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SUPERIORITY OF ONE-WAY AND REALTIME
QUANTUM MACHINES *> **

ABUZER YAKARYILMAZ!

Abstract. In automata theory, quantum computation has been widely
examined for finite state machines, known as quantum finite automata
(QFAs), and less attention has been given to QFAs augmented with
counters or stacks. In this paper, we focus on such generalizations of
QFAs where the input head operates in one-way or realtime mode, and
present some new results regarding their superiority over their classical
counterparts. Our first result is about the nondeterministic acceptance
mode: Each quantum model architecturally intermediate between real-
time finite state automaton and one-way pushdown automaton (one-
way finite automaton, realtime and one-way finite automata with one-
counter, and realtime pushdown automaton) is superior to its classical
counterpart. The second and third results are about bounded error
language recognition: for any k > 0, QFAs with & blind counters out-
perform their deterministic counterparts; and, a one-way QFA with a
single head recognizes an infinite family of languages, which can be
recognized by one-way probabilistic finite automata with at least two
heads. Lastly, we compare the nondeterminictic and deterministic ac-
ceptance modes for classical finite automata with k blind counter(s),
and we show that for any k > 0, the nondeterministic models outper-
form the deterministic ones.
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1. INTRODUCTION

Quantum computation is a generalization of classical computation [36, 45].
Therefore, it is interesting to investigate the cases in which quantum computa-
tion is superior to classical computation. Unfortunately, due to their restricted
definitions, early quantum finite automaton (QFA) models were shown to be less
powerful than their classical counterparts for some cases (e.g. [1,5, 18,23, 49]).
These models do not reflect the full power of quantum computation [37]. In this
paper, we use “modern” definitions for the quantum models (e.g. [4,17,39,45])
and then we present some new results about how quantumness adds power to one-
way and realtime computational models.? We also give a new result on classical
computation.

Our first result is on nondeterministic computation. The superiority of quantum
models has been known for realtime finite automata and one-way pushdown au-
tomata in nondeterministic acceptance mode [10,25,26,42]. We extend this superi-
ority to every model architecturally intermediate between realtime finite automata
and one-way pushdown automata.

Main Result 1. In nondeterministic acceptance mode, quantum one-way
automata, quantum realtime finite automata with one-counter, quantum one-way
finite automata with one-counter, and quantum realtime pushdown automata are
superior to their classical counterparts.

Our second result is on finite automata with blind counter(s). On contrary
to standard omnes [11], the status of blind counters are never tested during the
computation. This restriction leads to a dramatic decrease in the power of com-
putation [15]. We show how a quantum trick can be used to test the status of a
blind counter algorithmically. That is, we present a realtime quantum automaton
with one blind counter recognizing a language that cannot be recognized by any
realtime deterministic automaton with & blind counter(s), k& > 0.

Main Result 2. For any k > 0 and € € (0, %), the class of languages recognized
by realtime deterministic automata with k blind counter(s) is a proper subset of the
class of languages recognized by realtime quantum automata with k blind counter(s)
with error bound e.

Our third result is on one-way (multi-head) finite automata. Rosenberg [30]
presented an infinite family of languages such that for any k£ > 0, we have some
languages which cannot be recognized by any one-way k-head deterministic au-
tomaton [12,20]. Freivalds [12] presented a one-way two-head probabilistic au-
tomaton recognizing this whole family with any error bound. We show that one
head is sufficient for one-way quantum automata to obtain the same result.

2 Here is a list of references presenting some cases in which one-way or realtime quantum mod-
els are superior to their classical counterparts: [1-3,7-10,14,16,18,19,21, 22,24, 26,31-33,41-49].
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Main Result 3. For any k > 0, there exists a language which cannot be recog-
nized by any one-way k-head deterministic automaton, but it is recognized by a
one-way (one-head) quantum automaton.

Our last result is on classical computation. We show that nondeterministic
automata are superior to deterministic ones if they both have the same number of
blind counter(s).

Main Result 4. For any k > 0, the class of languages recognized by realtime
deterministic automata with k blind counter(s) is a proper subset of the class of lan-
guages recognized by realtime nondeterministic automata with k blind counter(s).

We refer the reader to [38] for a preliminary version of this paper. We give all
definitions and complete proofs in the current version. The definitions of models
and other basics are given in Section 2 and our main results are presented in
Section 3. We also have an appendix, in which some technical details of quantum
models are given for completeness of the paper.

2. BACKGROUND

In this section, we provide some background information.

2.1. BASIC NOTATION

Throughout the paper, we use the following notations: X, not containing ¢ and
$ (the left and the right end-markers respectively), denotes the input alphabet;
Y = XY U{¢ $}; Q is the set of (internal) states; Q, C @ is the set of accepting
states, go is the initial state (unless otherwise specified); faq(w) is the accepting
probability (or value) of machine M on w. For any w € X*, w; is the i*" symbol
of w; |w| is the length of w; |w|, is the number of occurrences of ¢ in w. The list
of abbreviations used for the models in the paper is given below:

e the prefixes “1” and “rt” stand for one-way (the head(s) is (are) allowed to be
stationary or to move to the right) and realtime (the head is allowed to move
only to the right at every step) input head(s), respectively;

e the letters “D”, “N”, “P” and “Q” used after “1” or “rt” stand for determin-
istic, nondeterministic, probabilistic, and quantum variants, respectively;

e the abbreviations “FA”, “kFA”, “k’'BCA”, and “PDA” stand for finite automa-
ton, finite automaton with k input heads, automaton with k' blind counter(s),
and pushdown automaton, respectively, where k > 1, k" > 0.
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2.2. LANGUAGE RECOGNITION CRITERIA

The language recognition criteria used in the paper are given below:

e a language L C X* is said to be recognized by M with error bound € € (0, )
if (i) fm(w) > 1 —e€forwe L, and (i) famq(w) < e for w ¢ L. More generally,
a language L C X* is said to be recognized by M with bounded error if there

is an € € (0, 3) satisfying the above condition;

e alanguage L C X* is said to be recognized by M with negative one-sided error
bound € € (0,1) if (i) fam(w) =1 for w € L and (ii) fam(w) < € for w ¢ L;

e alanguage L C X* is said to be recognized by M in nondeterministic mode [42]
if (i) fm(w) > 0 for w € L and (ii) famq(w) =0 for w ¢ L.

