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LINEAR GRAMMARS WITH ONE-SIDED CONTEXTS
AND THEIR AUTOMATON REPRESENTATION ∗

Mikhail Barash
1

and Alexander Okhotin
2

Abstract. The paper considers a family of formal grammars that ex-
tends linear context-free grammars with an operator for referring to
the left context of a substring being defined, as well as with a conjunc-
tion operation (as in linear conjunctive grammars). These grammars
are proved to be computationally equivalent to an extension of one-
way real-time cellular automata with an extra data channel. The main
result is the undecidability of the emptiness problem for grammars re-
stricted to a one-symbol alphabet, which is proved by simulating a
Turing machine by a cellular automaton with feedback. The same con-
struction proves the Σ0

2-completeness of the finiteness problem for these
grammars and automata.
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1. Introduction

The idea of defining context-free rules applicable only in certain contexts dates
back to the early work of Chomsky. However, the mathematical model improvised
by Chomsky, which he named a “context-sensitive grammar”, turned out to be too
powerful for its intended application, as it could simulate a space-bounded Turing
machine. Recently, the authors [4] made a fresh attempt on implementing the same
idea. Instead of the string-rewriting approach from the late 1950s, which never
quite worked out for this task, the authors relied upon the modern understanding
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of formal grammars as a first-order logic over positions in a string, discovered by
Rounds [22]. This led to a family of grammars that allows such rules as A →
BC & �D, which asserts that all strings representable as a concatenation BC and
preceded by a left context of the form D have the property A. The semantics
of such grammars are defined through logical deduction of items of the form “a
substring v written in left context u has a property A” [4], and the resulting formal
model inherits some of the key properties of formal grammars, including parse
trees, an extension of the Chomsky normal form [4], a form of recursive descent
parsing [2] and a variant of the Cocke–Kasami–Younger parsing algorithm that
works in time O

(
n3

log n

)
[20].

This paper aims to investigate the linear subclass of grammars with one-sided
contexts, where linearity is understood in the usual sense of formal grammars, that
is, as a restriction to concatenate nonterminal symbols only to terminal strings.
An intermediate family of linear conjunctive grammars, which allows using the
conjunction operation, but no context specifications, was earlier studied by the
second author [15, 17]. Those grammars were found to be computationally equiv-
alent to one-way real-time cellular automata [9, 23], also known under a proper
name of trellis automata [7, 8, 10, 11, 25].

This paper sets off by developing an analogous automaton representation for
linear grammars with one-sided contexts. The proposed trellis automata with feed-
back, defined in Section 4, augment the original cellular automaton model by an
extra communication channel. Its motivation comes from the understanding those
automata as circuits with uniform connections [7], to which one can add a new
type of connections. As the model is proved to be equivalent to linear grammars
with one-sided contexts, it follows that this new type of connections has exactly
the same power as context specifications do in grammars.

In the next Section 5, the intuition on grammars with contexts developed
through their automaton representation is used to construct grammars for two
usual examples of non-regular languages: for powers of k, Lk = { akn | n � 0 },
and for squares, { an2 | n � 1 }. To compare, standard trellis automata over
a one-symbol alphabet recognize only regular languages [8], whereas conjunctive
grammars are known to describe powers of k [12,13], but using an entirely different
method.

The next Section 6 presents a simulation of a Turing machine by a trellis au-
tomaton with feedback. Under some technical assumptions on the Turing machine,
a simulating automaton, given an input an, performs O(n2) first steps of the ma-
chine’s computation on an empty input. Accordingly, it can accept or reject the
input an depending on the current state of the Turing machine.

That construction is used in Section 7 to prove the undecidability of the empti-
ness problem for linear grammars with one-sided contexts over a one-symbol al-
phabet. The finiteness problem for these grammars is proved to be complete for
the second level of the arithmetical hierarchy.

Finally, the last Section 8 establishes some closure properties of the linear
grammars with contexts. Here the automaton representation becomes particularly
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useful, as it gives an immediate proof of the closure of this language family un-
der complementation, which, using grammars alone, would require a complicated
construction.

2. Grammars with one-sided contexts

Grammars with contexts were introduced by the authors [4] as a model capable
of defining context-free rules applicable only in contexts of a certain form.

Definition 2.1 [4]. A grammar with left contexts is a quadruple G =
(Σ, N, R, S), where

• Σ is the alphabet of the language being defined;
• N is a finite set of auxiliary symbols (“nonterminal symbols” in Chomsky’s

terminology), disjoint with Σ, which denote the properties of strings defined
in the grammar;

• R is a finite set of grammar rules, each of the form

A → α1 & . . . & αk & �β1 & . . . & �βm & �γ1 & . . . & �γn, (2.1)

with A ∈ N , k � 1, m, n � 0 and αi, βi, γi ∈ (Σ ∪ N)∗;
• S ∈ N represents syntactically well-formed sentences of the language.

Every rule (2.1) is comprised of conjuncts of three kinds. Each conjunct αi specifies
the form of the substring being defined, a conjunct �βi describes the form of its left
context, while a conjunct �γi refers to the form of the left context concatenated
with the current substring. To be precise, let w ∈ Σ∗ be the whole string being
defined, and consider defining its substring v by a rule (2.1), where w = uvx for
u, v, x ∈ Σ∗. Then, each conjunct αi describes the form of v, each left context
operator �βi describes the form of u, and each extended left context operator �γi,
describes the form of uv. The conjunction means that all these conditions must
hold at the same time for this rule to be applicable.

If no context specifications are used in the grammar, that is, if m = n = 0
in each rule (2.1), then this is a conjunctive grammar [15, 19]. If, furthermore,
only one conjunct is allowed in each rule (k = 1), this is an ordinary context-
free grammar. A grammar is called linear, if every conjunct refers to at most one
nonterminal symbol, that is, α1, . . . , αk, β1, . . . , βm, γ1, . . . , γn ∈ Σ∗NΣ∗ ∪ Σ∗.

To see how grammars with contexts are formally defined, one could begin with
reconsidering the definition of ordinary grammars. Their usual definition, given by
Chomsky, employs string rewriting to define a parse tree top-down: if there is a
root S with descendants A and B, then one can represent that by rewriting S with
AB, and then eventually rewrite A to a substring u and B to another substring
v. Alternatively, one can regard the same process bottom-up, as a construction
of larger and larger subtrees, each indicating that some substring has a certain
property. One can first infer that u has the property A and that v has the prop-
erty B, and from these elementary propositions one can then deduce that uv has
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the property S. This outlook on ordinary grammars was presented, for instance,
in a monograph by Kowalski ([14], Chap. 3), and it stands at the foundation of
the logical approach to grammars, as defined by Rounds [22].

