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QUANTUM COHERENT SPACES AND LINEAR LOGIC

Stefano Baratella
1

Abstract. Quantum Coherent Spaces were introduced by Girard as
a quantum framework where to interpret the exponential-free fragment
of Linear Logic. Aim of this paper is to extend Girard’s interpretation
to a subsystem of linear logic with bounded exponentials. We provide
deduction rules for the bounded exponentials and, correspondingly, we
introduce the novel notion of bounded exponentials of Quantum Co-
herent Spaces. We show that the latter provide a categorical model
of our system. In order to do that, we first study properties of the
category of Quantum Coherent Spaces.

Mathematics Subject Classification. 68Q55, 03F52.

1. Introduction

Quantum Coherent Spaces (briefly: QCS’s) were introduced by Girard as a
framework for interpreting logic into a quantum setting, thus moving in the op-
posite direction with respect to the attempts of capturing “quantum” by “logic”
made by quantum logic. Girard’s goal is not the impossible reconciliation of the
“separate lives” of logic and quantum physics. More modestly, he wants to investi-
gate how a nondeterministic phenomenon like quantum measurement can be used
to model a logical system. See [5] and [6] for the detailed motivations. Actually,
QCS’s provide an interpretation of the the exponential-free fragment of Linear
Logic ([5]).

Aim of this paper is to extend Girard’s work to obtain a categorical model
of a subsystem of linear logic with bounded exponentials. Such subsystem turns
out to be a simplified version of the Bounded Linear Logic introduced in [7]. So
we stress that, even if we will quite extensively work in a categorical setting and
we will eventually investigate the computational complexity of a normalization
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procedure, this work is neither about the categorical properties of QCS’s nor about
the (implicit) computational complexity of yet another logical system.

We also point out from the very beginning that QCS’s are confined to the fi-
nite dimensional case, hence they cannot model “infinitary connectives” like the
exponentials. This limitation is due to the fact that, for operators on infinite
dimensional Hilbert spaces, the notion of trace is problematic. Indeed, the discus-
sion in [5], Section 17.6.1 seems to suggest that there is no way of circumventing
the limitation due to finite dimension. Therefore, the best we can do is to extend
Girard’s work to cover some kind of bounded exponentials.

QCS’s are closely related to spaces of density matrices. They form a ∗-autonomo-
us category, that we will denote by QCS. There is a natural notion of morphism
between QCS’s. Indeed morphisms between QCS’s turn out to be positive maps
with respect to a suitable preorder defined on the linear span of a QCS (see Sect. 3),
hence not the analogue of completely positive maps between spaces of density ma-
trices.

Being ∗-autonomous, QCS has enough structure to model higher-order linear
language features. Nevertheless, in [12] Selinger shows that his presentation of
QCS’s is not adequate for modelling higher-order quantum computation. This
is a good point to note that Selinger’s presentation differs in many aspects from
ours. In spite of the different perspective from which QCS’s are viewed, a partial
correspondence between the two presentations can be established (see [12]), but
with some relevant differences. For instance, morphisms in Selinger’s presentation
have to be treated as equivalence classes of morphisms in the sense of this paper.
Thus the results claimed in [12] do not immediately apply to the current setting
(in this regard, see the description of the content of Sect. 3 below).

In spite of the already mentioned and of further limitations (see below), we
believe that QCS is interesting in its own and that its capability of modelling
bounded exponentials worths being investigated.

In Sections 2 and 3 we present a number of results about QCS’s. Most of them
will be used in following sections. Some are interesting in their own and seem to
be novel.

In Section 3, for sake of completeness we prove quite in detail that QCS is
∗-autonomous. We remark that QCS is also an isoMIX category, in the sense of
Cockett and Seely ([4]). Recall that the categorical formulation of QCS in the
framework of normed cones given in [12] is ∗-autonomous, has products and co-
products. Furthermore, the author claims the equivalence of the two formulations.
Quite surprisingly, we show that QCS lacks a “natural” structure of Cartesian cat-
egory: a disappointing fact from a categorical viewpoint, that seems to prevent
further extensions of our work along the line, for instance, of [11], Sections 5, 6.
Moreover, such negative result casts a doubt on the categorical equivalence of the
current formulation and the one in [12]. It should be added that, although “&” is
not a product in the category QCS, it is nevertheless a weak product.

Although some of the results proved in the first part of this paper are implicitly
hinted in [5], Chapter 17 and some others are well-known, we believe that our
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work is of interest also as a complement and a completion of the above-mentioned
reference.

In Section 4, we show that QCS provides a denotational semantics for the
exponential-free multiplicative fragment MLL of Linear Logic. Actually, this fol-
lows immediately from the category being ∗-autonomous. Nevertheless, here we
provide a complete proof of this result, to show the import of the results proved
in the previous sections and to provide an explicit description of the denotational
process. As expected, formulas will be interpreted as QCS’s and proofs as some
positive maps between QCS’s. A reader familiar with coherent spaces and with
their being a model of linear logic (see [5], for instance) will recognize here a very
similar situation.

In Section 5 we define the bounded exponentials of QCS’s. Such definition is
based on the novel notion of symmetric tensor power of QCS’s, which, in turn,
is an analogue in the QCS’s setting of the symmetric tensor product of Hilbert
spaces, a central notion in quantum physics. (The reader is invited to examine
the technical results that motivate the previous definitions). We do not explore
here the property of functoriality of the bounded exponentials and which universal
properties their construction satisfies.

We also introduce the bounded exponentials of formulas. We extend MLL with
deduction rules for the bounded exponentials to form the system B!LL, which,
basically, is a subsystem of Bounded Linear Logic. We show that QCS provides
a denotational semantics to B!LL proofs as well. Eventually, in Section 6 we show
that B!LL is not badly behaved from a proof-theoretic viewpoint. We outline
a normalization procedure for B!LL proofs that is based on an analogous result
obtained in [7]. As with Bounded Linear Logic, the normalization procedure does
not lead to full cut-elimination, due to the presence of certain “bad” cuts. The
complexity of the normalization is cubic in the weight (a quite natural complexity
measure of proofs), an evidence that B!LL is also computationally well-behaved
with respect to normalization.

We briefly discuss the relevant question whether a suitable extension of B!LL to
second order has a complexity import. This would further motivate the study of
B!LL. We conjecture that a suitable second order extension of B!LL provides yet
another implicit characterization of polytime, but we do not provide any technical
detail because this goes beyond the scope of this paper.

We assume that the reader is familiar with very basic functional analysis and
operator theory. Useful references are [9] and [13] respectively, but any introduc-
tory book to those subjects would do.

2. Preliminaries

We denote by the letters V, W, X, Y, Z finite dimensional Hilbert spaces on the
field C of complex numbers. We always work in a finite dimensional setting.

As customary, we denote by V ⊗W the tensor product of the Hilbert spaces V
and W. Although the symbol ⊗ will be used later with a different meaning, the
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context will prevent any ambiguity. We recall that V ⊗W is a Hilbert space with
the induced Hermitian product

〈v1 ⊗ w1, v2 ⊗ w2〉 = 〈v1, v2〉V 〈w1, w2〉W ,

where 〈 , 〉V and 〈 , 〉W are the Hermitian products on V and W respectively.
We denote by H(X) the real vector space of Hermitian operators on the space X.

If the complex dimension of X is n, then the dimension of H(X) is n2. Since
H(X)⊗H(Y ) is a subspace of H(X⊗Y ) and the two have equal finite dimension,
it follows that H(X ⊗ Y ) = H(X) ⊗ H(Y ).

