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BOUQUETS OF CIRCLES FOR LAMINATION
LANGUAGES AND COMPLEXITIES

PHILIPPE NARBEL!

Abstract. Laminations are classic sets of disjoint and non-self-
crossing curves on surfaces. Lamination languages are languages of two-
way infinite words which code laminations by using associated labeled
embedded graphs, and which are subshifts. Here, we characterize the
possible exact affine factor complexities of these languages through bou-
quets of circles, i.e. graphs made of one vertex, as representative cod-
ing graphs. We also show how to build families of laminations together
with corresponding lamination languages covering all the possible exact
affine complexities.

Mathematics Subject Classification. 14Q05, 37B10, 37F20,
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1. INTRODUCTION

Laminations on surfaces are closed sets of pairwise disjoint one-dimensional
submanifolds (the lamination leaves) which can be considered as curves with no
preferred parameterization [9,28]. The notion of lamination generalizes the notion
of foliation of surfaces, i.e. global decomposition of surfaces into one-dimensional
submanifolds, and can also be seen as a way of considering singular foliations,
i.e. foliations defined everywhere except at a finite number of points [6]. Lami-
nations occur for instance as fixed subsets of surface diffeomorphisms. A usual
technique to study laminations in surface theory is to deform them continuously
into embedded graphs, often in the form of train tracks [25,28], but also in the form
of more general graphs. Laminations are then said to be carried by these graphs.
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When such carrier graphs are labeled, the involved curves inherit the labels of
the paths they are deformed into, giving rise to lamination languages, which are
languages made of two-way infinite words, and which happen to be specific sub-
shifts (or shifts) [19]. Lamination languages can indeed be looked at as subshifts
of edge-shifts [17] constrained by the geometry of the set of curves they represent.

With this relationship in mind between geometry and formal language theory,
the main purpose of this paper is to give some results about how the notion of
lamination helps to produce languages with specific properties, and also conversely,
how languages with their associated tools help to describe laminations.

Our focus here is on a classic word combinatorics notion: the (factor) com-
plezity of a language L of infinite words is the function py,(n) over N*| where for
each n, pr(n) is the number of factors (or subblocks) of length n occurring in the
words in L [8,22]. In particular, this complexity definition is the basic ingredient
of the topological entropy of L, defined as lim, o log(pr(n))/n [1]. Lamination
languages are instances of languages with zero entropy as their complexities are
always ultimately affine, that is, of the form an + b, Yn > ng, for some ng > 0.
With this respect, we shall here characterize what are the possible forms of their
exact affine complexities, i.e. when ng = 0:

Theorem 1.1. A lamination language L with an exact complexity py, is such that
pr(n) = an+b, ¥Yn > 0, with (a,b) € Nx Z, and b > (—% + 1]. Conversely, for
every pr, satisfying the preceding conditions, there exist lamination languages with
this complexity.

Note that a consequence of this result is that the exact complexities of lamina-
tion languages do not cover all the exact affine complexities that can take shifts [7].

The proof of Theorem 1 will rely on the fact that there is no univocal relation-
ship between laminations, carrier graphs and lamination languages, giving thus
some freedom to transform the last two while geometrically preserving lamina-
tions. In particular, by applying edge contractions to carrier graphs (closely re-
lated to usual Whitehead moves for singular foliations), one can turn these graphs
into bouquets of circles, i.e. graphs made of a single vertex and m > 1 edges.
These elementary graphs happen to be generic enough to describe all the possi-
ble exact complexities of lamination languages. A coherent bouquet of m circles,
i.e. an embedded bouquet with its single vertex having all its incoming (resp. out-
going) edges consecutive around it, carries laminations which correspond to the
dynamics of interval exchange transformations on m intervals, that is, orientation-
preserving and piecewise isometric maps of bounded intervals [5]. As a matter of
fact, lamination languages include the natural symbolic representations of interval
exchanges, known to have affine complexity of the form p(n) = (m — 1)n + 1 [16],
and thus also include Sturmian languages, which have an exact affine complexity
p(n) = n+ 1 [20,23]. Non-coherent bouquets of circles play then an important
role for producing all the affine complexities given by Theorem 1.1, and accord-
ingly this paper develops and extends the tools introduced in [19] to deal with
non-coherent graphs.
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Next, as a complement to the converse part of Theorem 1.1, we show how
embedded bouquets of circles can be used to explicitly construct lamination lan-
guages for each possible exact complexity, yielding at the same time a technique
to build laminations, in particular laminations with a finite number of curves and
connected as sets. The main result with this respect will be the following:

Theorem 1.2. There exist families of lamination languages made of ultimately
periodic words, having exact complexities an + b, Yn > 0, covering all the possible
a and b’s given by Theorem 1.1, and coding finite connected laminations.

For infinite lamination languages we still do not know about a constructive me-
thod to obtain a family of them covering all the possible complexities. Here we
just present how to obtain some of these languages from pseudo-Anosov surface
diffeomorphisms, i.e. transformations leaving two laminations fixed, one stable and
the other one unstable. Some of these surface transformations [24,29] are indeed
known to translate into the symbolic domain as substitutions, whose fixed points are
representatives of the lamination languages coding the corresponding stable lami-
nations [18,19]. Contracting the involved carrier graphs produces minimal infinite
languages associated with bouquets of circles too, sometimes non-coherent ones.

2. BASIC DEFINITIONS

2.1. CURVES, LAMINATIONS AND GRAPHS

We begin with some definitions of geometric-oriented notions, some of them
being in a simplified form but sufficient for the text (for more detailed ones, the
reader may refer to [5,6,9,28|). A surface X' is a two-dimensional manifold. A
surface of finite type is a closed surface from which finitely many points, called
punctures, have been removed. When endowed with a complete Riemannian met-
ric with constant curvature —1 a surface is said to be hyperbolic. The objects under
study here mainly belong to hyperbolic surface theory, and X will henceforth al-
ways denote an oriented surface of finite type with some fixed hyperbolic metric
(whose choice does not play any role in this paper). A curve v in X' is a continuous
map, either from a closed connected subset J C R, or from the circle S' to X. In
the latter case v is said to be closed (and also in the former case when the map is
periodic). If the map is injective, v is said to be simple. If J = R, v is said to be
two-way infinite, and if J is bounded and -« is simple, then = is called an arc.

Let I' be a finite directed graph embedded in Y. An admissible path in I’
is a sequence of consecutive edges with the same orientation. For the sake of
simplicity, we henceforth assume that for every vertex v of I', its indegree 9~ (v)
and outdegree 0T (v) are strictly positive, that is, v is crossed by at least one
admissible path?. A curve  in X is said to be carried by I’ if it can be continuously

2This simplification has no effect on the generality of the results of the paper. Vertices
with 97 (v) = 0 or 9t (v) = 0 could be included by making them correspond to punctures
of the surface, but this adds no new combinatorial behavior to the considered curves.
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deformed into an admissible path of I', by a free homotopy if 7 is closed, or by a
uniformly continuous homotopy if 7 is two-way infinite [5]. The next figure shows a
closed curve y carried by a graph I" where X' is a torus of genus 2 with one puncture:

¥,
XY

puncture
as a Cusp

r

In order to exclude the carrying of ill-behaved curves, I is always assumed to be
embedded in such a way that, among the connected components of X'\ I" there is
no disk bounded by a cycle of I" with less than two punctures. A set of curves is
said to be carried by I if all its curves are carried by I.

In a general setting, a lamination is a foliation of a closed subset of X, that
is, roughly, a decomposition into one-dimensional submanifolds of this subset [28].
The laminations mostly used in surface theory are geodesic laminations, i.e. those
made of geodesics only [9,28]. These are equivalent up to isotopy to laminations
made of pairwise non-homotopic curves, and deformable to graphs ([28], 8.9.4).
Here, the laminations we consider are always of this kind, and we use an alterna-
tive definition of them up to isotopy, also coming from Thurston and related to
the preceding equivalence, which is essentially the following [19]: a (topological)
lamination £ in X' is a set of simple closed or two-way infinite curves in X, all
pairwise disjoint and non-homotopic, such that there exists an embedded graph I’
which carries £ in a maximal way with respect to inclusion (no other curve carried
by I' can be added to £ while preserving the curve set properties)®.