The definition of grammars with left contexts extend the latter logical interpre-
tation of grammars. This time, it uses deduction of elementary statements of the
form “a substring v ∈ Σ∗ in the left context u ∈ Σ∗ has the property X ∈ Σ∪N”,
denoted by X(u〈v〉). A full definition applicable to every grammar with left con-
texts is presented in the authors’s previous paper [4]; this paper gives a definition
specialized for linear grammars.

Definition 2.2. Let G = (Σ, N, R, S) be a linear grammar with left contexts,
and consider deduction of items of the form X(u〈v〉), with u, v ∈ Σ∗ and X ∈ N .
Each rule A → w, with w ∈ Σ∗, defines an axiom scheme

�G A(x〈w〉),
for all x ∈ Σ∗. Each rule of the form

A → x1B1y1 & . . . & xkBkyk & �x′
1D1y

′
1 & . . . & �x′

mDmy′
m &

�x′′
1E1y

′′
1 & . . . & �x′′

nEny′′
n

defines the following scheme for deduction rules for all u, v ∈ Σ∗:
{
Bi(uxi〈vi〉)

}
i∈{1,...,k},

{
Di(x′

i〈ui〉)
}

i∈{1,...,m},
{
Ei(x′′

i 〈wi〉)
}

i∈{1,...,n} �G A(u〈v〉),
where xiviyi = v, x′

iuiy
′
i = u and x′′

i wiy
′′
i = uv. Then the language defined by a

nonterminal symbol A is

LG(A) = { u〈v〉 | u, v ∈ Σ∗, �G A(u〈v〉) }.
The language defined by the grammar G is the set of all strings with an empty
left context defined by S.

L(G) = {w | w ∈ Σ∗, �G S(ε〈w〉) }
This definition is illustrated in the grammar below. The grammar can be re-

garded as trivial, but it is useful for demonstrating how derivations work.

Example 1. The following grammar defines the singleton language {abac}.
S → aBc

B → bA& �A

A → a

The derivation of the string abac begins by deriving the inner substring ba
from B. First, the rule A → a is defines the symbol a in the empty context and in
the context ab.

� A(ε〈a〉) (A → a)
� A(ab〈a〉) (A → a)
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(a) (b)

Figure 1. Derivation of the string abac in Example 1: (a) as a
usual parse tree; (b) as an informal bottom-up illustration.

Then the rule B → bA& �A defines the substring a〈ba〉 by concatenating b to a
one-symbol string ab〈a〉 derived from A. Furthermore, this rule requires the left
context of a〈ba〉 to be described by A, and this has also been derived above.

A(ab〈a〉), A(ε〈a〉) � B(a〈ba〉) (B → bA& �A)

Finally, the rule S → aBc concatenates the substrings a, ba and c to obtain the
desired string abac.

B(a〈ba〉) � S(ε〈abac〉) (S → aBc)

This derivation of the string w = abac is illustrated in Figure 1, where elements
of the triangle correspond to non-empty substrings of w, and each element contains
all nonterminal symbols generating the corresponding substring. The dotted line
shows the effect of a context operator (�A), whereas the band rising up from the
second A through B to S demonstrates the rules appending symbols to substrings.

Several non-trivial examples of grammars with one-sided contexts were given in
the original paper [4]. One of them described an abstract language representing
declaration before use.

Example 2 ([4], Ex. 2). Consider the language{
u1 . . . un

∣∣ for every ui, either ui = a∗c,

or ui = bkc and there exists j < i, for which uj = akc
}
.

It is generated by the following grammar.

S → AS | CS | ε

A → aA | c

B → bB | c

C → B & �EFc

E → AE | BE | ε

F → aFb | cE
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Substrings of the form akc represent declarations, and every substring bkc
is a reference to a declaration akc. Nonterminal S defines strings of the form
u1 . . . u�〈u�+1 . . . un〉 (with ui ∈ a∗c∪ b∗c), such that every reference ui in the suf-
fix u�+1 . . . un has a corresponding earlier declaration in the prefix u1 . . . ui−1. The
rule S → AS appends a declaration, and the rules S → CS and C → B & �EFc
append a reference with a matching earlier declaration. The context �EFc checks
the declaration, with E representing the prefix of the string up to the declaration,
and with F matching the symbols a in the declaration to the symbols b in the
reference.

Though the given grammar is not linear as it is, it can be converted to linear
as follows. The first non-linear rule S → AS expresses a concatenation of a∗c with
S; in a linear grammar, this concatenation can be defined by a new nonterminal
AS with the rules AS → aAS and AS → cS. In a similar way, one can express
concatenations AE and BE in the rules for E.

The rules S → CS and C → B & �EFc concatenate a string from b∗c to S, and
also apply a context operator to this string. In a linear grammar, this is done by a
new nonterminal CS , which has two rules, CS → bCS and CS → cS & �EF . These
rules simulate concatenation of a string from b∗c to S, and the latter rule applies
a context operator, where a new symbol EF simulates the concatenation EF .

The ideas from Example 2 can be used to describe a full grammar for the set
of well-formed programs in a model programming language [3].

The language described in the next example is known to have no linear con-
junctive grammar [25].

Example 3 (Törmä [24]). The following linear grammar with contexts defines
the language { anbin | i, n � 1 }.

S → ab | aSb | aB

B → bB | b & �S

The languages defined by nonterminals B and S are as follows.

L(B) = { anbin−j〈bj〉 | n � 1, 0 � j � in + 1 }
L(S) = { aj〈an−jbin−j〉 | n � 1, 0 � j � n }

For each n � 1, the strings anbin, with i � 1, are defined inductively on i. The
first string anbn is defined by the first two rules for nonterminal S. In Figure 2,
this is illustrated by the leftmost vertical S-column.

Every next string w′ = anb(i+1)n is obtained from the previous string w = anbin

by appending as many symbols b as there are symbols a in w. First, a context
operator in the rule B → b & �S produces a one-symbol string anbin〈b〉. Then, B
generates the string an〈bin+1〉 by the rule B → bB applied i ·n times, as shown in
a B-diagonal in the figure.
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Figure 2. The grammar in Example 3 defining the language
{ anbin | i, n � 1 }.

Next, the rule S → aB generates the string an−1〈abin+1〉, thus setting up the
matching of the new symbols b to the existing symbols a. Then, each applica-
tion of the rule S → aSb appends one a and one b, and, overall, it appends as
many symbols b as there as as in the beginning of the string, as illustrated in an
S-column emerging from a B-diagonal. The resulting string with an empty context
is ε〈anb(i+1)n〉, as desired.

3. Linear grammars and normal form

It is known [4, 20], that every grammar with contexts can be transformed to
a certain normal form, which extends the Chomsky normal form for ordinary
context-free grammars. While the original Chomsky normal form has all rules of
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the form A → BC and A → a, its extension for grammars with contexts allows
using multiple conjuncts BC and context specifications �D.