We denote by tr(f) the trace of the operator f ∈ H(X). The trace induces
an inner product 〈 , 〉 on H(X) defined by 〈f, g〉 = tr(fg), hence H(X) has a
structure of real Euclidean space. We define the trace norm of f ∈ H(X) as usual:
‖f‖ = 〈f, f〉1/2.

Note: to define a linear map, very frequently we will define it just on a basis or
on a set of generators.

Definition 2.1 (polarity).
(1) Two Hermitians f, g ∈ H(X) are polar (notation: f ∼ g) if 0 ≤ tr(fg) ≤ 1.
(2) Let A ⊆ H(X). The polar of A is the set

∼ A = {g ∈ H(X) : g ∼ f for all f ∈ A}.

Cyclicity of trace (namely the property that tr(fg) = tr(gf)) implies that the
relation ∼ is symmetric.

Definition 2.2. The set A ⊆ H(X) is a Quantum Coherent Space (briefly: QCS)
if A = ∼∼ A.

Examples of QCS’s are given in [5].
The following are easily proved for all A ⊆ H(X):
(1) A ⊆ ∼∼ A;
(2) ∼ A = ∼∼∼ A;
(3) ∼∼ A is the least QCS containing A.

From 2. above it follows that A ⊆ H(X) is a QCS if and only if A = ∼ B for
some B ⊆ H(X).

In [5], Girard proves the following useful characterization of QCS’s:

Theorem 2.3 (Bipolar Theorem). Let C ⊆ H(X). The set C is a QCS if and
only if

(1) 0 ∈ C;
(2) C is closed and convex;
(3) if nf ∈ C for all n ∈ N then −f ∈ C;
(4) if f, g ∈ C and λ, μ are nonnegative real numbers such that λf + μg ∈ C

then λf ∈ C.



QUANTUM COHERENT SPACES AND LINEAR LOGIC 423

We will use the letters C, D, E (possibly indexed) to denote QCS’s.
In [5], Girard adds extra structure to a QCS C ⊆ H(X). He defines on the

linear span FinC of C a seminorm ‖ · ‖C and a preorder �C as follows:

‖f‖C = sup{|tr(fg)| : g ∈ ∼ C};

f �C g ⇔ tr(fh) ≤ tr(gh) for all h ∈ ∼ C.

It is straightforward to check that C = {f ∈ FinC : 0 �C f and ‖f‖C ≤ 1} and
so the positive cone C+ =

⋃
r∈R>0 rC =

⋃
n∈N

nC of C is the set of �C -positive
elements of FinC, where the rightmost equality holds by Theorem 2.3.4.

Therefore one may regard a QCS C as the set of positive elements in the unit
ball of the semi-normed preordered space FinC (with respect to ‖ · ‖C and �C).
This remark will be useful later when defining a suitable family of maps between
QCS’s.

The Bipolar Theorem provides a large class of QCS’s: for all X, each linear
subspace S of H(X) is a QCS. In a sense, those are the less interesting QCS’s:
for S as above, ∼S is the orthogonal space S⊥ to S and therefore ‖f‖S = 0 and
f �S g for all f, g ∈ S.

We denote by [ · ] the linear isomorphism between H(X ⊗ Y ) and the space
hom(H(X), H(Y )) of R–linear maps from H(X) to H(Y ) implicitly defined is
as follows:

〈([F ]f)(y), z〉 = tr(F ◦(f⊗yz∗)) for F ∈ H(X⊗Y ), f ∈ H(X) and y, z ∈ Y, (1)

where yz∗ : w 
→ 〈w, z〉y for all w ∈ Y.
We will extensively use such an isomorphism in the sequel. Its most

important property is the following: for all F ∈ H(X ⊗Y ), f ∈ H(X), g ∈
H(Y )

tr(([F ]f) ◦ g) = tr(F ◦ (f ⊗ g)) (2)
Given the QCS’s C ⊆ H(X) and D ⊆ H(Y ), Girard defines the follow-

ing QCS:
C � D = {F ∈ H(X ⊗ Y ) : [F ]c ∈ D for all c ∈ C};
C ⊗ D =∼∼ {c⊗ d : c ∈ C and d ∈ D};
C

&

D = (∼ C)� D.
In order to prove that C � D is a QCS it suffices to show that

C � D =∼ {c ⊗ d : c ∈ C and d ∈ ∼ D}. (3)

Equality (3) follows at once from (2).
Note that the previous definitions can be given for arbitrary sets C ⊆ H(X) and
D ⊆ H(Y ).

If C is a linear subspace of H(X) then ∼C = C⊥, where C⊥ is the orthogonal
of C. Moreover, if we denote by E the algebraic tensor product of the linear spaces
C ⊆ H(X) and D ⊆ H(Y ), then E⊥ =∼ E =∼ {f ⊗ g : f ∈ C and g ∈ D}. Since
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by finite dimensionality E = E⊥⊥, it follows that E =∼∼ {f ⊗ g : f ∈ C and g ∈
D}. Hence C ⊗ D is just the algebraic tensor product of the linear spaces C and
D, as expected.

Proposition 2.4. Let C, D be QCS’s. Then C

&

D =∼ (∼ C ⊗ ∼ D).

Proof. From (3) we get:

F ∈ (C

&

D) ⇔ 0 ≤ tr(F ◦ (c ⊗ d)) ≤ 1 for all c ∈ ∼ C and all d ∈ ∼ D,

from which the conclusion follows immediately. �

3. The category QCS

In this section we introduce the category QCS of Quantum Coherent Spaces
and we show that it is ∗-autonomous. The same result holds for the different
formulation of QCS’s given in [12] (see the comments in Sect. 1). Here we provide
a quite detailed proof that QCS is ∗-autonomous, mostly for sake of completeness.

The objects of the category QCS are the QCS’s. Let C ⊆ H(X) and D ⊆ H(Y )
be QCS’s. The morphisms between C and D are the elements of C � D.

Next we define the composition of morphisms: let F ∈ C � D and G ∈ D� E.
We define G ◦ F as follows:

[G ◦ F ] = [G] ◦ [F ],

where [·] is the linear mapping implicitly defined in (1). The composition of
morphisms is clearly associative. Moreover, for each D ⊆ H(X) there exists a
morphism idD ∈ H(X ⊗ X) that is an identity with respect to composition of
morphisms. From the definition of composition it must be that [idD] = idH(X).
Therefore idD = twist, where twist ∈ H(X ⊗ X) is (the linear extension of the
map) defined by

twist : f ⊗ g 
→ g ⊗ f.

For, [twist] = idH(X) (see [5]).

Once we have defined composition of morphisms and identities, the notion of
isomorphism is the standard (category-theoretic) one. We shall write C � D to
say that C and D are isomorphic QCS’s.

Proposition 3.1. Let C ⊆ H(X) and D ⊆ H(Y ) be QCS’s. The following are
equivalent:

(1) C � D;
(2) there exists a linear isomorphism L : H(X) → H(Y ) such that L(C) = D.

Proof. (1) ⇒ (2) is completely straightforward.
As for (2) ⇒ (1), let L be as in (2) and let T = L−1. Then [T ]−1 ◦ [L]−1 = idC

and [L]−1 ◦ [T ]−1 = idD. �
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Let F ∈ C � D. Then ‖[F ](g)‖D ≤ ‖g‖C and

g �C h ⇒ [F ](g) �D [F ](h)) for all g, h ∈ FinC .

If F is an isomorphism then ‖[F ](g)‖D = ‖g‖C and

g �C h ⇔ [F ](g) �D [F ](h) for all g, h ∈ FinC .