Simple examples of laminations are given by the sets of pairwise disjoint and
non-homotopic simple closed curves on Y. These are finite laminations, i.e. lam-
inations made of a finite number of curves. An instance is shown on the left of the
next figure, made of v1, 72,3, and carried by I" consisting of three disjoint cycles:

V3

Vi

Other examples of finite laminations are obtained by using infinite curves spiraling
along simple closed curves [5]. An instance is shown on the right of the figure above,

3 The graphs we consider here are directed — so as to more easily code laminations —, implying
that laminations are assumed orientable, whereas for the general case one classically uses spe-
cific non-directed graphs, generally train tracks [25,28]. However in our context, non-orientable
laminations can be considered as being carried by directed double graph covers to which all
admissible paths lift, reflecting the fact that an admissible path may go through an edge in both
directions [19,28]. Thus there is no loss of generality in considering directed graphs only.



BOUQUETS OF CIRCLES FOR LAMINATION LANGUAGES AND COMPLEXITIES 395

where two spiraling curves 74, 75 have been added to the lamination shown on the
left, while two edges have been added to I" to carry these curves.

Examples of infinite laminations are classically obtained via interval exchange
transformations [21] which are, up to scaling, orientation-preserving and piece-
wise isometries of I = [0,1). Such amap T : I — I can be seen as permuting a finite
number of semi-open subintervals Iy, ..., I, partitioning I. More precisely, T is
determined by (A, 7), where A = [A1,..., Ay] is a probability vector made of the
I;’s lengths in their order of occurrence in I, and 7 is a permutation of {1,...,m},
so that the effect of T is to concatenate the I;’s in its image in the order given
by , the vector of lengths becoming [)\,r—l(l), ey )\ﬂ——l(m)]. For instance, here is a
representation of an interval exchange over 3 intervals, with = = (1 2 3):

A lamination can be obtained from an interval exchange T' given by (A, 7) using
its suspension [5]. Let R = [0,1] x [0, 4], for some 6 > 0, be a closed rectangle
corresponding to I, foliated by the arcs x x [0, 4], and let S9°%™ = [0,1] x 0 and
S"P = [0, 1] x 6 be its sides of length 1. For each I; of T, let R; = [0, ;] X [0, 1] be a
closed rectangle foliated by the arcs 2 x [0, 1], with S#ow™ ' its sides of length ;.
Next, the S#¥™’s are identified to SUP in the same order as Iy, ..., I,,, with their
ends as the only intersections, and the S;"’s to Sdown in the order given by T,
i.e. In—1(1y,-+ -, Ix=1(y), so that the result is an orientable band-like surface Xr
which is covered with pairwise disjoint curves made of identified arcs from the
rectangle identifications. For instance, considering 7" as in the above example, its
corresponding X' is shown on the left of the next figure:

By glueing a punctured disk along each boundary component of Xp, we get a
surface X' of finite type. Then, by slitting out the induced singular curves, i.e. the
curves starting or ending at the intersections between the R;’s sides, and by keeping
only one curve from each set of pairwise homotopic curves, a lamination Lp is
obtained on X' [5,15]. This lamination is carried by a bouquet of m circles I'r
embedded in X, i.e. a graph made of a single vertex and m edges, described here
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by placing a vertex v in R, and by defining one edge e; for each R;, linking v to
itself by going through this R; (see the example in the figure above). A vertex of
an embedded directed graph is said to be coherent if all its incident incoming
edges are consecutive around it using either cyclic order — hence its outgoing edges
are consecutive too. An embedded directed graph is coherent if all its vertices
are coherent. By the above construction, Ip is a coherent bouquet of circles.

A lamination is said to be minimal if it does not contain any lamination as a
proper non-empty subset; it is said to be aperiodic minimal if it is not reduced
to a single closed curve. Similarly, an interval exchange transformation 7" given by
(A, m) is said to be minimal if for all z € I, the full orbit {T"(z)},ez is dense
in I. A sufficient condition for minimality of 7', called the infinite distinct orbit
condition (idoc for short), is that the orbits of all the m — 1 points « € I of T such
that = I; N 1,41, with i € [1,...,m — 1], are infinite and disjoint [16]. The idoc is
satisfied if 7 is irreducible and if the only rational relation between the A;’s in A is
>-; Ai = 1. The lamination Lr is aperiodic minimal iff T" is minimal. Thus we can
exhibit infinite laminations through interval exchanges satisfying the idoc. Note
that the maximality condition used in the lamination definition is not necessary
for a lamination £ to be carried by a graph I', but when it holds, we say that £ is
maximal rel. to I'. For instance, if an interval exchange T satisfies the idoc then
the associated lamination £ is maximal rel. to its bouquet of circles I'p [19].

Even more examples of laminations can be obtained by using the fact that the
union of finitely many minimal sublaminations with finitely many two-way infinite
curves whose ends spiral along the minimal sublaminations is a lamination [5].

2.2. CODING LAMINATIONS

Let A be a finite alphabet. Let A% denote the set of the two-way infinite words
over A. A directed graph I' is here said to be labeled by A if its edges are
bijectively labeled by A. The label of an admissible path of I" is the word obtained
by concatenating the labels of its edges. If v is a curve carried by I, and if it is
homotopic to a unique path, its coding is the label of this path. In this case, we
also say that ~ is coded by this label, or coded by I'.

The coding of a carried closed curve 7 is the two-way infinite periodic word “u®,
where u is the label of the closed path in I' freely homotopic to . The above
figure shows a closed curve coded by “(adbc)® on a punctured torus of genus 2.
Thus closed and two-way infinite curves are coded over A%. By extension, a set of
curves is said to be coded by I if all its curves are coded by I
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A language is a set of finite and/or infinite words [20, 26]. In particular, a
language in A% is a language of two-way infinite words. The full language A”
can be endowed with the topology coming from the Cantor metric, i.e. for w =
c..a_yapay ... and w' = ...a’_jahay ... in AZ with a;,al € A, their distance is 0
if they are equal, and 27% if they are not, where k is the smallest non-negative
integer for which ay # aj, or a_j, # a’_,.. The shift map o on AZ is the continuous
transformation which sends ...a_japay ... to ...a"japa) ... where a} = a;+1 for
i € Z. A shift (or shift space or subshift) [17] is a closed o-invariant language in
A”. The shift orbit closure L of a language L in A% is the smallest shift which
includes L. A lamination language is the shift orbit closure in A% of the codings
of all the curves of a lamination £ coded by a graph I" labeled by A; the shift-
invariance reflects the fact that the curves of a lamination are considered up to
homotopy, hence up to parameterization, and the closure property is a consequence
of the lamination definition (mainly, the maximality property) [19]. A lamination
word is an infinite word in a lamination language.

For instance, from the example of the last figure, {“(adbc)¥}? is a sim-
ple lamination language. Examples of non-trivial lamination languages can be
obtained wvia interval exchange transformations. Indeed, given an interval ex-
change T : I — I, and a map cod : I — A assigning a distinct letter to
each I; of the partition of I, the symbolic orbit of any z € [ is the word
wr(z) = ... cod(T~*(z))cod(x)cod(T(x)) . ... The symbolic orbit language of T’
is the shift orbit closure of the language {wy(z)|z € I}, and it corresponds to the
lamination language which codes the lamination £ by I, built from 7" in the
preceding section.

2.3. FACTOR COMPLEXITY

A factor (or subblock) of a word w is a finite word u such that w = w'uw”,
where w',u,w” are words (w’,w” being possibly empty words). The set of all
the distinct factors of a word w is denoted by Fact,,, and for a language L, by
Facty, = e, Facty,. The set of all the distinct length-n factors of a word w
is denoted by Fact,(n), and for a language L, by Facty(n) = U, Facty(n).
An infinite word is minimal (or uniformly recurrent) if each of its factors occurs
infinitely often in it with bounded gaps. A shift is minimal if it has no proper
non-empty subset as a shift. In a minimal shift L, every word w € L is such that
L = {o*(w)},cy, and for every w,w" € L, Fact,, = Fact,, even if w,w’ are only
half-words in L. Since a minimal lamination is coded by a minimal shift L, its
combinatorics can thus be studied through a single (half-)word in L.