A similar normal form shall now be established for the linear subclass of
grammars.

Theorem 3.1. For every linear grammar with left contexts G = (Σ, N, R, S),
there exists another linear grammar with left contexts G′ = (Σ, N ′, R′, S) that
defines the same language and has all rules of the form

A → bB1 & . . . & bB� & C1c & . . . & Ckc (3.1a)
A → a & �D1 & . . . & �Dm, (3.1b)

where A, Bi, Ci, Di ∈ N , a, b, c ∈ Σ, � + k � 1 and m � 0.
The size of G′ is at most triple exponential in the size of G, where the size is

measured by the total number of symbols used in the description of the grammar.

Sketch of a proof. The transformation is carried out along the same lines as in
the general case [4]. Given an arbitrary linear grammar with contexts G =
(Σ, N, R, S), its transformation to the normal form starts with a preprocessing
phase: long conjuncts are cut until all of them are of the form bB, Cc or a, and
every context specification �γ or �γ with γ ∈ Σ or |γ| > 1 is restated as �Xγ or
�Xγ , respectively, where Xγ is a new nonterminal with a unique rule Xγ → γ.

This results in a grammar G1 = (Σ, N1, R1, S) with the rules of the following
form:

A → bB (3.2a)
A → Cc (3.2b)
A → a (3.2c)
A → B1 & . . . & Bk & �D1 & . . . & �Dm & �E1 & . . . & �En (3.2d)
A → ε, (3.2e)

where a, b, c ∈ Σ and A, Bi, Di, Ei ∈ N .
The transformation continues with the elimination of null conjuncts ([4],

Sect. 4.1), that is, any rules of the form A → . . . & ε. First, one has to deter-
mine, which nonterminals generate the empty string, and in which contexts they
generate it. This information is represented in a set Nullable(G) ⊆ 2N × N .
Given a nonterminal A ∈ N and a string u ∈ Σ∗, the string u〈ε〉 is defined by
A if and only if the set Nullable(G) contains a pair ({K1, . . . , Kt}, A), with
A, K1, . . . , Kt ∈ N , such that ε〈u〉 ∈ LG(K1), . . . , ε〈u〉 ∈ LG(Kt).

Using the set Nullable(G), a new grammar G2 = (Σ, N1, R2, S) without null
conjuncts can be constructed as follows.

(1) The rules of the form (3.2a)–(3.2d) are copied to the new grammar.
(2) For every rule of the form (3.2a) and for every pair ({K1, . . . , Kt}, B) ∈

Nullable(G), a rule A → b & �K1 & . . . & �Kt is added to the new
grammar.
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(3) For every rule of the form (3.2b) and for every pair ({K1, . . . , Kt}, C) ∈
Nullable(G), the new grammar has the rule A → c & �K1 & . . . & �Kt.
Moreover, if ε〈ε〉 ∈ LG(Ki) for all i ∈ {1, . . . , t}, then a rule A → c & �ε
should be added.

(4) For every rule of the form (3.2d), a rule A → B1 & . . . & Bk & E1 & . . . &
En & �ε shall be added to the new grammar, if ε〈ε〉 ∈ LG(Di) for all i ∈
{1, . . . , m}.

After this step, the rules of the grammar can be of the following (linear) form:

A → a (3.3a)
A → bB (3.3b)
A → Cc (3.3c)
A → B1 & . . . & Bk & �D1 & . . . & �Dm & �E1 & . . . & �En (3.3d)
A → B1 & . . . & Bk & �ε (3.3e)
A → b & �K1 & . . . & �Kt (3.3f)
A → c & �K1 & . . . & �Kt (3.3g)
A → c & �ε (3.3h)

Having constructed this grammar, one can apply verbatim the rest of the steps
of the general transformation to the normal form. This transformation constitues in
elimination of null contexts �ε ([4], Sect. 4.2) and of unit conjuncts ([4], Sect. 4.3),
as in the rules A → . . . & B. The final step is elimination of extended left contexts
�E, which are all expressed through proper left contexts �D [20]. Each step
preserves the linearity of a grammar. �

4. Automaton representation

Linear conjunctive grammars are known to be computationally equivalent to one
of the simplest types of cellular automata: the one-way real-time cellular automata,
also known under the proper name of trellis automata. This section presents a
generalization of trellis automata, which similarly corresponds to linear grammars
with one-sided contexts.

A standard trellis automaton processes an input string of length n � 1 using a
uniform array of n(n+1)

2 nodes, as presented in Figure 3a. Each node computes a
value from a fixed finite set Q. The nodes in the bottom row obtain their values
directly from the input symbols using a function I : Σ → Q. The rest of the nodes
compute the function δ : Q×Q → Q of the values in their predecessors. The string
is accepted if and only if the value computed by the topmost node belongs to the
set of accepting states F ⊆ Q.

Theorem 4.1 Okhotin [17]. A language L ⊆ Σ+ is defined by a linear conjunctive
grammar if and only if L is recognized by a trellis automaton.
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(a) (b)

Figure 3. (a) Trellis automata; (b) trellis automata with feedback.

In terms of cellular automata, every horizontal row of states in Figure 3a
represents an automaton’s configuration at a certain moment of time. An alterna-
tive motivation developed in the literature on trellis automata [7–9] is to consider
the entire grid as a digital circuit with uniform structure of connections. In order
to obtain a similar representation of linear grammars with left contexts, the trel-
lis automaton model is extended with another type of connections, illustrated in
Figure 3b.

Definition 4.2. A trellis automaton with feedback is a sextuple M =
(Σ, Q, I, J, δ, F ), in which:

• Σ is the input alphabet,
• Q is a finite non-empty set of states,
• I : Σ → Q is a function that sets the initial state for the first symbol,
• J : Q × Σ → Q sets the initial state for every subsequent symbol, using the

state computed on the preceding substring as a feedback;
• δ : Q × Q → Q is the transition function, and
• F ⊆ Q is the set of accepting states.

The behaviour of the automaton is described by a function Δ : Σ∗ × Σ+ → Q,
which defines the state Δ(u〈v〉) computed on each string u〈v〉. The value of
this function is defined by the following formulae formalizing the connections in
Figure 3b.

Δ(ε〈a〉) = I(a)
Δ(w〈a〉) = J

(
Δ(ε〈w〉), a)

Δ(u〈bvc〉) = δ
(
Δ(u〈bv〉), Δ(ub〈vc〉))

The language recognized by the automaton is L(M) = {w ∈ Σ+ | Δ(ε〈w〉) ∈ F }.
Theorem 4.3. A language L ⊆ Σ+ is defined by a linear grammar with left
contexts if and only if L is recognized by a trellis automaton with feedback.