Here is a sketch of proof of the latter equivalence:

g �C h ⇔ h − g ∈ C+ ⇔ [F ](h) − [F ](g) ∈ D+ ⇔ [F ](g) �D [F ](h).

Therefore the isomorphism F induces seminorm – and order – preserving linear
isomorphism between FinC and FinD that is compatible with the seminorms and
the preorders defined on C and D, as expected.

Conversely, if L is a seminorm – and order – preserving linear isomorphism
between FinC and FinD, it is not always the case that L induces an isomorphism
between C and D: this is the case exactly when X and Y have the same dimension.
We will see later that, from our definition of isomorphism, it follows that

C � D ⇒ ∼ C � ∼ D, for all QCS’s C, D.

The previous property does not hold in general if we define an isomorphism be-
tween C and D as a linear isomorphism L between FinC and FinD that is com-
patible with seminorms and preorders (equivalently: such that L(C) = D).

In the rest of this section, we will first prove the existence of a number of useful
(although expected) isomorphisms among QCS’s. Then we will sketch a proof that
QCS is a ∗-autonomous category, as the category of coherent spaces is (see [3]).
We prefer not to immediately start proving that QCS is ∗-autonomous in order
to get more familiarity with QCS’s. This choice will involve a certain amount of
repetition later on.

Proposition 3.2. In QCS there is an object 1 such that C⊗1 � C and 1⊗C � C
for all QCS’s C.

Proof. Let 1 = {g ∈ H(C) : 0 ≤ tr(g) ≤ 1}, so 1 is isomorphic to the real interval
[0, 1]. It is clear that the Hermitian ρC defined by [ρC ] : f ⊗ idC 
→ f yields an
isomorphism between C ⊗ 1 and C. Similarly for the other isomorphism λC . �

We denote by T ∗ the adjoint of an operator T. We recall a fairly elementary
fact:

Proposition 3.3. Let T : V → W be a linear isometric isomorphism of finite
dimensional complex Hilbert spaces. Let End(V ),End(W ) be the spaces of lin-
ear endomorphisms of V, W respectively. Then the map T : End(V ) → End(W )
defined by T (f) = TfT ∗ is a linear isomorphism that satisfies the following prop-
erties:

(1) T (f ◦ g) = T (f) ◦ T (g) for all f, g ∈ End(V );
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(2) tr(T (f)) = tr(f) for all f ∈ End(V );
(3) the restriction of T to H(V ) is a R–linear isomorphism onto H(W ) with

the property that T (∼ A) =∼ T (A) for all A ⊆ H(V ).

Proof. The proofs of (1) and (2) are straightforward.
As for the first part of (3), in order to prove that, T (f) is in H(W ) when

f ∈ H(V ), it suffices to show that 〈T (f)(T (x)), y〉 = 〈T (x), T (f)(y), for all x ∈ V
and all y ∈ W. Note that

〈T (f)(T (x)), y〉 = 〈Tf(x), y〉 = 〈f(x), T ∗(y)〉 = 〈x, fT ∗(y)〉 = 〈T (x), T fT ∗(y)〉,

as required.

The second part of (3) is also straightforward. �

We are now ready to prove the following:

Proposition 3.4. Let C ⊆ H(X) and D ⊆ H(Y ) be QCS’s. Then C⊗D � D⊗C.

Proof. Let T : X⊗Y → Y ⊗X be the linear isomorphism defined by x⊗y 
→ y⊗x.
By Proposition 3.3, T induces a linear isomorphism T : H(X ⊗ Y ) → H(Y ⊗ X)
with the property that T (C⊗D) =∼∼ T ({c⊗d : c ∈ C, d ∈ D}). Since T (f ⊗g) =
g ⊗ f for all f ∈ H(X), g ∈ H(Y ), it follows that T (C ⊗ D) = D ⊗ C. By
Proposition 3.1 we finally get C ⊗ D � D ⊗ C. �

Each ∗-autonomous category is equipped with a (not necessarily unique) dual-
izing object ⊥, satisfying certain properties (see [3]). It is straightforward to prove
that the object ⊥= 1 behaves as a dualizing object in QCS (see Prop. 3.22).
Notice that ∼⊥ =⊥ .

The following holds:

Proposition 3.5. Let C ⊆ H(X) be a QCS. Then ∼ C � (C �⊥).

Proof. The elements of H(X ⊗ C) are of the form f ⊗ idC, with f ∈ H(X). By
applying (2) and the properties of trace, for all f ∈ H(X) we get the following
chain of equivalences:

f ⊗ idC ∈ C �⊥ ⇔ 0 ≤ tr([f ⊗ idC]g) ≤ 1 for all g ∈ C
⇔ 0 ≤ tr(([f ⊗ idC]g) ⊗ idC) ≤ 1 for all g ∈ C
⇔ 0 ≤ tr((f ⊗ idC) ◦ (g ⊗ idC)) ≤ 1 for all g ∈ C
⇔ 0 ≤ tr(fg) ≤ 1 for all g ∈ C
⇔ f ∈ ∼ C.

The conclusion follows by applying Proposition 3.1 to the linear isomorphism f 
→
f ⊗ idC between H(X) and H(X ⊗ C). �

Proposition 3.6. Let C ⊆ H(X) and D ⊆ H(Y ) be QCS’s. Then C � D �
∼ D� ∼ C.
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Proof. By Proposition 3.1 it suffices to prove that T (C � D) = ∼ D � ∼ C
for some linear isomorphism T : H(X ⊗ Y ) → H(Y ⊗ X). From (3) we get
∼ D � ∼ C =∼ {d ⊗ c : d ∈∼ D, c ∈ C} and we can proceed as in the proof of
Proposition 3.4. �
Corollary 3.7. C

&

D � D

&

C for all QCS’s C, D.

Proposition 3.8. Let C ⊆ H(X), D ⊆ H(Y ) and E ⊆ H(Z) be QCS’s with
C � D. Then C � E � D� E.

Proof. Given a linear isomorphism L : H(X) → H(Y ) such that L(C) = D, we
define a linear isomorphism K : H(Y ⊗Z) → H(X ⊗Z) such that K(D� E) =
C � E, as follows:

[K(F )] = [F ] ◦ L.

�
Corollary 3.9. Let C, D be isomorphic QCS’s. Then ∼ C � ∼ D.

Proof. Straightforward from Propositions 3.5 and 3.8. �
Proposition 3.10.

&

and ⊗ are associative up to isomorphism.

Proof. Let C ⊆ H(X), D ⊆ H(Y ), E ⊆ H(Z) be QCS’s. Then

(C

&

D)

&

E � E

&

(C

&

D) = ∼ E � (∼ C � D) and

C

&

(D

&

E) � ∼ C � (∼ E � D).
Therefore it suffices to show that there exists a linear isomorphism

L : H(Z ⊗ (X ⊗ Y )) → H(X ⊗ (Z ⊗ Y ))

such that L(∼ E � (∼ C � D)) = ∼ C � (∼ E � D). Given F ∈ H(Z ⊗ (X ⊗
Y )), we define L(F ) as follows:

[[L(F )](f)](h) = [[F ](h)](f),

for f ∈ H(X) and h ∈ H(Z). It is easy to check that L has the required properties.
As for the associativity of ⊗, one repeatedly uses C ⊗D =∼ (∼ C

&∼ D). �
Part of the proof of the the basic adjunction isomorphism of ∗-autonomous

categories is now straightforward:

Proposition 3.11. C ⊗ D� E � D� (C � E) for all QCS’s C, D, E.