2.3. A PROLOGUE FOR QUANTUM MACHINES

We refer the reader to [27] for a complete reference on quantum computation. A
finite-dimensional quantum system is an n-dimensional Hilbert space, a complex
vector space with inner product (H,,), where n > 0. Theset B, = {|¢;) | 1 <i < n}
is an orthonormal basis for H,,, where the i*" entry of |g;) is 1 and the remaining
entries are zeros. Any quantum state of the system is described by its state vector,
say |¢), that is a linear combination of basis states® |¢) = a1|q1) + - + anlqn),
where the number «; is the amplitude of |¢;), whose modulus squared (|a;|?) gives
the probability of being in state ¢;, and >, |;[* = 1 (1 < i < n). When [¢)
contains more than one basis state with nonzero amplitude, the system is said to
be in a superposition (of the basis states).

The most general operator applied to a quantum system is a superoperator,
which generalizes unitary and stochastic operators. Formally, a superoperator &
is composed of a finite number of operation elements, & = {E; |1 <1<k € Z*}
satisfying

k
Y ElE =1, (2.1)
=1
i.e., the columns of the matrix obtained by concatenating each operation element
one under the other forms an orthonormal set. If we apply £ to a quantum system in
[1)), we obtain a mixture of quantum states, {(pi, |¢1)) | 1 <1 < k}, where [¢);) =

%, ) = Ei[¢), and p; = (y]ty) is the probability of observing the system

being in |¢;). Note that |¢;) is obtained by normalizing |¢);), i.e. any “observed”
quantum state is normalized. A convenient mathematical tool for representing the
mixture of quantum states is density matriz. The density matrix representation of

{(s [9) |1 <1<k} is

!
p=> pilr)(wl.

i=1

3We fixed it as B,,. However, note that, one can also select any other orthonormal basis.
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FIGURE 1. Matrix EY,.

A compact way of representing the evolution of a system described by density
matrix p, on which superoperator £ is applied, is

k
p=E(p)=> EipE].
=1

A projective measurement P is composed of a finite number of projectors, zero-one
diagonal matrices, i.e. P = {F; | Zle P, =11 <1<keZ"}, where indices
represent the measurement outcomes. If we apply P to a system in p or |¢), the
outcome “l” is obtained with probability

pr = Tr (Pip) or pr = (Y|P|),

respectively.

The computational space of a machine on an input string is its configuration
sets, i.e. a configuration is a complete information of the machine at any compu-
tational step. The computation starts in the initial configuration and continues
with respect to its transition function, which are the set of rules governing the be-
haviour of the machine locally. Depending on the model type, the evolution of the
computational space differs. Note that the evolution of the computational space
defines some restrictions on the transition function.

Let M be a quantum machine. We represent the set of the configurations of M
on a given input w € X* by C}; that forms quantum system H', with a basis set
By, i.e. BYy = {|ci) | i € C{y}, where |¢;) is a vector composed by zeros except
i" entry which is 1. In order to be a well-formed machine, the evolution of HY,
must be governed by a quantum operator, specifically by a superoperator. We give
the matrix form of this superoperator, called matrix E%,, on H'{, in Figure 1. Note
that the columns of Ef, form an orthonormal set.

The entries of E'y; are filled by the transition function of the machine. Due
to the condition given in equation (2.1), the transition function must obey some
constraints, known as local conditions for the machine well-formedness [6,35,45].
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In this paper, we define quantum models with some simplifications (described
later). Thus, the transitions of each model can be grouped for each symbol in X
such that each group forms a superoperator which is defined on the set of internal
states if the machine is well-formed. We give the general definitions of quantum
models and the technical explanations of such simplifications in Appendix A.

Note that it is an open problem for most quantum models whether such
restrictions lead to decrease in computational power of the models [4]. The same
restrictions, however, do not change the computational power of classical machines.
Since the superoperators generalize the stochastic operators, each simplified quan-
tum model is at least powerful as its classical counterpart [33,45].

2.4. DEFINITIONS OF MODELS

For all models (except GFAs described below), the input w € X* is placed on a
read-only two-way infinite tape as w = ¢w$ between the cells indexed by 1 to |w].
At the beginning, the head(s) is (are) initially placed on the cell indexed by 1 and
the value(s) of the counter(s) is (are) set to zero(s).

2.4.1. Realtime finite automata

A realtime probabilistic finite automaton [29] (rtPFA) is formally a 5-tuple

P = (Q7 Ev{AU | (S 2},610»@@)7

where the A _¢’s are |Q| x |Q|-dimensional (left) stochastic matrices. The com-
putation of a rtPFA can be traced by a stochastic state vector, say v, whose i‘"

entry, denoted v[i], corresponds to state ¢;. For a given input string w € X*,
v = Ag,vi-1,

where 1 < ¢ < |w| and vy is the initial state vector, whose first entry is 1. The
accepting probability of w by P is defined as

fr(w) =" vglil.

i €Qa

We call a rtPFA realtime deterministic finite automaton (rtDFA) if its stochastic
components contain only zeros and ones. Any rtPFA defined with nondeterministic
aceptance mode is also called realtime nondeterministic finite automaton (rtNFA).
A generalized finite automaton [34] (GFA), a generalization of rtPFAs, is for-
mally a 5-tuple
G = (@2, {As |0 € Z}u0, ).

where (i) Ayex’s are |Q| X |@|-dimensional real valued transition matrices, and,
(ii) vp and f are real valued initial (column) and final (row) vectors, respectively.
For an input string, w € X, the acceptance value of w associated by G is defined
as

fg(w) = wa"u," T Aw1UO'
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We call a GFA Turakainen finite automaton (TuFA) if all of its components are
restricted to be rational numbers.
A realtime quantum finite automaton [17,45] (rtQFA) is a 5-tuple

M = (Q727 {50- | S 2}7(107@@)7

where &, is a superoperator composed by a collection of state transition matrices
{Es1,...,Eq}} for some k € Z* satisfying

k
Y Bl E,i=1
=1

Additionally, we define the operator

P={P,P|Pa=> lg){gland P, =T —P,
q€Qa

representing the single measurement of the state type at the end of the compu-
tation. For a given input string w € X*, the overall state of the machine can be

traced by
k

pi = Ea;(pj-1) = > Eayipj1 BY
i=1

where 1 < j < |w| and py = |¢1){q1| is the initial density matrix. The accepting
probability of w by M is defined as

fM(w) = Tr(Paph;,‘).

NQAL is the class of languages recognized by rtQFA in nondeterministic mode [42],
i.e., L € NQAL if and only if there exits a rtQFA M such that fa(w) > 0 for all
w € Land fa(w) =0 for all w ¢ L.