The proof is by effective constructions in both directions.
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Lemma 4.4. Let G = (Σ, N, R, S) be a linear grammar with left contexts, in
which every rule is of the form

A → bB1 & . . . & bB� & C1c & . . . & Ckc (b, c ∈ Σ, Bi, Ci ∈ N), (4.1a)

A → a & �D1 & . . . & �Dm (a ∈ Σ, m � 0, Di ∈ N), (4.1b)

and define a trellis automaton with feedback M = (Σ, Q, I, J, δ, F ) by setting Q =
Σ × 2N × Σ,

I(a) = (a, {A | A → a ∈ R }, a)
J
(
(b, X, c), a

)
=

(
a, {A | ∃ rule (4.1b) with D1, . . . , Dm ∈ X }, a)

δ
(
(b, X, c′), (b′, Y, c)

)
=

(
b, {A | ∃ rule (4.1a) with Bi ∈ X and Ci ∈ Y }, c)

F =
{

(b, X, c)
∣∣ S ∈ X

}
.

For every string with context u〈v〉, let b be the first symbol of v, let c be the last
symbol of v, and let Z = {A | u〈v〉 ∈ LG(A) }. Then Δ(u〈v〉) = (b, Z, c).

In particular, L(M) = {w | ε〈w〉 ∈ LG(S) } = L(G).

Proof. Induction on pairs (|uv|, |v|), ordered lexicographically.

Basis: ε〈a〉 with a ∈ Σ. The state computed on this string is Δ(ε〈a〉) = I(a) =
(a, Z, a) with Z = {A | A → a ∈ R }. The latter set Z is the set of all symbols
A ∈ N with ε〈a〉 ∈ LG(A).

Induction Step I: u〈a〉 with u ∈ Σ∗ and a ∈ Σ. The state computed by the
automaton on the string u〈a〉 is defined as Δ(u〈a〉)) = J(Δ(ε〈u〉), a). By the
induction hypothesis, the state reached on the string ε〈u〉 is Δ(ε〈u〉) = (a, X, a),
where a is the first symbol of u and X ⊆ N is the set of symbols that generate
ε〈u〉. Substituting this value into the expression for the state reached on u〈a〉 yields
Δ(u〈a〉) = J((a, X, a), a) = (a, Z, a), where

Z = {A | there exists a rule (4.1b) with D1, . . ., Dm ∈ X }
= {A | there exists a rule (4.1b) with ε〈u〉 ∈ LG(Di) for all i }.

The latter condition means that Z is the set of all symbols A ∈ N that generate
the string u〈a〉 using a rule of the form (4.1b). Since this string can only be
generated by rules of that form, this is equivalent to Z = {A | u〈a〉 ∈ LG(A) }, as
claimed.

Induction Step II: u〈bvc〉 with u, v ∈ Σ∗ and b, c ∈ Σ. The state computed on
such a string is Δ(u〈bvc〉) = δ(Δ(u〈bv〉), Δ(ub〈vc〉)). By the induction hypothesis,
the states reached by the automaton on the strings u〈bv〉 and ub〈vc〉 are respec-
tively Δ(u〈bv〉) = (b, X, b′) and Δ(ub〈vc〉) = (c′, Y, c), where b is the last symbol of
bv, c′ is the first symbol of vc, X ⊆ N is the set of nonterminal symbols generating
u〈bv〉 and Y ⊆ N contains all such nonterminals that generate the string ub〈vc〉.
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Substituting the states reached on these shorter strings into the expression for
the state computed on u〈bvc〉 gives Δ(u〈bvc〉) = δ

(
(b, X, b′), (c′, Y, c)

)
= (b, Z, c),

where

Z =
{

A | there exists a rule (4.1a) with Bi ∈ X and Ci ∈ Y }
=

{
A | there exists a rule (4.1a) with u〈bv〉 ∈ LG(Bi) and

ub〈vc〉 ∈ LG(Cj), for all i, j }.

That is, Z is exactly the set of nonterminals that generate the string ub〈vc〉 by
a rule of the form (4.1a). The string u〈bvc〉 can only be generated by a rule of such
a form, and, thus, Z = {A | u〈bvc〉 ∈ LG(A) }, as desired.

�

Lemma 4.5. Let M = (Σ, Q, I, J, δ, F ) be a trellis automaton with feedback and
define the grammar with left contexts G = (Σ, N, R, S), where N = {Aq | q ∈
Q } ∪ {S}, and the set R contains the following rules.

AI(a) → a & �ε (a ∈ Σ) (4.2a)
AJ(q,a) → a & �Aq (q ∈ Q, a ∈ Σ) (4.2b)
Aδ(p,q) → bAq & Apc (p, q ∈ Q, b, c ∈ Σ) (4.2c)

S → Aq (q ∈ F ) (4.2d)

Then, for every string with context u〈v〉, Δ(u〈v〉) = r if and only if u〈v〉 ∈ LG(Ar).
In particular, L(G) = {w | Δ(ε〈w〉) ∈ F } = L(M).

Proof. Induction on lexicographically ordered pairs (|uv|, |v|).
Basis: ε〈a〉 with a ∈ Σ. Then Δ(ε〈a〉) = I(a). At the same time, ε〈a〉 may only
be generated by the rule of the form (4.2a), and such a rule for Ar exists if and
only if I(a) = r.

Induction Step I: u〈a〉 with u ∈ Σ+ and a ∈ Σ.
⇒© Let Δ(u〈a〉) = r. Then, r = J(Δ(ε〈u〉), a). Let q = Δ(ε〈u〉). By the induction

hypothesis, ε〈u〉 ∈ LG(Aq). Since J(q, a) = r, the grammar contains a correspond-
ing rule of the form (4.2b), which can be used to deduce the membership of u〈a〉
in LG(Ar) as follows.

Aq(ε〈u〉) �G Ar(u〈a〉) (Ar → a & �Aq) (4.3)

⇐© Conversely, assume that u〈a〉 ∈ LG(Ar). Then its deduction must end with
an application of a rule of the form (4.2b), as in (4.3). By construction, the
existence of such a rule implies r = J(q, a). Applying the induction hypothe-
sis to Aq(ε〈u〉) yields Δ(ε〈u〉) = q. Then the automaton calculates as follows:
Δ(u〈a〉) = J(Δ(ε〈u〉), a) = J(q, a) = r, as desired.
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Induction Step II: u〈bvc〉 with u, v ∈ Σ∗ and b, c ∈ Σ.
⇒© Assume first that Δ(u〈bvc〉) = r. Then r = δ(p, q), where p = Δ(u〈bv〉)

and q = Δ(ub〈vc〉). By the induction hypothesis, u〈bv〉 ∈ LG(Ap) and ub〈vc〉 ∈
LG(Aq). From this, using a rule of the form (4.2c), one can deduce