The (factor) complexity [8,22] of a word w is the function p,, : N* — N*
where p,,(n) = |Fact,(n)|, i.e. the cardinality of Fact,,(n). The complexity of a
language L is defined as pr(n) = |Factr,(n)|. Accordingly, if L C A% is a minimal
shift, every word w € L is such that p,, = pr. A complexity formula is said to
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be ultimate if there exists ng > 0, such that it holds for all n > ng, and it is also
said to be exact when ng = 0. Here are two known results about affine complexity:

Theorem 2.1 (see [7], 5.3). Let (a,b) € N x Z. Then there is a word w of exact
affine complexity p,(n) =an+b, Vn >0, iffa+b>1 and 2a+ b < (a + b)?.

Theorem 2.2 (see [19], B). A lamination language L is such that there exist
ng >0,a€N, beZ, sothat pr(n) =an+b, Vn > ny.

The purpose of the next two sections is to prove Theorem 1.1, that is, mainly to
precise Theorem 2.2 for the exact complexity case in similar terms to Theorem 2.1.

3. GRAPHS AND BURSTS

3.1. LINE GRAPHS AND LANGUAGES

Let I' = (V, E) be a finite directed graph where V' denotes the set of vertices,
and F the set of edges. The line graph of I is the directed graph S(I") = (Vs, Es),
where Vg = E, and Ej is such that there is an edge from e; to e; if the sequence e;e;
corresponds to a length-2 admissible path in I".

r S(T)

When defined from an embedded graph I" in X, the graph S(I") inherits an induced
immersion in X (not necessarily an embedding since edge crossings may occur):

(i) Each vertex of S(I') is placed in the interior of its corresponding edge of I

(ii) The pair of vertices lying in a length-2 admissible path of I" are linked by an
arc in I" which is contained in this length-2 path.

(iii) The arcs defined in (ii) are put in general and minimal intersection position
in X' with their end vertices fixed (see the figure above).

The graph S(I") will henceforth always be considered with this induced immersion.

Now, assume I” has been labeled by A, and let L be a language in A” made of
labels of admissible paths in I', that is, Facty,(2) is a set of labels of length-2 ad-
missible paths in I". Let us also assume that every letter of A is used in L, that is,
Facty, (1) = A. We then define the graph S, (I") as S(I") in which we keep only the
edges corresponding to edge pairs of I" labeled by Factr,(2). Accordingly, S (I")
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inherits the immersion of S(I"). The graph Sy (I") is also related to a classic repre-
sentation of Factr,(n), usually called the n-th order Rauzy graph of L, i.e. the
directed graph where each vertex corresponds to a distinct factor in Facty,(n), and
where an edge between two vertices au, ub, with a,b € A, u € Facty,(n—1), exists
iff aub € Factr,(n+ 1) [12]:

Lemma 3.1 (see [19], Sect. 3). Let I' be a graph embedded in X, and let L be a
language in A% of labels of admissible paths in I'. Then:

(1) Si(I") is isomorphic to the first-order Rauzy graph of L.
(2) Sp(I') is a coherent graph.
When L is a lamination language, Si.(I") comes with additional properties:

Lemma 3.2 (see [19], Sect. 3). Let I" be a graph embedded in X carrying a lami-
nation L, and let L be the lamination language coding L by I'. Then:

1
2

(1) SL(I') is an embedding (not just an immersion).

(2) SL(I) still carries L.

(3) A curve carried by Sr.(I") is carried by I' too.

(4) If £ is maximal rel. to I, it is also maximal rel. to Sp(I").

For instance, here is again a torus of genus 2, with an embedded graph
I' labeled by {a,b,c,d}, so that S(I') is made of the edges labeled by
{ab, ad, ba, be, ca, cc,db, dd}; the drawn carried disjoint curves are coded into a
language L, so that Sp,(I") is embedded, with edges corresponding to Facty,(2) =
{ab, ad, ba, bc, ca, db}:

e &2

F S(T) S(T)

3.2. BURSTS AND OUTERPLANAR GRAPHS

When building Sy, (I") from I', each vertex v of I" is transformed into a subgraph
in Sp,(I"), called a burst of v, whose vertices correspond to the edges of I" incident
with v, and whose edges correspond to the length-2 admissible paths labeled by
Facty,(2) and going through v. Such a burst can be represented by a bipartite graph
Bursty 1 (I') = (Vi,in U Vi out, Ev), where the vertices in Vi, correspond to the
incoming half-edges at v, denoted by v; , where the vertices in V;, oyt correspond to
the outgoing half-edges at v, denoted by vj , and where F, is the set of edges which
correspond to length-2 admissible paths labeled by Factr,(2) and going through
one incoming and one outgoing half-edge of v. Burst, (I") is directed too, its
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edge orientations going from Vi, to V; ous. Here is an example at some vertex v

for some fixed L for which Factr,(2) = {ae,af,bc, be,dc,de, fe, f f}, and where the
+1.
Pk

vertices of Burst, ,(I") are Vi, = {v;,v;,v;,v;}, Vi,out = {vF, v, v

Vb

vy ST 'Ve
Burstv’L(F)

As this example shows, Burst, ,(I") is not always isomorphic to the burst it
represents in Sz (") since it relies on the incident half-edges at v, thus any loop
at v makes two distinct vertices in Burst, (I"). Still, Burst, r,(I") has also its
edges in correspondence with Facty,(2), and it is more convenient to work with.
In addition, when defined from an immersed Sp(I') in X, Burst, (I') has an
induced immersion (up to isotopy):

(i) Let D C X be a disk containing v in its interior, such that its boundary 0D
intersects only the incident half-edges of v. Then each vertex in V,, in and V; out
is placed at the intersection of its corresponding half-edge and 0D.

(ii) Each edge of Burst,, r(I") links the corresponding vertices in V;, jn to the ones
in Vi out by a straight arc within D.

In the figure above, Burst, (I") is shown with its immersion. Note that given
some Burst, r(I"), in order to get the subgraph it represents in Sr(I"), one has
just to identify each pair (v; ,v;") coming from a loop at v, by dragging v; to v;"
along this same loop.

Here is a full example where I" is a non-coherent bouquet of three circles with
its single vertex v, where its embedding surface X' can be the sphere with as
many punctures as needed so that " is a coding carrier graph, that is, a graph
ensuring unique curve carrying. We then consider two disjoint curves in X' carried
by I', and coded by L = {“beca” “b(ca)“}, so that Factr,(2) = {aa,ac,bb,be, ca}.
Thus Burst, ,(I") has five edges, from which S (I"), being itself the burst of v, is
obtained by identifying v, and v;" , for each i = a, b, ¢, along their corresponding
loop i to get v;:

c

. P Ve
O @ vy, @

r curves carried by T’ Burst, ; (T") S,(T)
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A (planar) drawing of a graph is an embedding of this graph in the plane;
here by extension, in a surface X, it is an embedding of this graph in a disk in X/
possibly punctured. A drawing is outerplanar if all its vertices belong to a single
face, and a graph is outerplanar if it admits an outerplanar drawing.

Lemma 3.3. Let I" be a graph embedded in X. Let L be a language in AZ of labels
of admissible paths in I" such that Si,(I") is embedded too. Then, for every vertex
v € I', the induced immersion of Burst, r(I') in X is an outerplanar drawing
m X,

Proof. Since Sp,(I') is embedded, the burst at any vertex v € I" has edges corre-
sponding to Factr,(2) which do not cross with each other. Since Burst, r(I") re-
flects how the arcs corresponding to these edges cross a small disk D containing v,
its immersion in X' is a graph drawing. The vertices of Burst, ,(I") can belong to
0D, while its edges are included in D, hence the outerplanarity. O

Thus from now on, when coming from an embedded Sz (I") in X, e.g. when L is
a lamination language, Burst, r,(I") will always be considered with its outerplanar
drawing. Also, a property P of a graph or a drawing will be said to be maximal
if one cannot add any edge to it while preserving P.