Proof. C ⊗ D � E =∼ (C ⊗ D)

&

E = (∼ C

&∼ D)

&

E � (∼ D

&∼ C)

&

E �
∼ D

&

(∼ C

&∼ E) = D� (C � E).
The morphism F ∈ (C ⊗ D� E)� (D� (C � E)) defined by

[[[F ](g)](u)](v) = [g](v ⊗ u)

explicitly provides an isomorphism. �
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All the identities among linear connectives can be proved true (at least up to
isomorphism) in the framework of QCS’s.

Remark 3.12. Notice that all the isomorphisms established so far are canonical,
in the sense that they do not depend on a basis choice for spaces of Hermitians.
This is also true of all the isomorphisms that will be established in the sequel.

We prove a result that will be useful in the sequel. (Recall that 〈f, g〉 = tr(fg),
for f, g Hermitian operators.)

Lemma 3.13. Let C1, . . . , Cn be QCS’s and let K be a Hermitian such that

0 ≤ 〈K, f1 ⊗ (f2 ⊗ · · · ⊗ (fn−1 ⊗ fn) . . . )〉 ≤ 1 for all 1 ≤ i ≤ n and all fi ∈ ∼ Ci.

Then K ∈ C1

&

(C2

&

. . .

&

(Cn−1

&

Cn) . . . ).

Proof. If n = 2 then, from (2), we get 0 ≤ 〈[K]f1, f2〉 ≤ 1 for all f1 ∈ ∼ C1 and all
f2 ∈ ∼ C2. Hence [K]f1 ∈ C2 for all f1 ∈ ∼ C1 and so K ∈ ∼ C1 � C2 = C1

&

C2.
For n > 2, repeatedly apply (2). �
Note that associativity of

&

allows a bracket-free formulation of Lemma 3.13,
where in both f1⊗· · ·⊗fn and C1

&

. . .

&

Cn the missing brackets are understood
to be placed in the same way:

Lemma 3.14. Let C1, . . . , Cn be QCS’s. The following are equivalent for a
Hermitian K:

(1) 0 ≤ 〈K, f1 ⊗ · · · ⊗ fn)〉 ≤ 1 for all fi ∈ ∼ Ci and all 1 ≤ i ≤ n;
(2) K ∈ C1

&
. . .

&
Cn.

Proof. For (2) ⇒ (1), use C1

&

. . .

&

Cn =∼ (∼ C1 ⊗ · · · ⊗ ∼ Cn). �
Proposition 3.15. Let A ⊆ H(X) and B ⊆ H(Y ) be arbitrary sets. Then
A� (∼ B) =∼ {a ⊗ b : a ∈ A and b ∈ B}.
Proof. Straightforward. �

Proposition 3.16. Let A ⊆ H(X) and B ⊆ H(Y ) be arbitrary sets. Then
A ⊗ B = A⊗ ∼∼ B.

Proof. By Proposition 3.15 we get

A ⊗ B =∼ (A�∼ B) =∼ (A�∼∼∼ B) =∼∼ {a ⊗ c : a ∈ A and c ∈∼∼ B}
= A⊗ ∼∼ B.

�
Corollary 3.17. Let A ⊆ H(X) and B ⊆ H(Y ) be arbitrary sets. Then A ⊗ B
=∼∼ A⊗ ∼∼ B.

Proof. Follows from Proposition 3.16 by inspecting the behaviour of the isomor-
phism defined in the proof of Proposition 3.4. �
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In the rest of this section we will sketch a proof that QCS is a ∗-autonomous
category. We recall that a ∗-autonomous category is a symmetric monoidal closed
category equipped a dualizing object (see [8] and [10] for the definitions). We
borrow the notation from [8], Chapter VII.

Proposition 3.18. QCS is monoidal.

Proof. We first show that QCS is equipped with a bifunctor

⊗ : QCS× QCS → QCS.

The definition of ⊗ on pairs of coherent spaces is clear. Let us define ⊗ on pairs
of morphisms.

Let Ci ⊆ H(Xi) and Di ⊆ H(Yj), for 1 ≤ i, j ≤ 2, be QCS’s. Given f ∈ C1 �
D1 and g ∈ C2 � D2, we define f ⊗ g ∈ C1 ⊗ C2 � D1 ⊗ D2 as follows:

[f ⊗ g](u ⊗ v) = [f ](u) ⊗ [g](v) for all u ∈ H(X1) and v ∈ H(X2).

We prove that f ⊗ g ∈ C1 ⊗ C2 � D1 ⊗ D2 = (∼ C1

&∼ C2)

&

(D1 ⊗ D2). By
Lemma 3.14 it suffices to show that

0 ≤ 〈f ⊗ g, (u ⊗ v) ⊗ w〉 ≤ 1 for all u ∈ C1, v ∈ C2 and w ∈ ∼ (D1 ⊗ D2).

By (2), the previous condition is equivalent to 0 ≤ 〈[f ⊗ g](u⊗ v), w〉 ≤ 1, and the
latter is satisfied just by definition of f ⊗ g.

It is easy to prove that the functor ⊗ preserves identities and composition of
morphisms.

The next step is to check that tensor product of QCS’s is associative up to a
natural isomorphism αC,D,E ∈ (C ⊗ D) ⊗ E � C ⊗ (D ⊗ E). Note that from
Proposition 3.10 we already know associativity of the tensor product of QCS’s.

The definition of αC,D,E is clear:

[αC,D,E ]((u ⊗ v) ⊗ w) = u ⊗ (v ⊗ w).

In order to check that αC,D,E is in (C⊗D)⊗E� C⊗ (D⊗E), proceed as above.
It is straightforward to prove that αC,D,E is an isomorphism and its naturality (in
a category-theoretic sense) is just a matter of tedious calculations.

Moreover, easy “diagram chase” shows that the isomorphisms ρ and λ defined
in Proposition 3.2 are natural and that the pentagonal and triangular diagrams
(see [8]) commute.

This finishes the proof that QCS is a monoidal category. �

Remark 3.19. The definition of the natural isomorphism αC,D,E in the proof
of Proposition 3.18 is uniform, namely it does not depend on C, D, E, but just
on the relevant spaces of Hermitians. So we may write αX,Y,Z for αC,D,E , if
C ⊆ H(X), D ⊆ H(Y ) and E ⊆ H(Z). We shall use this property later on.
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Proposition 3.20. QCS is symmetric.

Proof. We have already implicitly shown (see Prop. 2.4 and Cor. 3.7) that the
tensor product of coherent spaces is commutative up to isomorphism. Indeed,
for all QCS’s C, D, the morphism γC,D defined by [γC,D](u ⊗ v) = v ⊗ u belongs
to C ⊗ D � D ⊗ C and is a natural isomorphism that satisfies γC,D = γ−1

D,C .
Furthermore, the hexagonal diagrams do commute. �
Proposition 3.21. QCS is closed.

Proof. We show that QCS is equipped with a left closed structure (see [10]).
We define the left evaluation morphism evalC,D ∈ C ⊗ (C � D) � D for all

coherent spaces C, D as follows:

[evalC,D](u ⊗ v) = [v](u).

We require the morphism evalC,D to satisfy the following universal property: for
all QCS’s E and all morphisms f ∈ C ⊗ E � D there exists a unique morphism
h ∈ E � (C � D) such that evalC,D ◦ (idC ⊗ h) = f. This requirement forces the
following definition of h (hence its uniqueness):

[[h](v)](u) = [f ](u ⊗ v). �

Proposition 3.22. The object ⊥= 1 is a dualizing object in QCS.

Proof. Let C be a QCS and let δC ∈ C � ((C �⊥) �⊥) be the morphism
corresponding to evalC,⊥ ◦γC�⊥,C via the isomorphism (C �⊥)⊗C �⊥� C �
((C �⊥)�⊥) that has been defined in Proposition 3.11. We must check (see [3])
that δC is a natural isomorphism.