2.4.2. Realtime automata with blind counters

Let X € {D,N,P,Q} and k£ and m be nonnegative integers. A rtXkBCA is a
rtXFA augmented with & blind counter(s), on which some fixed amount of in-
crement and decrement operations can be made [15]. The term blind refers to a
setup such that the automaton never checks the content of the counter(s) and the
input is accepted only if the value(s) of the counter(s) is (are) zero(s) at the end
of the computation. For simplicity, we assume that the updates on the counters
are determined by the states to be entered during computation. We denote this
relationship using function

D.:Q — {—m,...,m}*~.
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That is, when the automaton enters to state ¢ € @, then D.(q)[i] is added to
the ith counter value*. So, each rtXkBCA is defined exactly the same as rtXFA.
Additionally, the value(s) of the counter(s) is (are) updated after each transition.

For a given string w € X* the configurations of a given rtXkBCA are the
pairs of (g,v) € Q x Z* and (qo, {0}*) is the initial one, where v is a k-tuple
representing the value(s) of the counter(s). In quantum case, a measurement is done
on the configuration sets at the end of the computation to check whether all the
value(s) of the counter(s) is (are) zero(s). If not, the input is rejected immediately.
Otherwise, the decision is given by the standard measurement implemented on the
state set.

2.4.3. Multihead finite automata

Let X € {D,N,P,Q} and k£ > 1. A 1XkFA is a generalization of rtXFA such
that (i) it has more than one input head and (ii) each input head is not required
to move to the right after each transition [30]. For simplicity, we assume that the
movement of the input head(s) is determined by the states to be entered during
computation. We denote this relationship using function

Di:Q_){“l,77“_)”}k~

That is, when the automaton enters state ¢ € @, then the ith head stays on the
same square if D;(q)[i] = “ | ” or moves one square to the right if D;(q)[i] = “ — 7.
Thus, the transition operators over the state set are defined for each element in
ok , i.e., the next state, say ¢, is determined by the current state and the symbols
under the heads and then the positions of the heads are updated by D;(q). It is
always assumed that, none of the heads leaves the right-end marker ($).

Moreover, we divide @) into three disjoint subsets, Q,, @, and Q., where @, and
Q. are the set of rejecting and continuing states. The computation is terminated
and the input is accepted (resp., rejected) if the machine enters a state in @, (resp.,
Q@) during the computation. In the quantum case, a measurement is implemented
to make a similar decision. We omit the details here. But, the situation for 1QFAs,
given in the next section, can be generalized to 1QkFAs.

2.4.4. One-way quantum finite automata

Since machines of this model have a single head, we denote the simplification
property by using arrow symbols such that if the machine enters state ¢ or | g,
then the input head is moved one square to the right or stays in the same square,
respectively.

A simple one-way quantum finite automaton (1QFA) [45] is a 6-tuple

M=(Q,%,{& | o€}, q0,Qu,Qr).

It is a well-known fact that (e.g. see [47]) for any classical or quantum counter automaton
having the capability of updating its counter(s) with increments from the set {—m,...,m},
there exists an equivalent counter automaton updating its counter(s) with increments from the
set {—1,0,1} for any m > 1.
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For a given string w € X*, the configurations of M are the pairs of (¢,z) €
Q x{1,...,]w|} and (qo, 1) is the initial one, where = stands for the head position.
Let A = {a,r, c}. We partitioned the configuration set into three disjoint subsets
as Cyy , (accepting), C¥; . (rejecting), and C} . (continuing), i.e.

Cinr ={lo) [ c€ Qe x{1,... . [@[}},

where 7 € A. After each step of the transition, the projective measurement

P=qP |Pr= ) lddrelr,

CEC'",J\’A,T

is applied to the configuration set and (i) the computation is continued if “¢” is
observed, (ii) the computation is terminated, otherwise, and the input is accepted

(resp., rejected) if “a” (resp., “r”) is observed.

2.5. N-WAY QUANTUM FOURIER TRANSFORM

In our algorithms, we use a special kind of quantum transformation, N-way
QFT (quantum Fourier transform) [18,40,47]. Let N > 1 be an integer and E
be an operation element implementing N-way QFT. The N-way QFT is a set
of transition rules defined from N source states si,...,sy to N target states
t1,...,tn as follows:

N
1 i
Els;) = —=> e®t), 1<j<N,

27

where ty is called the distinguished target state. Let w denote e~ . Then, the
matrix form of the transformation can be given as follows:

S1 52 S3 SN—-1 SN

t wl w2 oWl wh-1 1

ty [0? Wt WS . W2
ts | wd W8 WY .o WINT3 1,
VN

IN\1 11 .. 1 1

Note that the last row summation is \/—NN and the other row summations are equal

to zeros, i.e., Y (W) =0 for 1 < j < N and Y5 (wi)l = % for j = N. We
use this fact in our algorithms.
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3. MAIN RESULTS

We classify our results under four titles. We give our quantum results in the first
three subsections, and then we present our result regarding classical computation
in the last subsection.

3.1. SUPERIORITY OF QUANTUM NONDETERMINISM

It is already known that the class of languages recognized by rtPFAs (resp.,
1PPDAS) is a proper subset of the class of languages recognized by rtQFAs (resp.,
1QPDAs) in nondeterministic mode [10,25, 26, 42]. We give a stronger version of
these results by using the noncontextfree language

LK = {a'bick | i #ji#k,j#k0<i,jk}.

Fact 3.1 (Lem. 3.1 and Thm. 3.1 of [42]). L C X* € NQAL if and only if L is
defined by a GFA, say G, as follows: (i) fg(w) >0 for w € L and (i) fg(w) =0
forw ¢ L.

Fact 3.2 (p. 147 in [28]). By tensoring two GFAs, Gi = (Q1,X, {4, | 0 €
XYvo, f) and Go = (Q2,X, {Bs | 0 € X}, ug,g), we obtain a new GFA G’
(G1 ® Ga), specified as

g/ = (Ql X Q2’Z7{AJ®BJ ‘ (S 2}a”0®u0af®g)a
such that for any w € X, fg/(w) = fg, (w)fg,(w).

Theorem 3.3. In nondeterministic acceptance mode, the class of the languages
recognized by classical (probabilistic) machines is a proper subset of the class of the
languages recognized by their quantum counterparts for any model architecturally
intermediale between realtime finite automaton and one-way (one-head) pushdown
automaton, i.e., one-way finite automaton, realtime and one-way finite automata
with one-counter, and realtime pushdown automaton.

Proof. We fix ourselves to nondeterministic acceptance mode. Since IJK cannot
be recognized by any 1PPDAs, it is sufficient to show that IJK can be recognized
by rtQFA, d.e., IJK is in NQAL. That is, if IJK cannot be recognized by any
1PPDAsS, then it cannot be recognized by any restricted model of 1IPPDA. On the
other hand, if IJK can be recognized by rtQFA, then it can be recognized by any
generalized model of rtQFA.