Proposition 3.4 (see [13]). A drawing of a bipartite graph (Vi U Va, E) where
[Vi| < |Val|, which is mazimally outerplanar, has at most 2|Vi| + |Va| — 2 edges.

In order to exhibit outerplanar drawings with the maximal number of edges,
given a set of vertices (V4 U V2) of a bipartite graph with |Vi| < |Va|, put these
vertices on a circle while maximizing the alternations between the vertices of V;
and V5. The vertices of V; can then occur between vertices of V5, and they can
thus be linked by arcs to their neighbors, which makes 2|V | edges. Next, pick any
vertex of V1, which can be linked to all the other vertices of V5 within the circle,
which makes |Vz| — 2 more edges, hence a total of 2|V1| + |Va| — 2 edges.

Note that with respect to the embedding of I" in X' and to a burst of a vertex v
of I', the above maximal alternation of the vertices in Vi =V, i, and Vo =V, out
corresponds to a maximal alternation of the orientations of the incident incoming
and outgoing half-edges of v, that is, to a “maximal non-coherence” at v. For
instance, in the example to the left of the figure below, the vertex v is alternating,
i.e. its incident half-edges show a strict alternation of their orientations, and L can
be chosen so that the maximal number of edges of the corresponding Burst, (1)
is attained, i.e. ten edges (here, |V, in| = 07 (v) =4 and |V, out| = 0T (v) = 4):

r Burst, ;(T) r Burst, (1)
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To the right of the figure above is shown a case where there is a minimum orienta-
tion alternations at v, that is, v is coherent: all the vertices of V,, 1, (equiv. of Vj, out)
of the corresponding Burst, r,(I") are consecutive around the circle. This kind of
outerplanar drawing is also said to be biplanar, i.e. V, i, and V, oy can also
be respectively placed in two parallel lines, the edges remaining straight arcs. A
graph admitting such a drawing is known to be a union of caterpillar trees [10],
i.e. trees such that deleting all their leaves yield linear path graphs. In the above
example, the maximal number of edges of Burst, r(I") is attained for such a bi-
planar graph, that is, as a non-directed graph, it is a single caterpillar tree of
seven edges.
When L is a lamination language, Burst, r,(I") has some specific properties:

Lemma 3.5. Let I' be a graph embedded in X, carrying a lamination L, and let L
be the lamination language coding L by I'. Then for every vertex v € I' (recall that
|Vv,in| =0~ (U) and |Vv,0ut| = 3+(1})):

(1) The number of edges of Burst, ,(I") belongs to the interval [kmax, 2Kkmin +
kmax — 2], where kuyin = min(0~ (v), 07 (v)) and kpax = max(9~ (v), 0" (v)).

(2) Let Burst, (I') be a mazimal embedding, that is, no edge can be added to it
while preserving the embedding. Then it is connected (as a non-directed graph),
and it has at least O~ (v) + 01 (v) — 1 edges (the minimum being attained when
v is coherent, thus Burst, r(I") is biplanar).

(3) Let L be a lamination maximal rel. to I'. Then for every vertexr v € I,
Burst, ,(I') is a mazimal embedding.

Proof.

(1) Since L is made of two-way infinite words, Facty, is prolongable, i.e. its words
can be prolongated by one letter at least in one way to the right and to
the left so that these prolongations remain in Facty. Thus, since the edges in
Burst, 1,(I") correspond to edges in Sr,(I") labeled by words in Factr,(2), there
is no isolated vertex in Burst,, r,(I"), which has then at least kmax edges. More-
over, since L is a lamination language, Si,(I") is embedded, then Lemma 3.3
applies, and Burst, (I") is outerplanar, hence by Proposition 3.4 the result
follows.

(2) If Burst, (I") is a maximal embedding, it is maximally outerplanar. Assume
then that it is made of two disjoint outerplanar subgraphs I'y and Iy (the case
where there are n of them is handled similarly). Let F' denote the external face
of I', which is also the external face of I'] intersected with the external face of
I';. Let D be the disk whose boundary contains the vertices of Burst, (I"),
and let F’ be the component region in DNF. Since Burst,, (") is disconnected
without any isolated vertex, I’ contains in its boundary at least one edge of
Il and one edge in I;. Also, since Burst,, (I") is bipartite, these two edges
link vertices of V;, in to vertices of V,, out. But then one edge, linking a vertex
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of Vi in to a vertex of V, ous, can be added within F” while preserving pla-
narity, contradicting maximality. Hence as a non-directed graph, Burst, r,(I")
is connected, so it is at least a tree. This situation happens when Burst, (1)
is maximally biplanar, being then a caterpillar tree with 9~ (v) + 9" (v) — 1
edges.

(3) If we could add one edge e to Burst, (I") while preserving the embed-
ding, a distinct curve carried by I' could be built from e, and added to £
while preserving the overall properties of the resulting set of curves ([19],
Sect. 3.3.3). |

An embedded bouquet of circles is alternating if its single vertex is alternating.

Corollary 3.6. Let I' be a bouquet of m circles embedded in X, carrying a lam-
ination L, and let L be the lamination language coding L by I'. Then for the
vertex v of I', the number of edges of Burst, (I") (and thus of Sp(I") too) be-
longs to [m, 3m — 2] (the mazimum being attained when I' is alternating, and
Burst, ,(I") is mazimally outerplanar).

Proof. For a bouquet of circles I', the number of edges of Burst,, r,(I") is the same
as for Sp(I"). Since 7 (v) = 07 (v) = kmin = kmax = M, Lemma 3.5(1) gives the
interval [m, 3m — 2|. Using the outerplanar drawing construction introduced after
Proposition 3.4, a strict alternation of the half-edges incident with v allows the
maximum of edges given by Proposition 3.4 to be attained. (]

4. COMPLEXITY AND LAMINATIONS

4.1. TOOLS FOR COMPUTING COMPLEXITY

From now on, I" will always denote a lamination carrier graph embedded in X.
Given a lamination coded into L by I', the role of S, (I") for computing the com-
plexity of L comes from the following result, keeping in mind that by Lemma 3.1(1),
Sr(I') is the first-order Rauzy graph of L (so that |A] is the number of its vertices,
and |Factr,(2)] is the number of its edges, which depends on the bursts of I'):

Proposition 4.1 (see [19], 4.1.2). Let L be a lamination language coding a lam-
ination L by a graph I' labeled by A. Then L has an exact affine complezity pr,
iff L is mazximal rel. to S (I"). Moreover:

pr(n) = (|Factr(2)| — |A)n + (2|4| — |Factr(2)]), Vn > 0.

Note that this result also applies if £ is maximal rel. to I, since according to
Lemma 3.2(4), £ must be then maximal rel. to Sg,(I") too. Now, the formula above
is not an invariant for laminations, as the same lamination can be carried by many
different graphs. With this respect, there exist simple graph moves over a graph I’
(closely related to Whitehead mowves for singular foliations [6]), which preserve the
carrying of a lamination £, while transforming the coding of £. In other words,
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these moves can be used to transform a lamination language with a specific com-
plexity into another one with another complexity. One such type of graph move is
edge contraction: let e be an edge linking two distinct vertices v; and ve in I,
then the contraction of e consists in erasing e from I', and in replacing e in the set
of incident edges with v; by all the incident edges with v, using the same cyclic
order. For instance:

a

Lemma 4.2. Let £ be a lamination coded by I' into L, and maximal rel. to Sp,(I").
Let I be I' to which one edge contraction has been applied, and let L' be the coding
of L by I'". Then L is also mazximal rel. to S, (I").