An easy calculation shows that δC is defined by [[δC ](u)](v) = [v](u). The
property of natural isomorphism follows immediately from the definition. �

Finally, we summarize the previous propositions in the following:

Theorem 3.23. QCS is ∗-autonomous.

In the next section we shall see an application of the previous theorem.
In the rest of this section we show that the natural candidate for (Cartesian)

product in QCS actually fails. We need a preliminary definition. Let C1 ⊆ H(X1)
and C2 ⊆ H(X2) be QCS’s. We denote by X1 ⊕ X2 the direct sum of X1 and
X2. The inner product on X1 ⊕ X2 is the sum of the inner products of the two
summands. Let ιi : Xi → X1 ⊕ X2 and πi : X1 ⊕ X2 → Xi be the canonical
embedding/projection of/onto Xi respectively, i = 1, 2. We let

C1&C2 = {h ∈ H(X1 ⊕ X2) : πihιi ∈ Ci for i = 1, 2}.

The set C1&C2 is easily proved to be a QCS (use the Bipolar Theorem).
Dually, we have C1 ⊕C2 = {λc1 ⊕ (1− λ)c2 : c1 ∈ C1, c2 ∈ C2, 0 ≤ λ ≤ 1}. It is

easy to show that & and ⊕ are swapped by negation (see [5]).
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A candidate for the product of C1 and C2 is the triple (C1&C2, P1, P2), where
[Pi](f) = πifιi for f ∈ H(X1 ⊗ X2) and i = 1, 2. By definition of C1&C2 we have
at once that Pi ∈ (C1&C2)� Ci, i = 1, 2.

Let E ⊆ H(Z) be a QCS and let F ∈ (E � C1), G ∈ (E � C2). Let H be the
map defined by [H ](f) = [F ](f) ⊕ [G](f), when f ∈ H(Z). Clearly, P1 ◦ H = F
and P2◦H = G. Also, H ∈ E � (C1&C2). However, uniqueness of a map with the
same properties as H is not granted, as we show below. For notational convenience
we identify maps with matrices representing them with respect to fixed basis. Let
0 �= f ∈ H(Z) and let B be a basis of H(Z) extending {f}. Fix map 0 �= u and
define K as follows:

[K](g) =

⎧⎪⎪⎨
⎪⎪⎩

(
[F ](g) u

u∗ [G](g)

)
if g = f ;

[H ](g) if g ∈ B \ {f},

where u∗ is the transpose conjugate of u. Then H �= K; K ∈ E � (C1&C2);
P1 ◦ K = F and P2 ◦ K = G.

Whether QCS admits finite products remains an open problem, but the above
example suggests that products, if existing, might have a quite unnatural structure.

For sure, QCS does not have a terminal object: the zero and the twist map are
distinct maps in C � C, for all QCS’s C.

4. QCS as a categorical model

In this section we show that the category QCS is a categorical model of the
exponential-free multiplicative fragment MLL of linear logic. Actually, this fact
follows immediately from QCS being ∗-autonomous. Here we proceed in an “alge-
braic” rather than in a categorical manner, meaning by this that we fully exploit
the properties of QCS’s that have been proved in the previous sections. Also, we
briefly discuss the status of QCS as a category adequate for modelling MIX rule.

We associate to each linear formula γ a QCS �γ�, called the denotation of γ.
Indeed it suffices to provide denotations for the propositional letters and for the
logical constants. The former are freely chosen. The denotations of constants 1
and ⊥ are the objects with the same names in the category QCS.

The the denotation of formula γ⊥ is ∼ �γ�. For each multiplicative binary linear
connective 	, the denotation of γ 	 δ is �γ� 	 �δ�.

Strictly speaking, the denotation �� γ1, . . . , γn� of sequent � γ1, . . . , γn should
belong to 1� �γ1�

&

. . .

&

�γn�. Indeed one can easily get from f ∈ �γ1�

&

. . .

&

�γn� a Hermitian F ∈ 1� �γ1�

&

. . .

&

�γn�, simply by letting [F ] : idC 
→ f. For
this reason we stipulate that �� γ1, . . . , γn� = �γ1�

&

. . .

&

�γn�.
Note that associativity up to isomorphism of

&

allows us to almost forget
about brackets. Formally we stipulate that, in a sequence of

&

(or of ⊗), brackets
associate to the left.
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We denote a proof Π in MLL by a Hermitian �Π� belonging to the denotation
of its end-sequent. We proceed by induction on proofs, by focusing on the last
rule.

(A) exchange rule: for simplicity we formulate the exchange rule as
� γ, δ

� δ, γ
·

Suppose f ∈ �γ�

&

�δ� denotes the proof of � γ, δ. Recall that there is a
canonical isomorphism �γ�

&

�δ� � �δ�

&

�γ�. Use such an isomorphism to
get the denotation of the proof of � δ, γ.

(B) constant 1 rule: we denote the proof � 1
by idC.

(C) constant ⊥ rule:
� Γ

� Γ,⊥ ·

Suppose f ∈ �Γ� denotes the proof of � Γ. Then the proof of � Γ,⊥ is
denoted by f ⊗ idC.
(To check that f⊗idC ∈ �Γ�

&⊥, use �Γ�

&⊥ =∼ {h⊗k : h ∈ ∼ �Γ� and
k ∈ 1}).

(D) axioms: we denote the proof � γ⊥, γ
· by the Hermitian id�γ� =

twist (see Sect. 3). Note that, by (2) of Section 2, the map idC = twist
belongs to ∼C

&

C for all QCS’s C. Hence the denotations of propositional
letters can be freely chosen.

(E) cut rule: for notational simplicity we formulate the cut rule as follows:

� δ, γ � γ⊥, ε

� δ, ε
·

Let f ∈ �δ�

&

�γ� = ∼ �δ� � �γ� and g ∈ ∼ �γ�

&

�ε� = �γ� � �ε� be
denotations of the proofs of � δ, γ and � γ⊥, ε respectively. We define
the denotation k ∈ �γ�

&

�ε� = ∼ �δ�� �ε� of the proof of � δ, ε as g ◦ f,
where ◦ is the composition of morphisms in the category QCS defined in
Section 3.

(F) tensor rule:
� γ, δ1 � δ2, ε

� γ, δ1 ⊗ δ2, ε
·

Let �γ� ⊆ H(X), �δ1� ⊆ H(Y ), �δ2� ⊆ H(V ), �ε� ⊆ H(W ). Let f ∈
�γ�

&

�δ1� = ∼ �γ� � �δ1� and g ∈ �ε�

&

�δ2� = ∼ �ε� � �δ2� be the
denotations of the proofs of � γ, δ1 and � δ2, ε respectively.

We shall define k ∈ �γ�

&

(�δ1� ⊗ �δ2�)

&

�ε�. Let l ∈ hom(H(X ⊗
W ), H(Y ⊗ V )) with the property that

l(x ⊗ w) = [f ]x ⊗ [g]w, for all x ∈ H(X), w ∈ H(W ).

Since the canonical isomorphism between (X ⊗ W ) ⊗ (Y ⊗ V ) and X ⊗
(Y ⊗V )⊗W induces an isomorphism between H((X⊗W )⊗ (Y ⊗V )) and
H(X ⊗ (Y ⊗ V ) ⊗ W ), the linear map l uniquely determines an element
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k ∈ H(X ⊗ (Y ⊗ V ) ⊗ W ), via the map [ · ]. We stipulate that k is the
denotation of the proof of � γ, δ1 ⊗ δ2, ε.