Let X = {a,b, c} be the input alphabet. We design a TuFA 7,_; to calculate
the value of (|w|, — |w|p) as its accepting value for any w € X*, i.e.,

7:1—b = (sza {AO' ‘ (S 2}a”07f)a
where Q = {q1,¢2}, vo = (0 )T, f = (1 0), and

11 1-1 10
= for) e (671) - 2= (oY)
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At the beginning, the weights of ¢; and ¢ are 0 and 1, respectively. Whenever an
a (resp., a b) is read, the weight of ¢ (resp., ¢2) is increased (resp., decreased)
by 1. At the end, the weight of ¢ is assigned as the accepting value. That is,
f1._,(w) = [wla — |wly.

Similarly, we can design two TuFAs 7, . and 7,_. to calculate the values of
(Jw]a —|w|e) and (Jw]p—|w]|.) as their accepting values, respectively, for any w € X*.

Moreover, we can design a TuFA 7,+,+.+ to assign 1 as the accepting value for
the strings of the form a™b™c™ and 0 otherwise:

7:1+b+0+ = (Q7 Ev {AU | o€ Z}vUva)v
where Q = {q1,¢2,q3,91}, vo=(1 0 0 0)T, f=(0 0 0 1), and

0000 0000 0000
1100 0000 0000
Aa=10000] “={o110] 40000
0000 0000 0011

Now, based on Fact 3.2, we can obtain a TuFA 773 for IJK as
Tk = Torprer @ (Tab ® Ta—p) ® (Ta—e ® Ta—c) @ (Tp—c @ Ty—c)
which calculates the value of
(lwla = [wle)(lwla = |w]e)®(Jwly — |wl]e)?

for the strings of the form a™bT ¢t and returns 0 otherwise. So, fz;, (w) is a positive
integer if w is a member of IJK and it is zero if w is not a member of IJK. That
is, IJK € NQAL due to Fact 3.1. O

3.2. QUANTUMNESS ALLOWS INTERMEDIATE ZERO-TEST ON BLIND COUNTERS
Let UPAL be the language {a™b™ | n > 0} and UPAL* be its Kleene closure, i.e.
UPAL* = {e} U {a™d" ---a™b™ | n; >0 (1 <i<k), k>1}.

Although UPAL* can be recognized by rt DFAs with a single counter, this is not the
case for 1DFAs with blind counters whatever the number of the counters is [15],
i.e., UPAL* cannot recognized by any 1DkKBCA, k > 0.

In the quantum case, we show that a rtQFA with a single blind counter can
recognize the same language with any desired error bound. The main idea is that a
rtQ1BCA can create a superposition of counters with different updating strategy
and then “cleverly” interfere them in the middle of computation to test whether
their values are zeros or not. Note that this test is achieved algorithmically, and
the “blindness” constraint is not violated.

Theorem 3.4. For any k > 0 and € € (0, %), the class of languages recognized by
rtDk BCAs is a proper subset of the class of the languages recognized by rtQk BCAs
with error bound e.
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Proof. We give a simple rtQ1BCA algorithm recognizing UPAL* with negative
one-sided error bound e for any € € (0, 1). Then, the proof follows from the fact
that UPAL* cannot be recognized by any rtDEBCA (k > 0).

Let N > 2 and My v = (Q,2,{E | 0 € X},q0,Qa) be a rtQ1BCA,
where Q@ = {qo,a0} U{q;Uq;Up; [ 1 <j < N}U{r;[0<j<N-1}, and
Qo = {ao,pn}. The details of the transition matrices are given in Figure 2. (The
missing parts can easily be completed.) Note that some superoperators have more
than one operation elements so that they can implement some irreversible tasks.
One explanatory example is that Mypar- v enters state q; after reading a b when
it is originally in g; or q}, and so we use two operation elements Ejp; and Ej o,
where 1 < j < N (see Egs. (3.3) and (3.4)).

Let w € X* be an input string. We begin with two trivial cases:

e if w =&, then it is accepted with probability 1 (Eq. (3.7));

o if w starts with a b, (i) Muypar-,n enters reject-path, (Eq. (3.8)), (ii) the
computation stays there until the end of the computation (Eq. (3.10)), and
then (iii) w is rejected with probability 1 (Eq. (3.10)).

We continue with the inputs started by an a, i.e. w = (aTb7)*(a™) or w =
(a*bT)*. That is, the input is formed by

1. ¢t > 0 block(s) of a*b™ and then a block of a™ or
2. t > 0 block(s) of a™bt.

The main idea (for the remaining part) is that we run a procedure, called block-test,
on each block. The input is accepted exactly if each block-test succeeds. Otherwise,
the input is rejected exactly if one block-test fails and it is rejected with high
probability if at least two block-tests fail. The details of block-test are given below.

A block-test is started with reading an a after ¢ or a b. The latter case will
be described soon. In the former case, the computation splits into N different
paths, d.e. path; (1 < j < N), with equal amplitude, and the counter value is
increased by j (Eq. (3.1)). The counter value is increased by j in path; as long as
a’s are being read (Eq. (3.2)). If the next symbol is the right end-marker ($), then
the current block-test has failed and so the input is rejected with probability 1
(Eq. (3.9)). Otherwise — the next symbol is a b — path; changes its update strategy
(Eq. (3.3)) such that the counter value is decreased by j in path; as long as reading
b’s (Egs. (3.3) and (3.4)). Now the next symbol can be either an a or the $. If it is
$, all paths make the QFT given in equation (3.6). If it is an a, they make the QFT
given in equation (3.5), in which the computation again splits into N paths from
the distinguished target, i.e. a new block-test is started (the related transitions are

(i) in Ea. (3.5)).

Since a block formed by a™ is rejected certainly, we consider the blocks of the
form a™b™. Assume that w = a"1b™ - .- a™tb"t where t > 0.