Proof. Let e be the contracted edge, and v, be its corresponding vertex in Sy, (I"),
which exists since Factr,(1) is always assumed to be the labeling alphabet of I'.
Since e is an edge between two distinct vertices of I', there is no loop incident
with v, in Sz, (I"). Thus such a contraction of e means to erase v, from S, (I"), and to
replace it by the set of edges corresponding to every length-2 path going through v,
and used to carry £, so as to describe Si/(I""). But then, this transformation also
corresponds to the burst of v, with respect to the language L” which codes £
by Sp(I"), that is, to Burst,, . A consequence of Lemma 3.2(4) is that a burst
preserves the maximality of a carried lamination, whence the result. O

Lemma 4.3. Let L be a lamination language coding a lamination L by a graph I,
L being maximal rel. to S (). Let I be I' to which one edge contraction has been
applied, and let L' be the coding of L by I''. Then, pr/(n) = pr(n) —1, Vn > 0.

Proof. Let L” be the language coding £ by S.(I"). In the proof of Lemma 4.2,
we saw that a contraction of e in I" means to erase ve in Sp(I"), and to re-
place it by Burst,, 1, a transformation defining Sz (I""). Moreover, £ is maximal
rel. to Si(I'), and by Lemma 3.1(2), S..(I") is a coherent graph. By Lemma 3.5,
Burst,, » is thus a maximal biplanar drawing. Then, since there is no loop in-
cident with v, in S (I"), the erasing of v, means to replace its 0~ (ve) + 01 (ve)
incident edges by 07 (ve) + 01 (ve) — 1 edges. By Lemma 4.2, £ is still maximal
rel. to Sp/(I"), thus Proposition 4.1 applies to obtain pr/, with |Facty/(2)] =
|Factr(2)] — 1, and with a labeling alphabet A’ such that |A’| = |A] — 1. O

4.2. THE EXACT COMPLEXITIES OF LAMINATION LANGUAGES

A lamination carrier graph I" is said to be recurrent, if for every edge e in I"
there exists a simple closed curve which uses e to be carried by I'. When I is co-
herent and recurrent, its edges can be weighted by maps like p : 2 — R* for which
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at every vertex v of I' the branch equation ; pu(e; ) = >, u(e;r) holds, where
the e;’s are the incoming incident edges at v, and the ¢;’s the outgoing ones [6,25].
From these equations, a weighted coherent graph I' can be transformed into a
band-like surface in a similar way to the construction of X7 given in Section 2.1
for an interval exchange T: each edge e of I' is replaced by a foliated rectangle
R. = [0, pu(e)] x [0,1], and these rectangles are glued together along their sides of
length u(e), reflecting the incidence patterns of the edges at each vertex of I.

Lemma 4.4. Let I' be a coherent and recurrent graph. Then there exist lamina-
tions carried and mazimal rel. to I.

Proof. With the same treatment as for Xp, the above construction is known to
yield laminations carried by I" [6,15,25]. Next, if such a lamination is not maximal
rel. to I', there always exists a finite set of curves carried by I" which is sufficient so
that its union with £ becomes a maximal lamination rel. to I" ([19], Sect. 3). O

Now, recall that given a lamination language L, the graph Sy, (I") is determined
by the bursts of I'’s vertices induced by L. Thus more abstractly, without any
reference to a given L, a well-formed set of bursts B(I") is a set of outerplanar
drawings in X of bipartite graphs without isolated vertex, one for each vertex
v € I', such that for the graph (V1 UV, E) associated with v, we have |Vi| = 0~ (v),
[Va| = 0% (v), and V; U V4 corresponds to the adjacent half-edges around v on I,
placed in the same cyclic ordering. The embedded graph Sg(ry(I") is then obtained
by replacing each v € I' with its corresponding burst in B(I").

Corollary 4.5. Let I' be a recurrent graph. Let B(I") be a well-formed set of
bursts. Then there exist laminations carried by I' and mazimal rel. to Spry(I).

Proof. I being recurrent, Spr)(I") is recurrent too. From Lemma 3.1(2), one can
also deduce Sp(r)(I") is coherent, thus Lemma 4.4 applies to Sp(r)(I"). Then sim-
ilarly to Lemma 3.2(3), to transform the bursts back into their vertices preserves
the carrying, thus a lamination carried by Sg(r(I") is also carried by I. O

We can now prove Theorem 1.1, that is, characterize what are the possible exact
complexities for lamination languages:

Proof. Let I' be an alternating bouquet of m circles with its single vertex v. A
bouquet of circles is recurrent, and thus for any well-formed burst of v, denoted
by Burst,, making by itself a well-formed set B(I"), Corollary 4.5 ensures the
existence of laminations carried by I' and maximal rel. to Spr)(I).

According to Proposition 4.1, the coding L of a lamination maximal
rel. to Sr(I") has complexity pr(n) = (K—m)n+(2m—K), Vn > 0, where K is the
number of edges of S, (I"), equal to the number of edges of Burst, since I is a bou-
quet of circles. Next, by Corollary 3.6, K € [m,3m — 2|, and I" being alternating,
this number of edges can take the maximal value, that is, there exists some Burst,
with 3m — 2 edges. This burst defines a well-formed B(I"), so that by the prelimi-
nary remark above, laminations carried by I' exist, and given any such lamination,
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its coding language L satisfies Burst, (I') = Burst,, and Spry(I") = Sp(I).
Now, edges can be removed one by one from Burst, until m edges are left, so
that at each edge removal the graph remains a burst defining a well-formed B(I"),
and so that the same reasoning as before applies. Hence, K can take every value
in [m,3m — 2], and thus p(n) = an + b, Yn > 0, where a € [0,2m — 2], and
b € [2—m,m] with b = m — a, is a possible complexity for a lamination carried
by I'. In N x Z, this set of pairs (a,b) determines for each m > 1, a diagonal
segment of slope —1, starting from (0,m) and going down to (2m — 2,2 — m), so
as to cover an infinite region Q = {(a,b) e NxZ |a >0, b> [-% +1]}:

W=12
W =3
. m=4

Q m=5
]

‘ m=6

8910 1> a

Hence laminations exist with coding languages having all the claimed complexities,
and we have proved the converse part of Theorem 1.1.

Now, let I" be any embedded graph, that we first assume connected, and let £
be a lamination carried by I" such that its coding lamination language Lo has an
exact complexity, that is, pr,(n) = aon + by, Yn > 0, for some ag € N, by € Z.
Then, according to Proposition 4.1, £ is maximal rel. to S, (I"). We then contract
the edges of I' one by one, and we get at each contraction a new language L;
coding £ by the resulting graph. By Lemma 4.2, the affine complexity remains
exact, i.e. pr,(n) = a;n + b;, Yn > 0, for which by Lemma 4.3, a; = a¢ and
b; = b;—1—1. Since I is assumed connected, edge contractions can be applied, say h
of them, until we get a bouquet of circles. But then, again by Corollary 3.6 and the
above arguments for the specific K obtained, pr, (n) = apn + by, = agn +bg — h is
such that (ap,bp) € Q. Now, if (a,b) € Q, then (a,b’) € Q for every integer b’ > b.
Thus the complexity of L is such that (ap,bn + h) = (ag, bo) € Q.

In the case I' is not connected, the complexities of the languages associated
with each of its connected components add, the edges being bijectively labeled,
and this remains true when each of these components has been contracted to a
bouquet of circles. Since if (a,b) € Q, (¢/,V') € Q, then (a4 a’,b+ V') € Q, the
complexity of L is such that (ag,bp) € @ in this case too. |

Note that in Cassaigne’s Theorem 2.1, the main condition over exact complexi-
ties for the (a, b)’s is 2a+b < (a+b)?, whereas the one in the above proof translates
into 2a + b < 3(a + b) — 2 (equivalently, |Factr(2)] = pr(2) =2a+b<3m—2=
3pr(1) —2=3(a+b) —2). Thus:
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Corollary 4.6. There exist infinitely many shifts with ezvact affine complexity
which are not lamination languages.