In order to prove that k is in �γ�

&

(�δ1� ⊗ �δ2�)

&

�ε�, we first notice
that, by Proposition 3.3 and by (2) of Section 2,

〈k, x ⊗ u ⊗ w〉 = 〈[l]−1, x ⊗ w ⊗ u〉 = 〈l(x ⊗ w), u〉 = 〈[f ]x ⊗ [g]w, u〉,

for all x ∈ H(X), u ∈ H(Y ⊗ V ) and w ∈ H(W ). If x ∈ ∼ �γ�, u ∈
∼ (�δ1� ⊗ �δ2�) and w ∈ ∼ �ε� then [f ]x ∈ �δ1� and [g]w ∈ �δ2�. Hence
0 ≤ 〈k, x ⊗ y ⊗ w〉 ≤ 1. By Lemma 3.14, k ∈ �γ�

&

(�δ1� ⊗ �δ2�)

&

�ε�.

(G)

&

rule:
� γ, δ, ε

� γ, δ

&

ε
·

Let g ∈ (�γ�

&

�δ�)

&

�ε� be the denotation of the proof of � γ, δ, ε. The
canonical isomorphism between (�γ�

&

�δ�)

&

�ε� and �γ�

&

(�δ�

&

�ε�) im-
plicitly defined in the proof of Proposition 3.10 yields at once an ele-
ment k ∈ �γ�

&

(�δ�

&

�ε�). More explicitly: since (�γ�

&

�δ�)

&

�ε� =∼ ((∼
�γ�⊗ ∼ �δ�)⊗ ∼ �ε�) and �γ�

&

(�δ�

&

�ε�) =∼ (∼ �γ� ⊗ (∼ �δ�⊗ ∼ �ε�)),
we use the natural isomorphism α∼�γ�,∼�δ�,∼�ε� defined in the proof of
Proposition 3.18 and we proceed as in the proof of Proposition 3.8 to get
the required canonical isomorphism. Let β�γ�,�δ�,�ε� be such an isomor-
phism. Note that the definition of β�γ�,�δ�,�ε� is uniform in �γ�, �δ�, �ε� (see
Rem. 3.19 and the proof of Prop. 3.8). Hence we may write βX,Y,Z for
β�γ�,�δ�,�ε� if �γ� ⊆ H(X), �δ� ⊆ H(Y ) and �ε� ⊆ H(Z).

This completes the process of denotation of a proof.

So far we have not investigated the consequences of the choice of ⊥= 1 as a
dualizing object in the category QCS. It immediately implies that QCS is an
isoMIX category, in the sense of [4], Section 6.

Recall that having ⊥= 1 at the level of calculus is equivalent to having the mix
and the mix0 rules (see [1]):

� Γ � Δ
mix� Γ, Δ

mix0�

As for derivability of mix, from ⊥= 1, we get ⊥=⊥⊥ and the following deriva-
tion:

� Γ

� Γ,⊥
� Δ

�⊥, Δ
cut� Γ, Δ

(4)

Hence one may add the mix and mix0 rule to the set of rules. In particular,
we define the denotation of the empty sequent � by letting � � � = 1. The
derivation (4) tells us at once that if F ∈ �� Γ� and G ∈ �� Δ� are the denotations
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of the proofs of Γ and Δ respectively, then the denotation of the proof of � Γ, Δ
obtained by application of the mix rule is just F ⊗ G.

Similarly, the Hermitian associated to an application of mix0 rule is idC.

When defining a denotational semantics, one is also concerned with its invari-
ance under cut-elimination. Namely, one requires the denotation of a proof Π
being the same as the denotation of any proof Π′ obtained from Π by applying
one step of cut-elimination. If a cut-elimination theorem holds (as is the case with
MLL), an immediate consequence of invariance under cut-elimination is that if Π′

is a cut-free transform of Π then both have the same denotation. Indeed one asks
for modular invariants (see [10]).

Since QCS is ∗-autonomous, from [10] we get the following:

Proposition 4.1. Let Π be a proof in MLL and let Π′ be obtained from Π by
applying one step of cut-elimination. Then Π and Π′ have the same denotation.

5. Symmetric tensor powers of QCS’s and bounded

exponentials.

The approach outlined in the previous sections cannot be extended to the in-
finite dimensional case, for the simple reason that the trace of an operator may
not be defined. (See the discussion in [5], Sect. 17.6.1). As for the logic, this
means that there is no chance of interpreting the exponentials of linear logic into a
QCS’s setting. Nevertheless we can incorporate in the current approach the novel
bounded exponentials, whose definition is based on that of symmetric tensor power
of QCS’s. In turn, the latter is inspired by the symmetric tensor powers of Hilbert
spaces, a central notion in quantum physics.

On the logic side, we introduce the bounded exponentials of formulas, together
with their deduction rules. Basically, such rules yield a subsystem of Bounded Lin-
ear Logic ([7]). We interpret bounded exponential formulas by means of bounded
exponentials of QCS’s and we also extend the denotation of proofs in presence of
the new rules.

In the first part of this section we recall a few standard notions, mostly for the
purpose of fixing the notation.

We denote by ⊗nV the n-fold tensor power of the finite dimensional complex
Hilbert space V. Recall that ⊗nV is a Hilbert space with the induced Hermitian
product

〈〈v1 ⊗ · · · ⊗ vn, w1 ⊗ · · · ⊗ wn〉〉 =
n∏

i=1

〈vi, wi〉,

where 〈 , 〉 is the Hermitian product on V. We also let ⊗0V = C. If u ∈ H(V ),
we write ⊗nu for u ⊗ · · · ⊗ u︸ ︷︷ ︸

n times

.

Recall that 1 is the QCS defined in the proof of Proposition 3.2.



QUANTUM COHERENT SPACES AND LINEAR LOGIC 435

We define the n-fold tensor power ⊗nA of A ⊆ H(V ) as follows:

⊗0A = 1; ⊗nA =∼∼ {u1 ⊗ · · · ⊗ un : ui ∈ C for all 1 ≤ i ≤ n}, when n > 0.

Clearly ⊗nA is a QCS and ⊗nA ⊆ H(⊗nV ). Dually, we define

&

nA =∼ ⊗n(∼ A).

Note that if C ⊆ H(V ) is a QCS and if we recursively define

⊗0C = 1; ⊗n+1C = C ⊗ (⊗nC),

then we can prove by induction that ⊗nC is isomorphic to ⊗nC, for all n. To prove
the inductive step we assume ⊗nC � ⊗nC. Then

⊗n+1C � ∼∼ {c1 ⊗ (c2 ⊗ · · · ⊗ cn) : ci ∈ C} = C ⊗ {c2 ⊗ · · · ⊗ cn : ci ∈ C}
= C⊗ ∼∼ {c2 ⊗ · · · ⊗ cn : ci ∈ C} = C ⊗ (⊗nC)
� C ⊗ (⊗nC) = ⊗n+1C,

where the rightmost equality of the first line follows from Proposition 3.16.

We denote the symmetric group on {1, . . . , n} by Sn We recall that Sn acts on
the algebraic n-fold tensor product ⊗nH(V ) of H(V ) in a natural way: let g ∈ Sn

and let us denote also by g the isometric automorphism of ⊗nH(V ) given by the
linear extension of the mapping

u1 ⊗ u2 ⊗ · · · ⊗ un 
→ ug(1) ⊗ ug(2) ⊗ · · · ⊗ ug(n).

As customary, we write gu for g(u), when g ∈ Sn and u ∈ H(⊗nV ). The
mapping

G ×⊗nH(V ) → ⊗nH(V )
(g, u) 
→ gu

yields the required action. (Note: in the literature, the action is usually defined by
(g, u) 
→ g−1u, just for computational convenience.) For each g ∈ Sn, the mapping
u 
→ gu is indeed a linear isometric homeomorphism of ⊗nH(V ).