Ap(u〈bv〉), Aq(ub〈vc〉) �G Ar(u〈bvc〉) (Ar → bAq & Apc), (4.4)

that is, u〈bvc〉 ∈ LG(Ar), as claimed.
⇐© Conversely, if u〈bvc〉 ∈ LG(Ar), then the deduction establishing Ar(u〈bvc〉)

must end as (4.4), using a rule of the form (4.2c). Then, by the construction,
r = δ(p, q). Since the items Ap(u〈bv〉) and Aq(ub〈vc〉) are deduced in the grammar,
by the induction hypothesis, Δ(u〈bv〉) = p and Δ(ub〈vc〉) = q. Then Δ(u〈bvc〉) =
δ(p, q) = r. �

5. Defining non-regular unary languages

Ordinary context-free grammars over a unary alphabet Σ = {a} define only
regular languages. Unary linear conjunctive languages are also regular, because a
trellis automaton operates on an input an as a deterministic finite automaton [8].
The non-triviality of unary conjunctive grammars was discovered by Jeż [12], who
constructed a grammar for the language { a4k | k � 0 } using iterated conjunction
and concatenation of languages.

It turns out that one can also describe some non-regular languages over a unary
alphabet using a left context operator, and without relying upon non-linear con-
catenation. The simplest example of that is the following grammar.

Example 4. For each base k � 2, the language Lk = { akn | n � 0 } is generated
by the following grammar.

S → a & �ε | ε & �S | aSak−1

The grammar in Example 4 can be transformed to an automaton by Lemma 4.4.
Actually, a succinct automaton can be constructed directly as follows.

Example 5. Consider a trellis automaton with feedback M = (Σ, Q, I, J, δ, F )
over the alphabet Σ = {a} and with the set of states Q = {p,q, r}, where I(a) = p
is the initial state, the feedback function gives states J(p, a) = q and J(r, a) = p,
and the transition function is defined by δ(t,p) = p for all t ∈ Q, δ(q,q) =
δ(r,q) = q, δ(p,q) = r and δ(p, r) = p. The only accepting state is r. Then M

recognizes the language { a2k−2 | k � 2 }.
The computation of this automaton is illustrated in Figure 4. The state com-

puted on each one-symbol substring a�〈a〉 is determined by the state computed
on ε〈a�〉 according to the function J . Most of the time, Δ(ε〈a�〉) = p and hence
Δ(a�〈a〉) = q, and the latter continues into a triangle of states q. Once for every
power of two, the automaton computes the state r on ε〈a2k−2〉, which sends a
signal through the feedback channel, so that J sets Δ(a2k−2〈a〉) = p. This in turn
produces the triangle of states p and the next column of states r.
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Figure 4. How the automaton in Example 5 recognizes { a2k−2 |
k � 2 }.

Another example of a unary linear grammar with contexts defines the set of
squares over a unary alphabet. This example is based upon an idea of Birman
and Ullman [6], who used it to recognize the set of squares by a special recursive
descent parser with backtracking.

Example 6 (adapted from Birman and Ullman [6], p. 21). The following linear
grammar with contexts describes the language { an2 | n � 1 }.

S → a & �ε | aaaa & �ε | aBaa & �S | aS

B → a & �S | aBa & �C

C → a & �S | aC | Ba

The grammar is centered around the nonterminal S, which should define, among
others, strings of the form ε〈am〉, with m being a perfect square. The two shortest
strings ε〈a〉 and ε〈a4〉 are explicitly defined in the first two rules for S. Other
prefixes of the string, that is, ε〈am〉, where m is not a perfect square, are defined
by the symbol C, which acts more or less as the complement of S.
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Figure 5. The grammar in Example 6 describing the language
{ an2 | n � 1 }.

Nonterminal B generates vertical B-columns, each beginning in a one-symbol
string an2〈a〉, with n � 1, and then rising up through an2−i〈a2i+1〉, for all i =
1, . . . , 2n − 2. The rule B → a & �S defines the bottom element of every such
column, and the companion rule C → a & �S simultaneously defines symbol C in
the same position. Every next element of a vertical B-column is defined from the
previous element by the rule B → aBa & �C. The context C in this rule is satisfied
unless the left context is a perfect square. Therefore, the height of this column of
Bs is equal to the number of symbols C between the two previous occurrences
of a perfect square in the main diagonal. Thus, the height of every consecutive
B-column is by 2 greater than the height of the previous one.

The symbols C are spawned from B-columns. The rule C → Ba defines an
initial C-column to the right of a B-column, whereas the rule C → aC propagates
C towards the main diagonal.
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The nonterminal S generates S-diagonals, starting with a string a(n−2)2〈an2〉
and propagating up to desired strings of the form ε〈an2〉. The rule S → aBaa & �S
defines the bottom element of an S-diagonal as a combination of two conditions.
First, aBaa makes a jump from the topmost symbol B in a B-column in a fixed
direction and distance (this can be done from any B in this column). At the same
time, the context S in this rule refers to the next to last perfect square. These
two conditions together define the bottom of an S-diagonal; the rule S → aS
propagates symbols S towards the main diagonal.

The languages generated by the nonterminals S, B and C are as follows.

L(S) = { ai〈an2−i〉 | n � 1, 0 � i � (n − 2)2 }
L(B) = { an2−i〈a2i+1〉 | n � 1, 0 � i � 2n − 2 }
L(C) = { ai〈an2+j〉 | n � 1, 1 � j � 2n, 0 � i � min{n2 − j + 2, n2} }

In the empty context, S generates all strings of the form ε〈an2〉, with n � 1. This
is the language generated by the grammar.

6. Simulating a Turing machine

It is now known that linear grammars with contexts over a one-symbol alphabet
are non-trivial. How far does their expressive power go? For conjunctive grammars
(which allow non-linear concatenation, but no context specifications), Jeż and
Okhotin [13] developed a method for manipulating base-k notation of the length of
a string in a grammar, which allowed the following language to be represented: for
every trellis automaton M over an alphabet {0, 1, . . . , k−1}, there is a conjunctive
grammar generating LM = { a� | the base-k notation of � is in L(M) } [13]. This
led to the following undecidability method: given a Turing machine T , one first
constructs a trellis automaton M for the language VALC(T ) ⊆ Σ∗ of computation
histories of T ; then, assuming that the symbols in Σ are digits in some base-k
notation, one can define the unary version of VALC(T ) by a conjunctive grammar.

Linear grammars with contexts are an entirely different model, and the grammar
in Example 4 has nothing in common with the basic unary conjunctive grammar
discovered by Jeż [12], in spite of defining almost the same language. Nevertheless,
the general undecidability method also works for linear grammars with contexts,
using different base unary languages.