Proof. The proof of Theorem 2.1 in [7] includes the fact that for each possible exact
complexity there is a minimal word w having that complexity. By minimality, p,,
is equal to the complexity of its shift closure, whence the result. O

A carrier graph can be embedded in infinitely many surfaces, and lamination
language complexities are thus not related to specific surfaces. Nevertheless for
bouquets of circles, a remark can be made: First of all, for the known case, con-
sidering a coherent bouquet I' of m circles, a language coding a maximal lami-
nation carried by I corresponds to the symbolic orbit language of idoc interval
exchanges T on m intervals [19], having an exact complexity an—+b, with a = m—1,
b =1 [16]. On the associated suspension surface X7 (see Sect. 2.1), the Euler char-
acteristic gives 1 —m+C' = 2—2g, where ¢ is the genus of X, and C' is the number
of components of its boundary, that is, a +b = 2g + C — 1. A similar construction
of a suspension surface generalizes to non-coherent bouquets of circles, where the
central rectangle R of Y is replaced by a polygon with 2m sides, also foliated,
but including singularities. By Proposition 4.1 applied to any bouquet of m circles,
the languages coding its maximal carried laminations have an exact complexity
an + b, with a +b = m, that is, a + b = 2g + C — 1 too.

5. BUILDING LAMINATIONS AND LAMINATION LANGUAGES

In this section we discuss more constructive methods than the ones behind
Lemma 4.4 to build laminations and lamination languages.

5.1. COMPLETE COMPLEXITY FAMILIES OF LAMINATION LANGUAGES

From Proposition 4.1, one can deduce a criterion to check that a set of curves
is a lamination, knowing the complexity of its coding:

Corollary 5.1. Let C be a set of simple closed or two-way infinite curves in X, all
pairwise disjoint and non-homotopic, coded into a shift L by a graph I" labeled by A.
Then C is a lamination if pr,(n) = (|Fact(2)|—|A|)n+(2|A|—|Factr(2)]), Yn > 0.

Proof. We must check that C is maximal rel. to some graph. By Lemma 3.2(2),
the set C is carried by Sp(I"). Next, if C was not maximal rel. to Sr(I"), curves
could be added to C until it is, while preserving all the properties of the curves,
and by Lemma 3.2(3), while also being carried by I'. But then, this new set of
curves C’ is a lamination maximal rel. to Sp,(I"), and Proposition 4.1 applies to it.
Since the added curve codings include distinct factors from the ones in Facty, the
complexity of the coding of C is not equal to the one of C’, whence the result. O
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Using the preceding result, we now build laminations whose codings have complex-
ities running all the possible exact complexities, that is, we prove Theorem 1.2.

Let I, be an alternating bouquet of m circles, whose embedding in X' is such
that each circle has its two half-edges consecutive around the unique vertex v
of I, with the same orientation order (so that I, can be embedded as a drawing
of a coding carrier graph in a punctured sphere — see the next figures below). Let
the edges of I, be labeled by A = {ay,...,an}, where the a;’s are used in the
clockwise order of the circles of I},. If m = 1, we define the language L = {“a¥
which codes the trivial lamination made of a simple closed curve homotopic to the
unique circle of 1. If m > 1 is even, we define the following languages:

. m
Ly, (with m mod 2 = 0) — {wala‘é')} U {wa2i+1a§')i, wa2i+1a‘2”i+2 |Z =1,..., E — 1} U
) m
{wala‘gi |z:2,...,5} U
) m
{walagag...agi \122,...,5} U

{“a1(az...ama1)*}.

For instance, Lo = {“a1a¥,“a1(aza1)*}, and Lg = {“a1a%, “azay, “azay, “asay,
“asay, “aray, “aiay, “aiazazay, “arasasasasay, “ai(azasasasasai)?}. These
words are the codings of curves carried by I,, having their ends spiraling either
around single circles of I, or around the set of all the circles of I,,. For instance,
here is represented this set of curves carried by I coded by Lo, together with a
drawing of the induced Burst,, r,(I%) on the right:

We can also describe more precisely the sets of curves corresponding to the four
lines of the definition of L,,:

(i) C-shaped double spirals linking neighbor circles, attached together by alter-
nating their orientation, and making a chain around the circles of I',;

(ii)  C-shaped double spirals starting from a1, linking non-neighbor circles of I,
going within the chain defined in (i);

(iii) C-shaped double spirals starting from a1, linking non-neighbor circles of I,
going externally to the chain defined in (i);

(iv) a double spiral starting from a; and then spiraling globally around I75,.

For instance, here are the curves carried by I's coded by Lg, shown by a union of
two sets of curves, the first one corresponding to the curves of kind (i) and (ii),
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and the second one to the curves of kind (iii) and (iv), together with a drawing of
the induced Burst, r,(I) on the right:

a5

| H%{@Q}J

If m > 1 is odd, we define the following languages similarly to the even case:

L, (with m mod 2 = 1) —

3 m —
{wa1a‘5} U {""ClQi-{-laLéJ“ wa2i+1a°2Ji+2 |Z = 1, e T — 1} U { amam 1} U

1
{“’alagii:2,...7mT} U

—1
{“JalaQag...agi i:2,...,mT} U{“Jal...ama‘;’n_l} U
{“a1(ag...ama1)*}.

For instance, Ly = { “a1a¥, “azay, “asay, “asay, “asay, “aray, “aiay, “a1af,
“arazasay, “aiasasagasaf, “arasazasasasaray, “ai(azazasasagarar ) }. Here are
represented the corresponding curves carried by Iy and coded by L7, together with
a drawing of the induced Burst, r,(I7) on the right:

a

2 aj
a;
a7

Now, the shift orbit closure L¢, of L,, for every m > 0 includes all the shifted
words in L,,, and also the shifted periodic words in {“a¥ | i = 1...m} U
“ay...am)¥, that is, the only two-way infinite limit words to be added, and cor-
responding to the left or right periodicities of the words in L,,. In terms of curves,
these periodic words are the codings of the closed curves which are the limits of
the spiraling ends of the curves coded by L,,. Let £,, denote the set of curves
coded by L7 :

Lemma 5.2. For every m > 0, L, is a lamination coded into LS, by I, for
which prs (n) = (2m —2)n + (2 —m), Yn > 0.
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Proof. By construction, for every m > 0, the curves of L,, are simple, closed or
two-way infinite, pairwise disjoint, pairwise non-homotopic, all carried by I, and
thus by Sro (I5,) too. Also, when m is even, we have:

FactLgn(Q):{af\z:lm} U {a2i+1a2i|i:1,...,%—l} U

{alagi\i:l...,%} U {aiaiﬂ |i:1,...,m—1}U{ama1}.

And when m is odd:

-1
FactLgn(2):{af|i:1...m}U{a2i+1a2iizl,...,mT} @]

. m—1 .
{alagi|z:2,...,T}U{aiai+1z=1...m—1}U{ama1}.

For every m > 0, |Factrs (2)] = 3m — 2, and thus by Corollary 5.1, L, is a
lamination if pre (n) = (2m — 2)n + (2 —m), Vn > 0. Note that pr. = pr,,,
and that Lg, involves only ultimately periodic words, i.e. words “viuv§, where
v1,u, vy are finite words, u being possibly the empty word (periodic words are
included in this definition when v; = v9 and u is empty). We then check the above
complexities for the Ly,’s by first considering the following fact: a word w =“a;ay,
with a;,a; € A and a; # a;, has complexity p,(n) = n+ 1, ¥n > 0 (words
of this form are skew Sturmian words [23]). Now, if L = {“a;a¥, “axaf’} with
ai,aj,ak,a; € A, a;a; # agar, a; # aj and ag # a;, then pr(n) =2(n+1)—(4—1),
Vn > 0, where ¢ is the number of distinct letters among a;, aj, ax,a;. Indeed,
in “a;aj and “akgay’, if two of their letters are equal, say to a, the only factors in
common are a” for each n > 0. For instance, if L = {“ab“,“ba“}, then pr(n) = 2n,
Vn > 0. From this complexity rule, when m is even, the complexity of L,, is
obtained as follows (it is obtained similarly when m is odd):

e The subset H; = {“a1a§} U {*agi110%;, “a2i4105;,, |7 =1,..., % — 1} has
complexity ¢1(n) =pg,(n) =(m—-1)(n+1)—(m—-2)=(m—1)n+1,Vn > 0,
since adding one by one the complexities of these m — 1 words means to apply
m — 2 times the rule above with ¢t = 3.