Recall that, for n > 0, the n-fold symmetric tensor product of H(V ) is defined
as follows (see [2]):

⊗s
nH(V ) = {u ∈ ⊗nH(V ) : gu = u for all g ∈ Sn}.

Proposition 5.1. ⊗s
nH(V ) =∼∼ {⊗nv : v ∈ H(V )}.

Proof. Since ⊗s
nH(V ) is the linear span of {⊗nv : v ∈ H(V )} (see [2]), it suffices to

show that ∼∼ {⊗nv : v ∈ H(V )} is a linear space. Let c, d ∈ H(V ) and λ, μ ∈ R.
By the Bipolar Theorem, η(⊗ne) ∈∼∼ {⊗nv : v ∈ H(V )}, for all η ∈ R and all
e ∈ H(V ). Therefore, by convexity of bipolar sets, 1

2 (2λ(⊗nc) + 2μ(⊗nd)) ∈∼∼
{⊗nv : v ∈ H(V )}, as required. �
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Inspired by Proposition 5.1, we introduce the novel notion of n-fold symmetric
tensor product of an arbitrary set A ⊆ H(V ) as follows:

⊗s
0A = 1; ⊗s

nA =∼∼ {⊗nv : v ∈ A}, when n > 0.

Note that the set {u ∈ ⊗nA : gu = u for all g ∈ Sn} is a QCS. This follows easily
from the Bipolar Theorem: condition 1, 3, 4 and convexity are easily verified; as
for closeness, let (uk)k∈N be a sequence in {u ∈ ⊗nA : gu = u for all g ∈ Sn}
such that (uk) → u. Then (guk) → gu, namely (uk) → gu for all g ∈ Sn. It
follows that gu = u for all g ∈ Sn, hence the conclusion. Furthermore, we have
⊗s

nA ⊆ {u ∈ ⊗nA : gu = u for all g ∈ Sn}. It is an open question whether the
converse inclusion holds in general.

It follows from Corollary 3.17 that ⊗s
mA⊗⊗s

nA =∼∼ {(⊗mv)⊗ (⊗nw) : v, w ∈
A}.

Keeping in mind the definition of “&” of QCS’s given at the end of Section 3,
we can now define the bounded exponentials.

Definition 5.2. The bounded exponentials !nC and ?nC of a QCS C are defined
as:

!nC = ⊗s
n(1&C) and ?nC =∼!n(∼ C)

respectively.

We syntactically introduce the bounded exponentials !nγ and ?nγ = (!n(γ⊥))⊥

of a formula γ. If Γ is a sequence γ1, . . . , γk of formulas and n = (n1, . . . , nk), we
write !nΓ as a shortening for !n1γ1, . . . , !nk

γk. Similarly with ?nΓ. We let mn =
(mn1, . . . , mnk).

The following deduction rules are available for the bounded exponentials:

� γ, Δ
Dereliction (D)�?1γ, Δ

� Δ
Weakening (W )�?0γ, Δ

�?mγ, ?nγ, Δ
Contraction (C)�?m+nγ, Δ

� γ, ?n Δ
Promotion (P ),�!mγ, ?mnΔ

�?0γ, Δ
Deperdition (Dp)�?nγ, Δ

Modulo rule C, Dp is equivalent to the following:
�?mγ, Δ

�?m+nγ, Δ
·

Moreover, we have the following derived rules:
� Δ

�?mγ, Δ
and

� γ, Δ

�?mγ, Δ
for

m > 0.
We denote by B!LL the extension of MLL with the rules for the bounded ex-

ponentials. Note that B!LL is basically the intermediate system between second
order Rudimentary Linear Logic and Bounded Linear Logic introduced in [7], Sec-
tion 2.4, with the addition of rule Dp.
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At first sight B!LL has some resemblance to the finitary version SLLf of Soft
Linear Logic introduced in [11], but the rules of the two systems, and their mean-
ings, are clearly different. Nevertheless, on the semantic side, bounded exponen-
tials are reminiscent of finitary multiplexors (see [11], Sect. 5). In spite of QCS
lacking a natural structure of Cartesian category (see Sect. 3), a natural ques-
tion is whether the bounded exponentials endow QCS with a finitary multiplexor
category structure. An attempt of defining an endofunctor !t, t ∈ N, as in [11],
Definition 3 leads to the obvious definition on objects, but, apparently, there is no
natural and straightforward way to get a functorial extension to morphisms.

As for the denotation of the bounded exponentials, we let �!nγ� =!n�γ�, from
which the denotation of ?nγ can be immediately obtained.

Next we extend the denotation of proofs by taking into account the rules for
bounded exponentials. We proceed as in Section 4, after establishing some pre-
liminary facts.

(1) Given f ∈ C1⊗· · ·⊗Ck � D, we can can get g ∈ (1&C1)⊗· · ·⊗(1&Ck)�
(1&D) as [L]−1, where L is any linear extension of the mapping :

u1 ⊗ · · · ⊗ uk 
→ 0 ⊕ [f ](π2u1ι2 ⊗ · · · ⊗ π2ukι2), ui ∈ 1&Ci, 1 ≤ i ≤ k.

To prove that g has the required property, by Lemma 3.14 it suffices to
check that 〈g, u1⊗· · ·⊗uk⊗w〉 ∈ [0, 1], for ui ∈ (1&Ci) and w ∈∼ (1&D).
The latter is equivalent to 〈L(u1 ⊗ · · · ⊗ uk), w〉 ∈ [0, 1], which is satisfied
by definition of L.

(2) Let A ⊆ H(X), B ⊆ H(Y ). Let T : H(X) → H(Y ) be a linear map
such that T (A) ⊆ B. Assuming 0 ∈ A, we can define a linear map S such
that S(∼∼ A) ⊆∼∼ B by letting S = T ◦ L, where L : H(X) → H(X)
is a an arbitrarily chosen linear map such that L(∼∼ A) ⊆ A. Hence
[S]−1 ∈ (∼∼ A)� (∼∼ B).

Indeed, whenever we will appeal to this fact in the sequel, we will always
be able to pick 0 �= L. We leave the reader to verify it.

Now we extend the denotation of proofs by including the rules for the bounded
exponentials.

(D) It suffices to show how to associate to f ∈ (C � D) an element g ∈ (C �
1 ⊕ D), where C, D are arbitrary QCS’s. We let [g] : v 
→ 0 ⊕ [f ](v).
Clearly [g](v) ∈ 1⊕ D whenever v ∈ C.

(W) Since �?0γ� =∼ �!0(γ⊥)� =∼ 1 = 1, we proceed as in the denotation of
the rule for ⊥ .

(C) First of all note that ⊗s
m+nC ⊆ ⊗s

mC ⊗⊗s
nC, hence ?mC

&

?nC ⊆?m+nC,
for all QCS’s C. So a map f ∈ (D � ?mC

&

?nC) is a fortiori in D �
?m+nC, for all QCS’s C, D.

(P) From f ∈ �!n̄Δ� � �γ�, we want to get g ∈ �!mn̄Δ� � �!mγ�. We first
appeal to fact (1) above and, from f, we get h ∈ (1&�!n1δ1�) ⊗ · · · ⊗
(1&�!nk

δk�)� (1&�γ�).
Then we let A = {(⊗mu1) ⊗ · · · ⊗ (⊗muk) : ui ∈ (1&�!niδi�), 1 ≤ i ≤

k} and B = {⊗mv : v ∈ 1&�γ�)}. Note that, by repeatedly applying
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Corollary 3.17, we get ∼∼ A = ⊗s
m(1&�!n1δ1�) ⊗ · · · ⊗ ⊗s

m(1&�!nk
δk�),

namely ∼∼ A = �!m!n1δ1� ⊗ · · · ⊗ �!m!nk
δk�. Moreover ∼∼ B = �!mγ�.

