-expressions. The completeness for EH-expressions
(ES-expressions, respectively) follows trivially, because every H-expressions (S-
expression, respectively) is also an EH-expression (ES-expression).
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Let G = (N, T, P, S) be a context-free grammar with N = {A1, . . . An} and
assume S = A1. Define the homomorphism h : (N ∪ T )∗ → N∗ as h(A) = A
if A ∈ N and h(a) = λ otherwise. Furthermore, for A ∈ N let sA denote the
H-expressions (S-expression) with L(sA) = { h(α) | A→ α is in P }.

Then let r0 = sA1 , inductively for 0 ≤ i < n define

ri+1 =

((
. . .
((

ri ⇐A1 sA1

)⇐A2 sA2

)
. . .

)
⇐An sAn

)
,

and let rn+1 = ((. . . ((ri ⇐A1 ∅)⇐A2 ∅) . . .)⇐An ∅). By induction the reader may
verify that L(rn+1) = ∅ if and only if L(G) = ∅. Since the sAi expressions and
thus also the ri expressions, in particular the rn+1 expression, are deterministic
logarithmic space constructible from G, we conclude that the emptiness problem
for H- and EH-expressions is P-hard, too. �

Finally, we consider the equivalence problem for EH-expressions.

Theorem 6.5. The equivalence problem for EH-expressions is undecidable.

Proof. Given an instance of Post’s correspondence problem, i.e., two n-tuples of
words U = (u1, u2, . . . , un) and V = (v1, v2, . . . , vn) over the alphabet {a, b} for
a sufficiently large integer n. We associate two EH-expressions r and t = (r + s)
with this instance, where

r =
(((

aAa + bAb + aBb + bBa
)⇐A

)
⇐B

((
a + b

)∗
#
(
a + b

)∗))

+
(((

aAa + bAb + aB + bB
)⇐A

)
⇐B

((
a + b

)∗#))

+
(((

aAa + bAb + Ba + Bb
)⇐A

)
⇐B

(
#
(
a + b

)∗))
,

and

s =

(
n∑

i=1

(uiAvR
i + ui#vR

i )

)⇑A

.

Then

L(r) = { x#y | x, y ∈ {a, b}∗ and yR �= x }
and

L(s) = { ui1ui2 . . . uik
#vR

ik
. . . vR

i2v
R
i1 | k ≥ 1 }.

Clearly, if Post’s correspondence problem has no solution for the instance U and V ,
then L(s) ⊆ L(r) and the expressions r and t are equivalent. On the other hand,
if there is a solution, then there is a string of the form x#xR in L(s) ⊆ L(t)
which does not belong to L(r), and the two expressions r and t are not equivalent.
Since Post’s correspondence problem is undecidable (see, e.g., [16]) the equivalence
problem for EH-expressions is undecidable, too. �
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ET0L

EDT0L

EHREG

H(REG, REG)

CFL = ESREG

LIN

HREG

REG = SREG

PAT

MPAT

H∗(REG, REG) = PATEXP

CSL

FIN

Figure 1. The inclusion structure of the considered language families.

The decidability status of the equivalence problem for H-expressions remains
open.

7. Conclusions

In this paper we have studied the expressive power of H- and EH-expressions,
which are defined as an extension of regular expressions by homomorphic and
iterated homomorphic replacement. The inclusion relations among the classes
considered are depicted in Figure 1. Besides the expressive power we have also
investigated the closure and non-closure properties of these classes under Boolean
operations, Kleene star, and TRIO operations. In most cases we classified the prob-
lems under consideration completely. Nevertheless, we left some problems open,
such as whether the family of EH-expression languages is closed under intersection
with regular languages and inverse homomorphism. Moreover, we also focused on
some issues of computational complexity as the fixed and general membership,
non-emptiness, and equivalence. The decidability status of the equivalence prob-
lem for H-expression languages remains open.
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We hope that the investigation of homomorphic replacement, as one sort of
pattern repeating operation, helps understand the expressive power of regular-like
expressions much better. Nevertheless, regular like expressions in programming
environments still lack complete theoretical understand.
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[9] P. Dembiński and J. Ma�luszyński, Two level grammars: CF-grammars with equation
schemes, in Proceedings of the 6th International Colloquium on Automata Languages and
Programming. Lect. Notes Cumput. Sci. 71 (1979) 171–187.

[10] D. Dougherty, sed & awk. O’Reilly & Associates (1990).
[11] J. Engelfriet and E.M. Schmidt, IO and OI. Part I and II. J. Comput. System Sci. 15 (1977)

328–353; J. Comput. System Sci. 16 (1977) 67–99.

[12] D. Giammarresi and A. Restivo, Two-dimensional languages, in Handbook of Formal Lan-
guages, Vols. 1–3, edited by G. Rozenberg and A. Salomaa. Springer (1997) 215–267.

[13] J. Gruska, A characterization of context-free languages. J. Comput. System Sci. 5 (1971)
353–364.

[14] J. Hartmanis, N. Immerman and S. Mahaney, One-way log-tape reductions, in Proceedings
of the 19th Annual Symposium on Foundations of Computer Science. IEEE Society Press,
Ann Arbor, Michigan (1978) 65–72.

[15] K. Hashiguchi and H. Yoo, Extended regular expressions of degree at most two. Theoret.
Comput. Sci. 76 (1990) 273–284.

[16] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley (1979).

[17] N.D. Jones and W.T. Laaser, Complete problems for deterministic polynomial time. Theoret.
Comput. Sci. 3 (1977) 105–117.

[18] N.D. Jones and S. Skyum, Recognition of deterministic ET0L languages in logarithmic
space. Inform. Comput. 35 (1977) 177–181.

[19] N.D. Jones and S. Skyum, Complexity of some problems concerning L systems. Math. Syst.
Theor. 13 (1979) 29–43.
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