The idea is that given a Turing machine, one shall construct a trellis automaton
with feedback that simulates O(n) steps of the machine and accepts the input an,
which is a string over a unary alphabet, depending on the state of the computation
of the Turing machine at a certain time. Each individual cell, computed by a trellis
automaton with feedback, should hold information about the computation of the
Turing machine, such as the contents of a certain tape square at a certain time.

In order to simulate a Turing machine in such a way, it is useful to assume a
machine of the following special kind. This machine operates on an initially blank



LINEAR GRAMMARS WITH ONE-SIDED CONTEXTS 169

tape, which is infinite to the left, and proceeds by making sweeps from left to right
over the tape. When the machine arrives at the end of the tape, it appends a blank
tape square to the left and begins a new sweep from that blank square.

Definition 6.1. A rotating Turing machine is a quintuple T = (Γ,S, s0,∇,F),
where

• Γ is a finite tape alphabet containing a blank symbol � ∈ Γ ;
• S is a finite set of states ;
• s0 ∈ S is the initial state;
• the function ∇ : S×Γ → S×Γ determines the next move of the Turing machine

and is called a move function, to distinguish it from transition functions of
trellis automata;

• F is a finite set of flickering states.

A configuration of T is a string of the form �k�usav, where k � 1 is the number of
the sweep, and usav with u, v ∈ Γ ∗, a ∈ Γ and s ∈ S represents the tape contents
uav with the head scanning the symbol a in the state s.

The initial configuration of the machine is �1�s0�. Each kth sweep of the ma-
chine deals with a tape with k symbols, and consists of k steps of the following
form.

�k�uscdv �T �k�uc′s′dv (∇(s, c) = (s′, c′))

After the last move of a sweep, the machine appends a blank symbol to the tape
and then begins another sweep.

�k�wsc �T �k + 1�s′�wc′ (∇(s, c) = (s′, c′))

A rotating Turing machine never halts; at the end of each sweep, it may flicker
by entering a state from F . Define the set of numbers accepted by T as S(T ) =
{ k | �1�s0� �∗

T �k�sfcw for sf ∈ F }.

A similar class of Turing machines was studied by Ibarra and Kim [10, 11].
Unlike the model defined in this section, the state of their machine is reset to the
initial state in the beginning of each new sweep. Because of this, these devices are
trivial over a unary alphabet.

The aforementioned Turing machines by Ibarra and Kim [10] can be understood
as a model equivalent to trellis automata. A similar result holds for rotating Turing
machines: they can be proved equivalent to trellis automata with feedback.

Let T = (Γ,S, s0,∇,F) be a rotating Turing machine. Construct a trellis au-
tomaton with feedback MT = ({a}, Q, I, J, δ, F ) for simulating the machine as
follows. Its set of states is Q =

{
qsc

∣∣ s ∈ S, c ∈ Γ
}
, with each state qsc represent-

ing the Turing machine’s being in a state s ∈ S, with its head scanning a symbol
c ∈ Γ . Let the initial state of the automaton be I(a) = qs0�; this corresponds to
the tape square s0� in the beginning of the simulation.
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(a) (b)

Figure 6. (a) Computation of a rotating Turing machine; (b) a
trellis automaton with feedback simulating such a machine.

Each diagonal of the automaton corresponds to the kth sweep of the Turing ma-
chine, and the tape symbols written there represent the tape contents at the end
of that sweep, as illustrated in Figure 6b. In this kind of a computation, each tran-
sition of the trellis automaton has to simulate two moves of the Turing machine T .
For any two neighbouring states in the MT ’s computation, (s, c) and (t, d), the
former state represents T in some kth sweep at some position i + 1, whereas the
latter state refers to T in the sweep number k + 1 at the position i, as illustrated
in Figure 7b. Then the trellis automaton has to determine the configuration in the
(k+1)th sweep at position i+1. The Turing machine arrives to that configuration
in the state produced at the last step by a move ∇(t, d) = (t′, d′). Here, it sees a
symbol produced at the previous sweep by another move ∇(s, c) = (s′, c′). These
data are combined in the following transition.

δ
(
qsc, qtd

)
= qt′c′

After the last move of the machine in the current sweep, the feedback data
channel J is used to append a new blank symbol to the bottom element of the
next diagonal.

J(qsc) = qs′
� (∇(s, c) = (s′, c′))

The set of accepting states of the automaton is F = {qcsf | c ∈ Γ, sf ∈ F }.
The correctness of the construction is established in the following lemma.
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(a) (b)

Figure 7. (a) Computation of a rotating Turing machine during
kth and (k + 1)th sweeps; (b) trellis automaton’s cells in the kth
and (k + 1)th diagonals corresponding to those sweeps.

Lemma 6.2. Let T = (Γ,S, s0,∇,F) be a rotating Turing machine, and let MT =
({a}, Q, I, J, δ, F ) be the trellis automaton with feedback constructed from T as
described above. Then L(MT ) = { ak | k ∈ S(T ) }.
The claim can be proved by a straightforward induction, inferring the state in each
cell from the previously determined values of the neighbouring cells.

7. Undecidable problems

The simulation of Turing machines by trellis automata with feedback over a one-
symbol alphabet is useful for proving undecidability of basic decision problems for
these automata, such as emptiness or equivalence. Due to Theorem 4.3, the same
results equally hold for linear grammars with contexts. Besides establishing the
undecidability, the results state the exact level of undecidability of these problems
in the arithmetical hierarchy.

The arithmetical hierarchy is defined as follows. A set is in Σ0
k, if it can be

expressed as { y | ∃x1∀x2 . . .Qkxk P (x1, . . . , xk, y) }, for some recursive pred-
icate P , where Qk = ∃ if k is odd, and Qk = ∀ if k is even. Similarly, a
set is in Π0

k , if its complement is in Σ0
k, that is, if it admits a representation

{ y | ∀x1∃x2 . . . Qkxk P (x1, . . . , xk, y) }. In particular, the class Σ0
1 at the first

level of the arithmetical hierarchy is the class of recursively enumerable (r.e.) sets.
Each class Σ0

i and Π0
i , with i � 1, has complete sets with respect to many-one

reductions by Turing machines. For example, the Turing machine halting problem
is Σ0

1 -complete, whereas non-halting is Π0
1 -complete.

The first decision problem for linear grammars with contexts is testing whether
the language defined by a given grammar is empty. The undecidability of the
emptiness problem follows from Lemma 6.2. To be precise, the problem is complete
for the complements of the r.e. sets.

Theorem 7.1. The emptiness problem for linear grammars with left contexts over
a one-symbol alphabet is Π0

1 -complete. It remains in Π0
1 for any alphabets.
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Proof. The non-emptiness problem is clearly recursively enumerable, because one
can simulate a trellis automaton with feedback on all inputs, accepting if it ever
accepts. If the automaton accepts no strings, the algorithm does not halt.