Let T̄ be any linear extension of the mapping T : A → B given by T :
(⊗mu1)⊗· · ·⊗(⊗muk) 
→ ⊗m[h](u1⊗· · ·⊗uk). Then, by fact (2) above, we
get some h̄ ∈ (�!m!n1δ1� ⊗ · · · ⊗ �!m!nk

δk� � �!mγ�. Further applications
of (2) yield hi ∈ �!mniδi� � �!m!niδi�, for all 1 ≤ i ≤ k (begin with
⊗mnui 
→ ⊗m(0 ⊕ (⊗nui)), for ui ∈ 1&�δi�). Finally, we let g = h̄(h1 ⊗
· · · ⊗ hk).

(Dp) Given f ∈ 1� C, we define g ∈ (∼?nD)� C. Let L be a linear extension
of the mapping defined by

⊗nu 
→ [f ](π1uι1), u ∈ 1&(∼ D).

Since ∼∼ {⊗nu : u ∈ 1&(∼ D)} =∼?nD, from fact (2) we get a linear
mapping S such that S(∼?nD) ⊆ C. Finally, we let g = [S]−1.

6. Normalization in B!LL

In this section we outline a normalization procedure to show that B!LL has a
good proof-theoretic behaviour. We also show that B!LL is well-behaved as far
as the computational complexity of the normalization process is concerned. The
procedure will not eliminate all cuts. The reasons for such limitation can be found
in [7], to which the reader is referred for all the details. Our result is a modification
of of the procedure presented therein.

Clearly, complexity of the normalization procedure is a different issue from
whether B!LL or, rather, its extension to second order, provides an implicit char-
acterization of a relevant complexity class. As already mentioned in the Intro-
duction, the latter is beyond the scope of this work. Indeed, it appears that a
second order extension of B!LL has same strength as the system described in [7],
Section 2.4, that the authors claim to be powerful enough to express all feasible
(i.e. polytime) functions.

In what follows, we do not want to deal with the exchange rule explicitly, so we
regard sequents as formal expressions � Γ, where Γ is a finite multiset of formulas.
We provide some preliminary definitions, whose motivations can be found in [7].
We say that:

– an instance of the cut rule is boxed if it is above a rule P ;
– a cut is irreducible if it is boxed or if its left premise is obtained by ap-

plication of P to a sequent of length at least 2 and its right premise is
obtained either by D, W, C, P or Dp;

– a B!LL proof is irreducible if it contains no reducible cuts.
(Compare with [7], Sect. 4, Appendix A).
The normalization procedure will eliminate only nonboxed cuts. We define the

weight 
π and the cut-size |π| of a proof π as in [7] (see in particular Sect. 2.4).



QUANTUM COHERENT SPACES AND LINEAR LOGIC 439

We regard the rule for the constant 1 as an axiom. We stipulate that the weight
increases by 1 as effect of an application of the constant ⊥ rule or of Dp.

Weight and cut-size of a proof are always positive natural numbers.
As in [7], we define different kinds of reductions: axiom, symmetric and com-

mutative. We do not provide their full list, but we just present a few cases. All
the other cases can be easily formulated (in particular those concerning the rules
for the logical constants) or essentially already appear in [7].

None of the reduction steps applies to irreducible cuts.
– Symmetric reductions.

� 1

··· ρ

� Γ

�⊥, Γ

� Γ

S1⊥�
··· ρ

� Γ

··· ρ

� γ

�!m+nγ

··· ω

�?mγ⊥, ?nγ⊥, Δ

�?m+nγ⊥, Δ

� Δ

SPC�
··· ρ

� γ

�!nγ

··· ρ

� γ

�!mγ

··· ω

�?mγ⊥, ?nγ⊥, Δ

�?nγ⊥, Δ

� Δ

··· ρ

� γ

�!mnγ

··· ω

�?nγ⊥, ?r̄Γ, δ

�?mnγ⊥, ?mr̄Γ, !mδ

�?mr̄Γ, !mδ

SPP�

··· ρ

� γ

�!nγ

··· ω

�?nγ⊥, ?r̄Γ, δ

�?r̄Γ, δ

�?mr̄Γ, !mδ

··· ρ

� γ

�!nγ

··· ω

�?0γ
⊥, Δ

�?nγ⊥, Δ

� Δ

SPDp� �!0γ

··· ω

�?0γ
⊥, Δ

� Δ
·

It is a matter of easy calculations to check that each symmetric reduction re-
duces the weight of a proof. For instance, before the SPDp reduction the weight
is (
ρ + 1)n + 1 + (
ω) + 1 and decreases to 1 + 
ω after the reduction.
– Commutative reductions.

··· ρ

�?mδ, ?nδ, Γ, η

�?m+nδ, Γ, η

··· ω

� η⊥, Δ

�?m+nδ, Γ, Δ

CLC�

··· ρ

�?mδ, ?nδ, Γ, η

··· ω

� η⊥, Δ

�?mδ, ?nδ, Γ, Δ

�?m+nδ, Γ, Δ
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··· ρ

� Γ, η

··· ω

� η⊥, Δ

� η⊥, Δ, ?0δ

� Γ, Δ, ?0δ

CRW�

··· ρ

� Γ, η

··· ω

� η⊥, Δ

� Γ, Δ

� Γ, Δ, ?0γ

··· ρ

�?0δ, Γ, η

�?nδ, Γ, η

··· ω

� η⊥, Δ

�?nδ, Γ, Δ

CLDp�

··· ρ

�?0δ, ?nΓ, η

··· ω

� η⊥, Δ

�?0δ, Γ, Δ

�?nδ, Γ, Δ

� 1

··· ρ

�⊥, Γ

�⊥, Γ, ?0δ

� Γ, ?0δ

C1W�
� 1

··· ρ

�⊥, Γ

� Γ

� Γ, ?0δ
·

Straightforward calculations show that the commutative reductions do not in-
crease the weight. For instance, in the case CLDp above, the weights are (
ρ) +
(
ω) + 1 before and after the reduction step.

As in [7], Proposition 2.1, we can prove that |π| ≤ (
π)2 for all B!LL proof π.
By inspecting all the cases, we can also check that the cut-size decreases after

any commutative reduction. With reference to the proof trees above, we compute
the cut-size before and after the reduction in a few cases:

CLC – before: |ρ| + |ω| + 
ρ + 
ω + 4; after: |ρ| + |ω| + 
ρ + 
ω + 2.
CLDp – before: |ρ| + |ω| + 
ρ + 
ω + 2; after: |ρ| + |ω| + 
ρ + 
ω + 1.
C1W – before: |ρ| + 
ρ + 4 ; after: |ρ| + 
ρ + 3.

We can now summarize the content of this section in the following:

Theorem 6.1. In any B!LL proof π, any sequence of reductions on reducible cuts
terminates in at most (
π)3 steps.

Proof. Since axiom and symmetric reductions decrease the weight, one can perform
at most 
π such reduction steps starting from a proof π. Moreover, between any two
such reductions one can perform at most (
π)2 consecutive commutative reduction
steps, because the commutative reductions decrease the cut-size and |π| ≤ (
π)2.

Therefore any sequence of reduction steps on reducible cuts starting from π
terminates in at most (
π)3 steps. �
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