If w € UPAL™: Before making the first QFT, path; is in ﬁ\q;,j(ml —ny)),
which is ﬁ\q&,O) since m; = ny. Therefore, all the configurations are inter-
fered with each other during the QFT and only the distinguished target survives
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Ee ={E¢} D:(q0) =0, Dc(ao) =0
ga = {E(l,lyE(l,Qy a .37 a 7‘} DC(QJ) =7 Dc(q ) =7 1 S‘] S N
gb = {Eb,l,Eb,Q,Eb,r} DC(pJ) = 07 1 SJ S N
& = {Es,1, Es,r} De(r;) =0, 0<j<N
INITIAL
E¢lgo) = |g0)

FIRST-SPLIT

UPDATE
path, (1 <j < N):

QFT-SPLIT
path; (1<j<N):

Ea,3|q;> =

LAST-QFT
path, (1 <j < N):

ACCEPT

REJECT

path; (1<j<N):

reject-path; (0 <j < N):

Eap2lq;) = lg;)
Ey1lq;) = |q;)
Ey2lq;) = |q;)-

L (3 oz Ly (LN
—<lz;e Tl>>+\/ﬁe (\/N2|qj>)

N o
N
:WJX::I \QJ)
1 N,
Eg, 1\% Ze N ]l|pz
N =1
Es1lq0) = |ao)-
Ep1lqo) = [ro)
Es1lg;) = lgj)
EU',T|TJ> = ‘Tj>7 S {a7b7$}'

(3.1)

(3.5)

(3.8)

(3.9)

(3.10)

FIGURE 2. The details of the transition function of Muypar+ N
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(with probability 1). Such a QFT is called successful. That is, (i) if the QFT hap-
pens on an a, a new block-test is started with probability 1 (Eq. (3.5)) or (ii) the
input is accepted with probability 1 otherwise (Eq. (3.6)). We are done with the
case t = 1. In case of t > 1, each block-test starts with a fresh counter. Hence, the
input is accepted exactly after the last QFT.

If w ¢ UPAL*: There exists a minimum ¢’ (1 < ¢’ < t) such that my # ny.
We already know form the above that the block-test for a™+ b™¢ starts with a
fresh counter. So, before making the QFT, path; is in ﬁ\qé,j(mt/ —ny)) and
ji(my —ny) = ja(my — ny) if and only if j1 = jo, where 1 < j1,j2 < N. There-
fore, no configuration interferes with the others during the QFT: (i) N different
configurations whose state components are distinguished targets are obtained, each
of which with probability <, (the overall probability is +) and (ii) N* — N dif-
ferent configurations whose state components are other targets are obtained (the
overall probability is 1 — %) If the QFT happens on $, the input is rejected ex-
actly, since none of the counter values is zero. Otherwise, in the configurations
whose state components are distinguished targets, N different new block-tests for
a™+1p™v+1 are started, each of which has a different counter value, and, in the
configurations whose state components are other targets, the computation enters
some reject-path; (Eq. (3.5)), in which the computation goes on until the end and
then the input is rejected exactly (Eq. (3.10)), where 1 <[ < N.

It is obvious that having a single unbalanced block does not give a bound on the
error since the value of each counter in the superposition is nonzero. On the other
hand, each unbalanced block leads to reduce the overall probability of surviving
block-tests by % Therefore, we consider the case that there is one more unbalanced
block. Without loss of generality, we assume that it is the last block (m; # n;). Let
' = (my —ny), c = (my—ny), block-test;: be the (j')th block-test having a counter
value of j'c’ at the beginning, and path; ; be a path created in block-test;/, where
1 <4,j < N. So, path;, ; is in N\l/ﬁ|q;,j’c' + jc) before the QFT. For a fixed j,
the value of j'¢’ + je can be zero for at most one j (1 < j < N). If c = —¢ =1,
then we have a j for each j'. Thus, path;, ; ends in a state having Ipn, 0) with
amplitude with ﬁ The part of state, in which the input is accepted, is %‘pN ,0)
— after (constructive) interference. That is, the input is accepted with probability
% and it is the upper bound on the error. By selecting suitable N, we obtain any
desired error bound e. (]

We suspect that randomization cannot help to recognize UPAL* in the bounded
erTor case.

Conjecture 3.5. UPAL* cannot be recognized by any 1PABCA with bounded er-
ror, for any k > 0.

3.3. A 1QFA ALGORITHM FOR AN INFINITE FAMILY OF LANGUAGES

We begin with the definitions of two languages:
UPAL(t) = {a"™b---ba"*ba"tb---ba" | n; > 0,1 <i <t}
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and
UPAL/(t) = {a™'b---ba"™ba"™b---ba™ | n; > 0,1 <i <t}

Note that there is always an a before and after each b in the latter language but
this is not required in the former language. It was shown in [12,20] that for any
k, there exists a t > 0 such that language UPAL/(t) cannot be recognized by any
1DKFA. The same argument also holds for UPAL(t) since any 1DAFA recognizing
UPAL(t) can be converted to a 1DKFA recognizing UPAL/(t) in a straightforward
way.

In [12], Freivalds gave a 1P2FA algorithm for these languages. In this section,
we show that a 1QFA does not need any other head to recognize UPAL(t). For
pedagogical reasons, we consider firstly the case of t = 1 and then the case of
t>0.

Lemma 3.6. Language UPAL(1) can be recognized by a simple 1QFA with negative

one-sided error bound %, where N > 2.

Proof. Let Muppr1y,n = (Q, X, {& | 0 € Y, 40, Qa, Q,) be the simple 1QFA rec-
ognizing UPAL(1) with negative one-sided error bound %, where each &, contains
exactly one unitary operation element®, E,, and Q = Q.U Q, U Q,, i.e.,

Q. ={gw}u{g ug [1<j< N}

U {lpji|1<1<4,1<j<N}

U{lp)j [1<ISN-j+1,1<j< N}
Qa:{le}’ and
Qr={lpj [1<j<N}U{lr;|1<j< N}

The technical details of the transition matrices are given in Figure 3. (The missing
parts can easily be completed.)

On symbol ¢, the computation is split into N different paths, say path; (1 <
j < N), with amplitude ﬁ (Eq. (3.11)). Before reading a b, path; enters a j-step
waiting loop on each a (Egs. (3.12)—(3.14)). If these paths never read a b, then the
input is rejected exactly on $ (Eq. (3.21)). Otherwise, the waiting strategy changes
after reading a b (Eq. (3.15)). From now on, path; enters an (N —j+1)-step waiting
loop on each a (Eqs. (3.16)—(3.18)). If these paths read another b before $, then the
input is again rejected exactly on this b (Eq. (3.20)). Otherwise, all paths make a
QFT on $ such that the input is accepted by distinguished target and it is rejected
otherwise (Eq. (3.19)).

Let w € X* be an input. If w is not of the form a*ba*, then it is rejected certainly.
If so, the decision is given by the QFT. Assume that w = a™ba™ (m,n > 0). So,
path; arrives on $ at the ((j 4 1)m + (N —j+2)n+2)"" steps. It can be rewritten
as

jm—n)+m+ (N+2)n+2.