e Adding Hy = {“a1a%; |i = 2,...,%} means to add to pg,(n) the function
@n)=F-1)n+1)-2(F~-1)=(F—-1)n—(F—1),Vn > 0, since adding
one by one the complexities of these 5 — 1 words means to apply 4 — 1 times
the rule above with ¢ = 2 (these words have their two letters in common with
the others in Hy).

e For Hy = {“a1aza3...a%; | i = 2,...,%}, when adding one by one its words
to HyUH>, we see that at each adding the only new length-2 factor is asjagj+1
with j = 4 — 1, and thus for each length n > 2, the new factors are those
containing ag;azj+1, that is, n — 1 factors. Hence the complexity contribution
of Hz is g3(n) = (5 —1)(n — 1), Vn > 0.
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e Finally, Hy = {ai(az...amna1)*} is made of a word with the same property
as the ones in H3 where the only new length-2 factor is a,,a;, so that the
contribution of Hy is g4(n) =n — 1, VYn > 0.

Hence pr,, (n) = ¥,y 4 a(n) = (m = Dn+ 1)+ (2 - Dn— (2 — 1)+
(5 — Dn—=1))+(n—1)=(2m—2)n+ (2 —m), thus L, is a lamination. [
For instance, with respect to the examples of the preceding figures, Lg is a lam-
ination language with complexity prg(n) = 10n — 4, and L has complexity
pre(n) =12n -5, Vn > 0.

Now, the exact complexities an + b of the Lg,’s, are such that each (a,b) =
(2m — 2,2 —m) is on the lower boundary of the region Q C N x Z of the possible
complexities given by Theorem 1.1, with the additional property that there is no
(a/,0) € @, with @’ < a or b’ < b. These languages have these extremal complexi-
ties because for every m > 0, [Factrs (2)| = 3m —2, which is the maximal possible
value associated with the number of edges of Burst, ro , that is of Sz (I'y,) too,
for an alternating bouquet of circles (see Cor. 3.6).

In order to get the other (a,b)’s of the lower boundary of @, that is, the com-
plexities for which a is odd, and for which there is no point (a/,0') € Q, with
b’ < b, it is sufficient to have the preceding bursts with one edge removed. Indeed,
this removal is equivalent to having one factor less in Fact(2), that is, 3m — 3 of
them, so that by Proposition 4.1 the corresponding languages would have com-
plexity (2m — 3)n + (3 — m). Thus, for m = 2, we define L, = Ly \ {“a1(aza1)*},
removing only the factor aza; from Factrg(2), contained only in “a;(aza1)®. Then
L consists of a single skew Sturmian word, and pr-g(n) = pry(n) = n+1,Vn > 0.
For m > 2, we define L], = Ly, \ {“azay}, removing only the factor aszas from
Factr, (2), contained only in “azay’. From the proof of Lemma 5.2, we see that re-
moving “aza$ means to subtract an (n — 1) contribution to the complexity of L,
that is, pre (n) = pr;, (n) = pr,.(n) = (n—1) = 2m =3)n + (2 -m + 1),
Vn > 0. Hence the complexities of the L’y ’s are the ones expected to apply Corol-
lary 5.1, thus if ~,, is the curve corresponding to the removed word, maximality
of £, = L —{¥m} rel. to Spre (I'y,) holds, and £}, is a lamination. For instance,
for L'g, then prse(n) = 9n — 3, and for L'7, then pr/z(n) = 11n — 4, ¥n > 0.

As a result, we have described lamination languages with exact complexities
covering all the pairs (a,b) of the lower boundary of Q). In order to obtain the
other pairs, we use another simple graph move called edge subdivision: let e be
any edge of a graph I', then the subdivision of e consists in putting a new vertex v
in e, dividing it into two edges so that v has degree 2. For instance:
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Lemma 5.3. Let L be a lamination coded by I' into L, and mazimal rel. to Sp,(I").
Let I'" be I' to which one edge subdivision has been applied, and let L' be the coding
of L by I'". Then L is also mazimal rel. to S (I").

Proof. A subdivision of an edge e in I" means to replace the corresponding vertex
ve in SL(I') by an edge in Si/(I'"). By Lemma 3.1(2), v, is coherent, thus this
replacement has no effect on the carrying possibilities, whence the result. O

Lemma 5.4. Let L be a lamination language coding a lamination L by a graph I,
L being mazimal rel. to S, (I'). Let I'" be I' to which one edge subdivision has been
applied, and let L' be the coding of L carried by I'". Then, pr, = pr(n)+1,¥n > 0.

Proof. According to Lemma 5.3 and its proof, one can apply Proposition 4.1 to
compute prs with |Factr(2)| = |Factr(2)|+ 1, and with an alphabet A’ such that
|A'| = |Al + 1. O

Now, by applying Lemma 5.4 to each L9, and L’ , that is, by subdividing the
edges of their corresponding bouquets of circles I;,,, we can arbitrarily increment
the b part of their exact complexities an + b, and get lamination languages having
complexities covering all the region ). Moreover, the corresponding laminations
L, L) are finite, and they are connected sets, since for each circle of I, there is
a curve with an end spiraling around it, and any two circles are joined by a chain
of such curves. Hence the proof of Theorem 1.2 is complete.

Note that the above construction was based on specific embeddings of alternat-
ing bouquets of circles I, and on a specific family of laminations £,,, £!, carried
by them. There are other possible embeddings for such bouquets of circles and
other finite carried laminations. We could also drop the idea of describing a com-
plete family for every possible complexity, and consider bouquets of circles which
are not alternating. For instance, here are two such embedded bouquets carrying
maximal laminations [14]:

For the carried lamination on the left, its coding lamination language L is such
that Factr,(2) = {a? | i = 1,2,3} U {a1a3,asa3,aza;}, thus pr(n) = 3n, Vn >
0. For the one on the right, L is such that Facty(2) = {a? | i = 1...6} U
{ayaz, azaq, asay, asay, asag, arag, ayaqt, thus pr(n) =T —1, ¥n > 0.
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5.2. SOME MINIMAL LAMINATION LANGUAGES

In the preceding section, the lamination languages allowing us to cover all the
possible exact complexities given by Theorem 1.1 were finite and made of ulti-
mately periodic words. For aperiodic minimal lamination languages, we still do
not know about a fully constructive method to build such a family. A step towards
a solution would be to use the relationship between laminations carried by coherent
bouquets of circles and interval exchanges (see Sect. 2.1). There are indeed ways
to generate the symbolic orbits of interval exchanges, corresponding then to lam-
ination languages. These techniques are e.g. based on Rauzy induction [3,12] and
on substitution compositions. A substitution is indeed a simple rewriting rule de-
fined by a map 6 : A — B*, where A, B are finite alphabets, B* denotes the set of
finite words over B, which extends to all words by sending w = ... apGn410n42 - - .
to O(w) = ...0(an)0(an+1)0(ant2) - ..