The Π0
1 -hardness is proved by reduction from the Turing machine halting prob-

lem (non-halting, to be precise). Given a machine T and an input w, construct
a rotating Turing machine Tw, which first prints w on the tape (over 1 + log |w|
sweeps, using around |w| states), and then proceeds by simulating T , using one
sweep for each step of T . If the simulated machine T ever halts, then Tw changes
into a special state sf and continues moving its head until the end of the current
sweep.

Construct a trellis automaton with feedback M simulating the machine Tw

according to Lemma 6.2, and define its set of accepting states as F = {p�

csf
| c ∈

Σ }. Then, by the theorem, M accepts some string a� if and only if Tw ever enters
the state sf , which is in turn equivalent to T ’s halting on w. �

For conjunctive grammars, there is a stronger result than just the undecidability
of the emptiness problem. Namely, for every fixed conjunctive language L0 over any
alphabet, the problem of testing whether a given conjunctive grammar describes
L0 is Π0

1 -complete ([19], Thms. 25 and 26). The same property holds for linear
grammars with left contexts, and has a much simpler proof than for conjunctive
grammars.

Corollary 7.2. For every fixed language L0 defined by a linear grammar with left
contexts, the problem of testing whether a given linear grammar with left contexts
defines the language L0 is Π0

1 -complete.

Proof. The problem is in Π0
1 , because its complement, the inequivalence to L0, is

recursively enumerable, solved by simulating a trellis automaton with feedback on
all inputs, looking for any mismatches to L0.

The Π0
1 -hardness is proved by reduction from the emptiness problem. Given a

grammar G, one can construct a new grammar G1 that describes the symmetric
difference of L(G) and L0; the corresponding construction shall be explained later
in Lemma 8.3. Then, L(G1) = L0 if and only if L(G) = ∅, which completes the
reduction. �

The more general problem of checking the equivalence of two given grammars
is also Π0

1 -complete (its complement is still recursively enumerable, through the
same method of simulating automata on all inputs).

Corollary 7.3. The equivalence problem for linear grammars with left contexts is
Π0

1 -complete.

The second slightly more difficult undecidability result asserts that testing the
finiteness of a language generated by a given grammar is complete for the second
level of the arithmetical hierarchy.
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Theorem 7.4. The finiteness problem for linear grammars with left contexts over
a one-symbol alphabet is Σ0

2-complete. It remains Σ0
2 -complete for any alphabet.

Proof (a sketch). Reduction from the finiteness problem for a Turing machine,
which is Σ0

2 -complete (see Rogers [21], Sect. 14.8). Given a Turing machine T ,
construct a rotating Turing machine T ′, which simulates T running on all inputs,
with each simulation using a segment of the tape. Initially, T ′ sets up to simulate T
running on ε, and then it regularly begins new simulations. Every time one of the
simulated instances of T accepts, the constructed machine “flickers” by entering
an accepting state in the end of one of its sweeps. Construct a trellis automaton
with feedback M corresponding to this machine. Then L(M) is finite if and only
if L(T ) is finite. �

8. Closure properties

A few additional results on the expressive power of linear grammars with con-
texts concern their closure under several operations.

The first result is the closure under concatenating a linear conjunctive language
from the right, which is interesting because the family of linear conjunctive lan-
guages is itself not closed under concatenation [23].

Lemma 8.1. Let K ⊆ Σ∗ be defined by a linear grammar with contexts, and let
L ⊆ Σ∗ be a linear conjunctive language. Then the language K · L can be defined
by a linear grammar with contexts.

Proof. Let G1 = (Σ, N1, R1, S1) and G2 = (Σ, N2, R2, S2) be the grammars gener-
ating the languages K and L, respectively. Construct a linear conjunctive grammar
with contexts G = (Σ, N1∪N2∪{S}, R1∪R2∪R, S), where R contains the following
rules.

S → aS (for all a ∈ Σ)

S → S2 & �S1

The latter rule represents the concatenation of a string u from K with a string
v from L by expressing v written in the context u, that is, u〈v〉. The goal is to
describe ε〈uv〉, which is done by applying the rules of the form S → aS for every
symbol of u. �

This, in particular, implies that the language

L = { ai1bj1 . . . aimbjm | m � 2, it, jt � 1, ∃� : i1 = j� ∧ i�+1 = jm },
used by Terrier [23] to show that linear conjunctive languages are not closed under
concatenation, can be defined by a linear grammar with contexts.

By the same method as in Lemma 8.1, one can show that the Kleene star of any
linear conjunctive language can be represented by a linear grammar with contexts.
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Lemma 8.2. Let L be a linear conjunctive language. Then the language L∗ can
be defined by a linear grammar with contexts.

Proof. Let G = (Σ, N, R, S) be a linear conjunctive grammar that defines L.
Construct a linear grammar with contexts G′ = (Σ, N ∪ {S′, S̃}, R ∪R′, S′), with
the following rules in R′.

S′ → S̃ & �ε | ε & �ε

S̃ → S & �S′

S̃ → aS̃ (for all a ∈ Σ)

Then L(G′) = L(G)∗.
In this grammar, the nonterminal S′ defines all strings of the form ε〈u1 . . . uk〉,

with k � 0 and u1, . . . , uk ∈ L(G). For k = 0, the empty string is generated
by the rule S → ε & �ε. Every next string ε〈u1 . . . ukuk+1〉 is represented by
concatenating the previous string ε〈u1 . . . uk〉 from S′ to a string uk+1 given by S
in the way similar to the previous lemma. �

Similarly to the case of linear conjunctive languages ([16], Th. 7), the languages
defined by linear grammars with contexts are closed under concatenation and star
over disjoint alphabets, through a center marker, etc.

Turning to Boolean operations on languages, the closure under union and under
intersection is obvious, as these operations can be expressed in grammars. In spite
of having no negation operator, the language family defined by linear grammars
with contexts is closed under all Boolean operations, just like the linear conjunctive
languages.

Lemma 8.3. If the languages K, L are defined by linear grammars with left con-
texts, then so are the languages K ∪ L, K ∩ L and L.

For complementation, one can define a direct grammar-to-grammar construc-
tion, as for linear conjunctive grammars [16]. However, an easier approach is to
construct a trellis automaton with feedback recognizing the given language, and
then invert its set of accepting states.

Another standard operation on formal languages is the quotient: for two lan-
guages K, L ⊆ Σ∗, their left quotient is K−1 ·L = { v | ∃u ∈ K : uv ∈ L } and their
right quotient is L ·K−1 = { u | ∃v ∈ K : uv ∈ L }. Already for linear conjunctive
languages, it is known that every recursively enumerable set is representable as a
quotient of a linear conjunctive language and a regular language ([16], Th. 11).
Therefore, the languages defined by linear grammars with contexts are also not
closed under this operation. However, quotient with a finite language preserves
this family. The construction is slightly different for quotient on the left and on
the right, because context operators act only on the left.