5Such quantum models are also known as Kondacs- Watrous or Measure-Many type [18,45].
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SPLIT
AR
E¢|g0) :Z (3.11)
— N
j=1
Wair
path; (1 <j < N):
Ealg;7) = | Ipja) (3.12)
Eol| Ipji) = [ Ipjat1), 1<1< (3.13)
Eal 1pjg) = 1a7) (3.14)
path; (1 <j < N):
Blqj) = la}) (3.15)
path; (1 <j < N):
Ealaj) = | 1pja) (3.16)
Ea| lp;,l> = ‘ lp;,l+l>7 1 S l <N _j + 1 (317)
E,| lp;‘,ij+1> = “I;> (3.18)
QFT
path; (1 <j < N):
N
1 217\7,'le
Eslq]) = Ze | Ip1). (3.19)
N =1
REJECT
path; (1 <j < N):
Epblg;) = | lrs) (3:20)
Es|q;) = | |rj). (3.21)

FIGURE 3. The details of the transition matrices of Mypyr(1),n-

If m = n, then all paths arrive on $ at the same time. So, all paths are interfered
with each other, and only the distinguished target survives. That is, any input
in UPAL(1) is accepted with probability 1. If m # n, then each path arrives at a
different step. So, none of path is interfered with others and each distinguished
target survives with amplitude % . That is, the input is accepted with probability
% since there are N different distinguished targets and each of them leads the
input to be accepted with probability <. So, any input not in UPAL(1) is rejected
with a probability at least 1 — % O

Theorem 3.7. Foranyt > 1, language UPAL(t) can be recognized by simple 1QFA
MUPAL N with negative one-sided error bound L ~ where N > 2.
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Proof. Mypprvy,n = (@, X, {& | o € ZN]},qo,Qa,Qr), where each &, contains
exactly one unitary operation elements, F,, and Q = Q.U Q, U Q,, i.e.,

QC = {q_o)}u{qjlanjk U q;d ,,,,, i | (j17"'7jk) € {177N}k71 <k St}
U {1pjsid | 1< < Gk, Gy -0 i) €41, N} 1< k< 8}
U{lp), o | 1<STSN =G+ 1,Gh, - k) €{1,.. ., N} 1<k <t}

Qr = {Irjy gV I i L Gy esin) € {1, N}, 1<k <t}u
{(m|1<I<N-1}, and

Qq = {pN}-

The technical parts of the transition matrices are given in Figure 4. (The missing
parts can easily be completed.)

The proof is a generalization of the technique presented in the Proof of
Lemma 3.6. Since we can count the number of b’s, the machine can easily detect
the pairs that are compared with each other. Suppose that the input is of the form

a™b-- b a™-*bamba™ ba-*b--- b a™
| I \ \ (3.22)
by b2 bi—1 by by biyo bap—1,

where we enumerate all b’s, m;,n; > 0, and 1 < ¢ < ¢. If the input is not in this
form, it is rejected exactly, which will be described soon.

Let P(m,n) be a procedure to compare numbers m; and n; (1 < i < t). We
initially define Py, ) and then define the others iteratively. Py, n,) is executed
on

bt_ 1 amt bta"t bt+1

almost the same way as Muypyr(1),n, given in the Proof of Lemma 3.6, where b;_1,
by, and by4q are viewed as the left end-marker, the middle b, and the right end-
marker, respectively. The only difference is that the computation is not terminated
in the distinguished target of the QFT. If m; = n;, then only a single distinguished
target of the QFT survives with probability 1. On the other hand, if m; # n;, the
input is rejected with probability 1 — %

Similarly, P(m,_, n._,) is executed on

me— m n nt—
bt,ga ¢ 1bt,1a tbta tbt+1a ¢ 1bt+2,

where b;_o and b, 1o are viewed as the left end-marker and the right end-marker,
respectively. Since its main task is to compare numbers m; 1 and 1741, P(m,_, n._,)
indeed sees the input as

bt_2amt71bant71bt+2

such that b (b;_1a™ba™by11) is viewed as the middle b. So, the execution of
P(me_1,n_1) ON bi—2a""* = ba"t=1b; 15 is also the same as Mypy (1), v except that each
subpath of Py, ., calls a copy of P(n, oy on b;—1 and each of these copies leaves
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SPLIT
N 1
E¢lgo) = ; \/—NPJJ) (3.23)
path, ;. ((G1,--dk) € {1,...,N}¥ and 1 <k < t):
Moo
BilG ) = Y \/_N‘m>‘ (3.24)

Jpp1=1

Wair
pathjl ..... ik ((jlv'“ajk)e{l:"'vN}k andlékﬁt):

G1reees Jpo1) (3.25)
------ jkvl+1>’ 1 S < jk (326)
= in) (3.27)
pathjl ..... gt ((j17~~'7jt)6{17~'~7N}t):
_—
Eblgy, ) =145, ) (3.28)

pathjl ..... ik ((jlv'“ajk)e{l:"'vN}k andlékﬁt):

I a—— ’
Ealqh,...,jk> = | lpjl,...,jk,1> (3~29)
E.| lp_'jl ...... jk,l> = lp_'jl ...... ;’k,l+1>7 1<I<N-—jr+1 (3.30)
/ I—)
E.| lpjl ...... jk,N—jk+1> = |q]’1 ..... jk>‘ (3.31)
QFT
path; . ;. (1, 96) €{1,...,N¥* and 1 <k <t):
o 1 2w i Vooriyy .
Eb‘qjl ...... jk,> = \/_N ; e N i g )| F \/_Ne ]\‘Ijl ...... jk71> (3.32)
path, (1 <ji <N)
- 1 & 2m
Balay,) = 75 2 o ¥ m). (3.33)
=1
REJECT
path (1< ji < N):
.
Evlq,) =11r) (3.34)

pathjl ..... ik ((jlv'“ajk)e{l:"'vN}k andlékﬁt):
Es|qiy. - g0) =1 1700w (3.35)

pathjl ..... ik ((jlv'“ajk)e{l:"'vN}k andl<k§t):

-
Bs|qfy, ) = 1rhy ) (3.36)

FIGURE 4. The details of the transition matrices of Mypy (), n-
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the computation to the subpath calling itself after reading b,11 if computation is
not terminated in this copy of Py, n,)-

Case m; # ny. The input is rejected with probability 1 — % by P(m,,n,)- Since it
gives the desired upper bound on the error, we no longer care about the decision
of P(mtil,

ne_1)*

Case my = ny. Py, n,) leaves the computation to its parent exactly. Moreover, the
balance between subpaths of Py, n,_,) is still preserved. Thus, if m;—1 = n4—1,
then only a single distinguished target of the QFT survives with probability 1. On
the other hand, if m;_1 # ny—1, the input is rejected with probability 1 — %

In an iterative way, P(m,_, n,_,) is defined by P, o) and so on. If the input
has not been rejected before, the last decision is given on $ by P(m, »,) and the input
is accepted exactly if m; = n;. (Note that the input can only be accepted after
the last QFT.) In any other case, there exists a maximum ¢ providing m; # n,
the input is rejected with a probability at least 1 — %

Any input that does not fit the form given in equation (3.22), i.e. the input
does not contain exactly (2t — 1) bs, can be deterministically detected. Therefore,
it can be rejected exactly.