Here however we focus on another construction able to produce minimal lami-
nation languages associated sometimes with non-coherent bouquets of circles, and
relying on substitution iterations and letter projections only. This construction
is derived from the fact that some pseudo-Anosov diffeomorphisms of surfaces,
i.e. diffeomorphisms which always have one stable and one unstable minimal lami-
nations [24,29], can be represented by substitutions in the symbolic domain [18,19].
By iterating these substitutions, it is then possible to obtain the lamination lan-
guages which code their associated stable laminations. Let us here recall this tech-
nique in a simplified setting from [19]: A directed graph I" = (V, E) is said to be
cycle-based if it is strongly connected and if it can be described as the union
of k + h = n oriented cycles {Cy,...,C),} as follows: (i) {C1,...,Cy} is a set of
pairwise disjoint cycles with respective non-empty finite sets of vertices V;, such
that V = Ule Vi; (ii) m is a permutation over V such that v € V is linked
to m(v) by an edge in E not in {C,...,Ck}, thus determining the other cycles
{Ck+1, ey Ck+h}~

Example 5.5. Let C, 5 be two cycles with two vertices each, respectively vy, vo
and vs, vy, and let m = (v1 v3)(ve v4) inducing two other cycles Cs, Cy. The result
is the following cycle-based graph:

Now, let I" be a cycle-based graph labeled by A, embedded in a surface X as
a coding carrier graph, with the following constraints: at each vertex of I', the
crossing orientation — by construction, this crossing is made of exactly two cycles
of I' — must be consistent with the others, that is, the relative orientations of the
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edges at each crossing must match when translated along any edge path of I" (see

e.g. the figure above). Now let cgv) denote the finite path label of the cycle C; of
I starting from the vertex v € C;. Then we associate a substitution 8; with C;,

v
%

defined as the identity over all the letters in A, except for the letters 2 for which
Qi(xz(-v)) = :EEU) cz(-v), where v is any vertex of C;, and where xl@) is the label of
the edge of I" whose one of the half-edges is incoming at v while not being in C;.
We denote by 7r the set of the n substitutions #; over A associated with the n
cycles of I'. For instance, the four substitutions of 7y where I" is the graph of
Example 5.5 are the following (we only give the images of the letters which are
not the identity):

01(f) = fae 02(b) = beg 03(e) = ebf 04(a) = adh
01(h) = hea 05(d) = dge 03(g) = gfb 04(c) = chd

Substitutions as above are said to be non-erasing, i.e. there is no letter whose
image is the empty word. A word w is a fixed point of a substitution 6, if
f(w) = w. One-way right infinite fixed points can be obtained by iterating 6(a),
whenever 6 is non-erasing, and a € A is a strict prefix of 6(a), so that for every
n > 0, 0™(a) is a strict prefix of #»*1)(a). When such a one-way infinite word w
is minimal, its associated shift orbit closure LZ in A” is defined as the set of the
two-way infinite words whose factor set is Fact,,, and accordingly w is sufficient
to study the combinatorics of L7 (see also Sect. 2.3).

Theorem 5.6. (see [18]). Let I' be a cycle-based graph labeled by A. Let 0 be a
finite composition of substitutions in Tp, where each 0; € Tr occurs at least once.
Then there is a letter a € A, such that iterating 0(a) gives a fized point w which
1s mintmal and which codes a half-curve of a mazimal lamination L rel. to I,
where LS, is the lamination language coding L by I

Corollary 5.7 (see [19], 5.3.2). Let L be a lamination language obtained by
Theorem 5.6 from a cycle-based graph I' = (V, E). Then the complexity of L is
pr(n) = |Vin+ |V|],¥n > 0.

Proof. As an embedded cycle-based graph, I" is coherent, and it is such that
|E| = 2|V| with 9 (v) = 9T (v) = 2, for every v € V. Moreover, £ is maxi-
mal rel. to I'. Thus according to Lemma 3.5, when constructing Sy, (I"), each burst
is maximally biplanar, hence generates three edges, so that |Facty(2)| = 3|V|. By
Proposition 4.1, the result follows. ([l

Thus for instance considering the substitutions associated with Example 5.5, a
fixed point of any composition of the 6;’s involving each 6; at least once, is a
minimal lamination half-word w with complexity p,,(n) = 4n + 4, Vn > 0, e.g.
(01020304)“ (a) = adgcheadgcg faebe . . .

Cycle-based graphs are not bouquets of circles, except in the case of two circles
built from a cycle C; with one vertex and a trivial m generating another cycle Cy
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(this case corresponds to interval exchanges over two intervals, and thus to the
Sturmian case). However, bouquets of circles can be obtained by applying edge
contractions, similarly to what has been done in the proof of Theorem 1.1. Now,
symbolically, an edge contraction has the trivial effect of erasing the letter labeling
the contracted edge. With this respect, let erass: denote the erasing substitution
(or letter projection) over A which is the identity except for the letters in A’ C A
which are sent to the empty word. If L is a shift in A%, and 6 is a substitution
over A, then 6(L) denotes the shift orbit closure of {6(w)|w € L}:

Corollary 5.8. Let L be a lamination obtained by Theorem 5.6 from a cycle-based
graph I' = (V, E) labeled by A. Let L be the lamination language coding L by I.
Let I be a bouquet of circles obtained by iteratively contracting edges of I', and
let L' be the coding of L by I, which is such that L' = erasa (L) where A’ C A
is the set of labels of the contracted edges. Then pr/(n) = |V|n+ 1,Vn > 0.

Proof. A cycle-based graph is assumed connected, thus I" can be contracted into
a bouquet of circles with |V| — 1 edge contractions. Hence, by Corollary 5.7, and
next by iteratively applying Lemma 4.3, the result follows. O

For instance, considering the graph I" of Example 5.5, we can contract three of
its edges to obtain a non-coherent bouquet of five circles as follows:

b b
> )
f f&h
C contracted
1 e —_—
o c
B et

Then according to Corollary 5.8, iterating a composition of the associated four
substitutions 0; of 7r, and applying eras s g 5}, we get minimal words of complex-
ity p(n) = 4n + 1, ¥n > 0 (e.g. erasgy g pny((01620304)“)(a)), which are minimal
lamination half-words too.

Here is another example illustrating all the above generation steps. Let I" be a
graph based on six cycles with nine vertices, and where eight edges are contracted
to obtain a non-coherent bouquet of ten circles:

Cs ~Cs5 ~Cs
C a
< - " cb.fieihp,o
m P . contracted
G e d
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Then, the six associated substitutions of 7 are the following (we only give the
images of the letters which are not the identity):

01(m) =mabc  Os(l) =ldef  O5(k) = kghi
01(p) = pcab 02(0) = ofde  03(n) = nigh
01(s) = sbea O2(r) =refd  03(q) = qhig

04(c) =cklm  05(b) =bnop  O¢(a) = agqrs
04(f) = fmkl  05(e) = epno  0s(d) = dsqr
04(1) = ilmk 05(h) = hopn  0s(g) = grsq

The complexity of the fixed point words obtained by iterating compositions of these
substitutions involving each 6; at least once is p(n) = 9n + 9, Vn > 0, and after
erasing the eight letters corresponding to the contracted edges, it becomes p(n) =
9n + 1, Vn > 0, as is the complexity of the corresponding lamination languages.

The above generation technique produces lamination languages as shift orbit
closures of minimal words which are fixed points of a single substitution €, to which
a second substitution of type eras is applied. This kind of words are well-known
and called substitutive (or morphic) [2,8]. However in terms of all the possible
complexities given by Theorem 1.1, this technique does not cover all of them:
cycle-based graphs exist with any number of vertices, so as to give by Corollary 5.8
languages of exact complexities an+b, with a > 1, b = 1, associated with bouquets
of circles. Next, by applying edge subdivisions together with Lemma 5.4, we cover
every b > 1, but not the complexities for which b < 1.

Note also that the above examples of contracted cycle-based graphs yield
non-coherent bouquets of circles, while producing lamination languages with ex-
act complexity of the form an + 1, that is, languages with complexity of the
same form as the natural symbolic orbit languages of idoc interval exchanges.
However, one can prove e.g. by using the explicit characterizations of these in-
terval exchange languages [4, 11], that for instance the projected fixed point
erasgys gy ((01020304)%)(a) does not occur in one of them as a half-word, and thus
that the corresponding lamination language is not an interval exchange language.

As a final remark, let us sum up some of the problems which remain to be solved
in the context of this paper: understanding the characteristics of all the lamination
languages having exact complexities of the form an + 1, finding constructive fami-
lies of aperiodic minimal lamination languages covering every possible exact com-
plexity, enumerating finite laminations within the framework used in Section 5.1,
analyzing from a word-combinatorics viewpoint the geometric constraints which
lead to Corollary 4.6, characterizing the possible non-exact affine complexities of
lamination languages.
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