Lemma 8.4. Let G = (Σ, N, R, S) be a linear grammar with contexts, and let
K ⊂ Σ∗ be a finite language. Then the language L(G) · K−1 can be defined by a
linear grammar with contexts.
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Proof (a sketch). Whenever the language K consists of multiple strings, the desired
quotient can be represented as a union of quotients with singletons.

LK−1 =
⋃

u∈K

L{u}−1

For a finite K, this is finite union. Furthermore, the quotient with a string u =
a1 . . . a� is representable as a sequence of � quotients with one-symbol strings.
Then, since the family of languages defined by linear grammars with contexts is
closed under union, it is sufficient to prove the closure in the case of K containing
a single one-symbol string: K = {d}, with d ∈ Σ.

Assume, without loss of generality, that G is in the linear normal form, provided
by Theorem 3.1. Construct a grammar G′ = (Σ, N ∪N ′, R′, S′), where N ′ = {A′ |
A ∈ N }. The intention is to have LG′(A) = LG(A) and LG′(A′) = { u〈v〉 | u〈vd〉 ∈
LG(A) } for all A ∈ N . The new rules in R′ are defined as follows.

• For each rule of the form A → bB1 & . . . & bB� & C1c & . . . & Ckc, the set R′

contains the same rule for A.

A → bB1 & . . . & bB� & C1c & . . . & Ckc

If all symbols concatenated from the right are equal to d (that is, if c = d or if
k = 0), then there is also a truncated rule for A′.

A′ → bB′
1 & . . . & bB′

� & C1 & . . . & Ck (if c = d)

• Every rule A → a & �D1 & . . . & �Dm is included in R′ as it is, and if a = d,
a truncated rule for A′ is added.

A → a & �D1 & . . . & �Dm

A′ → ε & �D1 & . . . & �Dm (if a = d)

The facts that �G′ A(u〈v〉) if and only if �G A(u〈v〉) and �G′ A′(u〈v〉) if and only if
�G A(u〈vd〉) can be proved by an easy induction. Hence, L(G′) = L(G)·{d}−1. �

The construction for the closure with a symbol on the left is similar but not
symmetric.

Lemma 8.5. Let G = (Σ, N, R, S) be a linear grammar with contexts, and let
K ⊂ Σ be a finite language. Then the language K−1 · L(G) can be defined by a
linear grammar with contexts.

Proof (a sketch). Similarly to the previous lemma, the quotient from the left can
be represented as a union of quotients with singletons.

Let G be in the linear normal form. Construct a grammar G′ = (Σ, N ∪
N ′, R′, S′), where N ′ = {A′ | A ∈ N }, such that LG′(A) = LG(A) and
LG′(A′) = { u〈v〉 | du〈v〉 ∈ LG(A) } for all A ∈ N , as follows.
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• For each rule of the form A → bB1 & . . . & bB� & C1c & . . . & Ckc, the set R′

contains this rule, and, if b = d or � = 0, then a truncated rule for A′ is also
added to R′.

A → bB1 & . . . & bB� & C1c & . . . & Ckc

A′ → B1 & . . . & B & C′
1c & . . . & C′

kc (if b = d)

• For a rule A → a & �D1 & . . . & �Dm, the set R′ contains the following rule.

A′ → a & �D′
1 & . . . & �D′

m

If additionally a = d and m = 0, then an extra rule

A′ → ε

is added to R′.

Similarly to the previous lemma, one can prove that �G′ A(u〈v〉) if and only if
�G A(u〈v〉) and �G′ A′(u〈v〉) if and only if �G A(u〈vd〉). �

The last class of operations to be considered are homomorphisms. Given two
alphabets Σ and Ω, a homomorphism h : Σ∗ → Ω∗ is a mapping that satisfies
h(ε) = ε and h(uv) = h(u)h(v) for all u, v ∈ Σ; it is completely defined by the
images of one-symbol strings. A homomorphism is a code, if h(u) = h(v) implies
u = v. It is known that the family of linear conjunctive languages is closed under
a homomorphism h if and only if either h is a code, or h trivially maps everything
to the empty string [18]. The closure under codes also holds for linear grammars
with contexts.

Lemma 8.6. Let G = (Σ, N, R, S) be a linear grammar with contexts, and let
h : Σ∗ → Ω∗ be a code. Then the language h(L(G)) is defined by a linear grammar
with contexts.

Proof. Construct a new linear grammar with contexts G′ = (Ω, N, R′, S) with the
following set of rules. Consider any rule in R.

A → x1B1y1 & . . . & xkBkyk & �x′
1D1y

′
1 & . . . & �x′

mDmy′
m &

�x′′
1E1y

′′
1 & . . . & �x′′

nEny′′
n

Then the new grammar contains a rule with all strings encoded by h.

A → h(x1)B1h(y1)& . . . & h(xk)Bkh(yk)&
�h(x′

1)D1h(y′
1)& . . . & �h(x′

m)Dmh(y′
m)&

�h(x′′
1 )E1h(y′′

1 )& . . . & �h(x′′
n)Enh(y′′

n)

It is claimed that every symbol A ∈ N generates the language LG′(A) = h(LG(A)).
In one direction, it has to be shown that for every string u〈v〉 generated by A in G,
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the encoding h(u)〈h(v)〉 is in LG′(A). This is actually true for every homomor-
phism h. In the other direction, if an item A(x〈y〉) can be deduced in the gram-
mar G′, then x and y are images of uniquely determined strings u, v ∈ Σ∗, with
h(u) = x and h(v) = y, and one can prove that the string u〈v〉 is in LG(A).
Both proofs follow by a straightforward induction on the number of steps in the
derivations. �

As compared to the well-researched closure properties of other families of formal
grammars ([19], Sect. 8.2), the results for grammars with contexts, whether linear
or with general concatenation, are still quite fragmentary. It is conjectured that
they are not closed under most of the basic operations, such as concatenation and
star, but this cannot yet be proved due to the lack of negative proof methods for
these grammars.

9. Future work

A suggested topic for future research is to investigate the main ideas in the
literature on trellis automata [7–10,23, 25] and see whether they can be extended
to trellis automata with feedback, and hence to linear grammars with contexts.
In particular, it is essential to learn how to prove that some languages cannot be
recognized by any automaton of this kind.

It would also be interesting to see how the parsing algorithms for grammars with
contexts, conjunctive grammars and related models [1, 2, 19] could be adapted to
linear grammars with contexts.

Acknowledgements. The authors are grateful to an anonymous reviewer for a good advise
to replace an elaborate simulation of a Turing machine given in the preliminary version
of this paper [5] with a straightforward construction now given in Section 6.
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