In the remaining part, we give the technical details. The computation starts
with Py, n,). After reading ¢, the computation splits into N paths with equal
amplitudes, say path; (1 <j1 < N) (Eq. (3.23)). These are subpaths of Py, n,).-
After reading the first b, each path; calls a copy of Py, n,) and so the compu-
tation is again split into N paths with equal amplitudes, i.e. path; is split into
N paths path; (1 < ji,j2 < N). This process is repeated until reading the
(t — 1)th b (Eq. (3.24)). Thus, after reading the (¢ — 1)th b, each path has ¢ in-
dexes, i.c. path; . (1 <jp < N and 1 <k <t). Note that, any path with index
(J1,J2, -+, dr) (1 < k' < t) has responsibility of comparing numbers my, and ny .
Before (resp., after) reading the tth b, if jj is the last index of the path, then, it
waits ji (resp., N — ji + 1) steps over each a (Egs. (3.25)-(3.31)). After reading
the tth b, all paths start to make N-way QFT over each b in order to compare
the numbers under their responsibility (Eqs. (3.32) and (3.33)). After the QFT
(except the last one), the computation continues with the paths, from which the
current paths were created in the previous steps (i.e. technically the rightmost in-
dex is dropped) with probability 1 in case of successful QFT and with probability
% otherwise. After the last QFT, the input is accepted in case of successful QFT
(Eq. (3.33)). In any case of scanning less than 2t — 1 b’s (Egs. (3.35) and (3.36))
or more than 2¢ — 1 b’s (Eq. (3.34)), the input is rejected exactly. O

3.4. A NEW CLASSICAL SEPARATION RESULT

In this section, we present an example for how the studies in quantum compu-
tation can help to find new results on classical computation. We give a separation
result between the languages recognized by rtDEBCA and the languages recognized
by rtNABCA for any k& > 0. Note that both models recognize regular languages in
case of k = 0.
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Theorem 3.8. For any k > 0, if L is recognized by a rtDkBCA, then L € NQAL.

Proof. Let D = (Q,X,{4, | 0 € f},qhQa) be a simple rtDEBCA recognizing
L, where Q = {q1,...,qn} (n > 0). For a given input string w € X*, the state-
transition of D is traced by a (stochastic) column vector, i.e.

vy = Ag, Vi1

and

Vw| = A$Aw‘w‘ T Aw1 A(EUOa
wherevg = (1 0 --- 0)7 is an n-dimensional initial column vector and 1 < i < |1).
It can be easily verified that D is in state ¢; at the end of the computation if and
only if v4[j] = 1, where 1 < j < n. (Note that each intermediate v; is also a

stochastic zero-one vector, where 1 < ¢ < |@].)

The probability of D finishing in an accepting state on w, which can be either
1 or 0, is calculated as fv|g|, where f is an n-dimensional row vector such that
Fli) = 1if g; € Qu.

Let p; be the Ith smallest prime (1 <[ < k). In the above schema, the counter
operations of D can be simulated by using a simple number-theoretic method:
when the Ith counter of D is updated by 1 (resp., 0 or —1), the nonzero entry of v;
is updated by multiplying with p; (resp., 1 or z%z)’ where 1 <l <kand1<i<|w|.
This method can be embedded into the transition matrices. That is, if the value(s)
of counter(s) is (are) updated with respect to ¢ € {—1,0,1}* when entering state
gj € @, in each A the nonzero entries on the j** row are replaced with

k
[T,

=1

o€

We denote these new matrices as A; o5

Suppose that the value(s) of the counter(s) is (are) C' € Z* at the end
of the computation, and the computation ends in ¢; € @ on input
w € X*. Then, it can be verified in a straightforward way that

. (3.37)
vaili] = [ )",
=1

which is 1 if and only if each counter value is zero.

Let A”_ ¢ be (n+ 1) X (n + 1)-dimensional matrices obtained from A7 as
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We design a TuFA 7 based on D as follows:
T: (Q/727{BJ ‘ O- e 2}?1}67f/)’

where Q" = Q U {qnt1},

Uf):A% . = 11)A, and B, = A).
0
—1

Hence, by using the scenario given in (3.37), we can verify that:

o if g; € Qu, then f7(w) = ([T, ()W) = 1, ic.

— fr(w) = 0 if each counter value is zero, and

— fr(w) # 0 if at least one counter value is not zero;
o if ¢; ¢ Qq, then fr(w)=—1.

Let 72 = 7T ® T (see Fact 3.2). Then, for w € L (resp., w ¢ L), fr=(w) = 0
(resp., fr2(w) > 0). Thus, L € NQAL. O

In [13], it is shown that SAY = {w | Jui,uz,v1,v2 € {a,b}*,w = urbuy =
v1bva, Jug| = |va|} cannot be recognized by a rtQFA with unbounded error (and
so SAY ¢ NQAL and SAY ¢ NQAL [45]). In other words, SAY cannot be recognized
by any rtDEBCA (k > 0). However, it can be easily shown that SAY can be
recognized by a rtNIBCA: two b’s (those can also be the same) can be selected
nondeterministically and by using a blind counter, the lengths of the substrings
before the first b and after the second b are compared.

Corollary 3.9. For any k > 0, the class of languages recognized by rtDkBCAs is
a proper subset of the class of languages recognized by rtNkBCAs.

In [2], the two-way® classical-head” quantum finite automaton (2QCFA) was
introduced (see also [43,45]).

Fact 3.10 ([43]). Let L be language, and T be a TuFA such that fr(w) > 0 for
w € L and fr(w) =0 forw ¢ L. Then both L and L can be recognized by 2QCFAs
with any error bound.

Based on this fact and Theorem 4, we can conclude the following corollary.

Corollary 3.11. Any language recognized by a rtDkBCA can also be recognized
by a 2QCFA with any error bound.

6The input head can move one square to the right or to the left or stay on the same square.

7 The quantum part of the machine is just a fixed-size quantum register. For example, this is
not the case for 1QFAs.
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APPENDIX A. GENERAL DEFINITION OF QUANTUM MACHINES

Superoperators are implemented by interacting the system in interest with a
finite-size ancilla quantum register [27]. More specifically:

1) the finite register is initialized to a predefined state;

2) both systems are combined,;

3) a unitary operator is applied to the composed system; and
4) the finite register is discarded.

A~ N N

In some cases, a measurement is done on the finite register in computational basis
before the discarding process. Therefore, apart from classical ones, quantum mod-
els are defined with this finite register in order to explicitly specify the local transi-
tions on this register. We denote the set of symbols for the finite register by {2 with
a special initial symbol, denoted by w1, the initial symbol. In case of measurement,
we divide {2 into |A| disjoint subsets, i.e.

Q=1{2, . 20}

where A is the set of outcomes. Then, before the discarding process, the projective

measurement
P= {PT | Pr= > |w)w|,7 € A}

we,

is applied to the finite register.

Now, we give the definitions of general rtQ1BCA and 1QFA with the constraints
on their transition functions. Then, we show how their simplified counterparts can
be obtained.

A.1. GENERAL REALTIME QUANTUM AUTOMATON WITH ONE BLIND COUNTER
A realtime quantum automaton with one blind counter is a 6-tuple
M= (Q?Za 976a QOaQa)v

where ¢ is the transition function, which is specified as

5((]70): Z a(p,c,u)(pvcvw)

X(p,c,w)

(or alternatively d(q, o, p, ¢,w) = Q(p,cw) such that M changes the internal state
to p € @, update the counter value by ¢ € {—m,...,m}, and writes w € 2 on
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the finite register with amplitude «a, . .y when it is originally in state ¢ € @ and
reads o € X on the input tape. Since the value of m can be arbitrarily chosen, we
set it to 1 in the remaining part.

The transition function § must satisfy the following local conditions of well-
formedness (see also [33]): for any choice of g1,¢2 € Q and o € z,

E : PP 1 ifq=q
7 / o

a1, 0,q',¢,w)d(a, 0,4 0, w) = {0 otherwise, (A1)
q'€Q,ce{—1,0,1},weN

Z 5((]1707 q/7+1vw)5(q2707q/707u))
q'€EQ,weN (A2)
+ 5((]17 g, q/v 07 W)5(QQ7 g, qlv _lvw) = 07
and
Z 5(q1,0,q,+1,w)d(q2,0,q¢', —1,w) = 0. (A.3)
qEQ,wEN
As can be easily verified, if the machine is simple, then the constraints given
in equations (A.2) and (A.3) becomes trivial and the constraint given in equa-
tion (A.1) can be replaced by

S — 1 if g =
> 5(q1,U,q’,w)5(q2,o,q’,w)={ b (A4)

0 otherwise.
' EQwEeN

Now, we show how to construct a superoperator for each o € X. Let ¢1,. . ., 90
be an ordering of the states. We define E,,, such that the (j,7)th-entry of the
matrix is equal to 6(¢;, 0, ¢j,w), where w € 2, 1 <, < |Q|. Therefore, we obtain
a bijection between the matrices and the transition function, i.e.

EJ#-U(j? Z) = 5(Q’La g, Qva)

By grouping these matrices by o € f, we obtain &, = {Ey.w,,- - 7Eﬂvwm|}' If we
concatenating each element of £, one under the other, we get a new matrix, i.e.

EU,w1

EO‘,UJQ

EJ,UJLQ‘
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whose columns form an orthonormal set if and only if the constraint in equa-
tion (A.4) is satisfied. This is exactly what a superoperator is. Since the presence
of the finite register is not mandatory, we prefer to drop it from the formal defini-
tion of simple rtQ1BCA.

A.2. GENERAL ONE-WAY QUANTUM AUTOMATON

A one-way quantum finite automaton [45] is a 6-tuple
M = (Q7 Zv Quévq()vA)?

where A = {a,r,c}, and so 2 is partitioned into 3 disjoint subsets, i.e. 2 =
2. U2, US,.. As described above, a projective measurement is applied to the finite
register at each step of the computation and the following actions are followed: (i)
the computation continues if “¢” is observed and (ii) the computation is terminated
and the input is accepted (resp., rejected) if “a” (resp., “r”) is observed.

The transition of M is specified as:

5((]70): Z a(p,d,u)(pvde)

X(p,d,w)

(or alternatively (g, o, p, d,w) = a(p,q,.,)) such that M changes the internal state
to p € @, update the position of the input head with respect to d € {|,—}, and
writes w € {2 on the finite register with amplitude o, 4., when it is originally in
state ¢ € @ and reads o € X on the input tape.

The transition function d must satisfy the following local conditions of well-
formedness (see also [45]): for any choice of 1, ¢z € @ and o € X,

—_— 1 ifg =
Z 6(Q17 a, qla da W)(S(QQ, g, qlv d7 w) = { 0 OtﬁérWltfe (A5)
q'€Q,de{l,—}wen
and
Z 5((]170', q/v_)vw)(s(q%av qlvlvw) =0. (A6)
7' €EQwel?

As can be easily verified, if the machine is simple, then constrains given in
equation (A.6) becomes trivial and the constraint given in equation (A.5) can
be replaced by

—_— 1 ifq =
> 5(q1,0,q’,w)5(Q2,U,q’,w)={ O (A7)

0 otherwise.
' EQwEeN

By using the same procedure described at the end of the previous section, we can
obtain a superoperator for each o € Y. On the other hand, in order to drop the
presence of the finite register from the formal definition of simple 1QFAs, we need
one more step:



(10]
(11]
(12]

(13]
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We define a state set as @ = Q x A. Let Q. = @Q x {r} and

(q1,n), .. (qqn), (q1,a),...,(qq,a), (q1,7),- ., (qq]|, ) be an ordering
of the new states. We define new £/ , by using F, ., as follows

Eso|x[*]| 0 [x[x|| 0 [*
0 |*|*||Egw|x|*|| O [*
0 |x]x|| O [*|*||Eow|*|*| >

—_——— —
if we, ifwen, ifwen,

where the entries of “x” can be filled in so that each &', = {E], , | w € 2}
forms a superoperator. If we apply projective measurement

P=SP [Pr= lg)q

qeQ’,

to the state set instead of the finite register, we obtain an identical compu-
tation. Note that, since no transition defined for ¢’ € Q/, U Q.. is actually
implemented, the entries of “*” do not affect the computation.
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