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ON DESCRIBING THE REGULAR CLOSURE OF THE LINEAR

LANGUAGES WITH GRAPH-CONTROLLED

INSERTION-DELETION SYSTEMS
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Abstract. A graph-controlled insertion-deletion (GCID) system has several components and each
component contains some insertion-deletion rules. A transition is performed by any applicable rule in
the current component on a string and the resultant string is then moved to the target component
specified in the rule. The language of the system is the set of all terminal strings collected in the final
component. When resources are very limited (especially, when deletion is demanded to be context-free
and insertion to be one-sided only), then GCID systems are not known to describe the class of recur-
sively enumerable languages. Hence, it becomes interesting to explore the descriptional complexity of
such GCID systems of small sizes with respect to language classes below RE and even below CF. To this
end, we consider so-called closure classes of linear languages defined over the operations concatenation,
Kleene star and union. We show that whenever GCID systems (with certain syntactical restrictions)
describe all linear languages (LIN) with t components, we can extend this to GCID systems with just
one more component to describe, for instance, the concatenation of two languages from the language
family that can be described as the Kleene closure of linear languages. With further addition of one
more component, we can extend the construction to GCID systems that describe the regular closure
of LIN.
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1. Introduction

The origin of insertion/deletion systems, or ins-del systems for short, comes from linguistics [9], as well from
biology, as in [12]; a detailed note is given in [4].

Informally, insertion means putting a string η between the strings w1 and w2 to obtain w1ηw2. Similarly,
deletion means removing a substring δ from the string w1δw2 to obtain the string w1w2 from w1δw2. The suffixes
of w1 and the prefixes of w2 are called left contexts and right contexts of the operation, respectively.
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Several variants of ins-del systems have been considered in the literature, as explained in [4, 13]. Here, we
focus on graph-controlled ins-del systems (abbreviated as GCID systems). Such systems were introduced in [8]
and further studied in [2, 5, 6]. A GCID system contains several components; these are associated with insertion
or deletion rules. The work of a GCID system can be thought of as moving the current sentential form from
component to component according to the description of the system. This means that for an application of any
rule (associated to some component), the sentential form has to reside in the said component. The transition
is performed by choosing any applicable rule from the set of rules of the current component and by moving
the resultant string to the target component specified in the rule. The process starts by putting some axiom in
the initial component and then applying transitions until a terminal string appears in a final component; such
terminal strings comprise the language associated to a GCID system.

The descriptional complexity measures that are usually considered for GCID systems are summarized in
a quantity called size, denoted by (k;n, i′, i′′;m, j′, j′′), where the parameters from left to right denote the
following: (i) the number of components, k (ii) the maximal length of the insertion string n, (iii) the maximal
length of the left context and right context used in insertion rules, i′ and i′′, respectively, (iv) the maximal
length of the deletion string m, and (v) the maximal length of the left context and right context used in deletion
rules, j′ and j′′, respectively. We will also refer to the last six numbers in the septuple as ID size.

The traditional research question is to find the smallest possible sizes that still describe all recursively
enumerable languages (denoted RE). This question is hence about the computational completeness of GCID
systems of a certain size s. But what can be said if it is not known if size s allows to characterize RE? Or,
possibly better, what if it is even known that size s does not yield computational completeness? In some cases
of sizes, especially, when the insertion happens with one-sided contexts and the deletion happens without any
contexts, it is not even clear if all context-free languages (CF for short) can be described. This less explored
question is the starting point of our research here. We are mostly concerned with certain sub-families of CF,
like the class of linear languages (written LIN). It is known that LIN is not closed under concatenation and
Kleene closure, while CF enjoys positive closure properties. Let L◦(LIN) and L∗(LIN) denote the super-classes
of LIN closed under concatenation and Kleene closure, respectively. It is shown in [6] that if GCID systems can
describe LIN with ID size s and t components (with some further syntactic constraints), then the according
construction can be extended to the following results: GCID systems with ID size s and t+ 1 components suffice
to describe L∗(LIN); particular cases of GCID systems with ID size s and t+ 2 components describing L◦(LIN)
were reported. Further classes of languages between linear and context-free were studied in [7, 11]. We will
address these as super-linear in the following.

In this paper, we generalize these results to show that even the regular closure (also known as the rational
closure) of LIN, denoted as Lreg(LIN), can be described by GCID systems with ID size s and t+ 2 components.
Recall that Lreg(LIN) is the smallest language class containing all linear languages and being closed under
the operations concatenation, Kleene star and union. We also show that a subclass of Lreg(LIN) containing
languages which can be described as concatenation of two languages from L∗(LIN), can be described by GCID
systems with ID size s and t + 1 components. For the first result, we employ a normal form for Lreg(LIN)
presented in [7].

A preliminary version of this paper has been presented at DCFS 2017; see [3]. This version not only contains
all proof details but also some new results. A thorough discussion of super-linear languages (as also done in
parts in [3]) can be found in [7].

2. Preliminaries

We assume that the readers are familiar with the standard notations used in formal language theory. However,
we recall a few notations in the following. Let N denote the set of positive integers, and [1 . . . k] = {i ∈ N : 1 ≤ i ≤
k}. If Σ is an alphabet (a finite set of symbols), then Σ∗ denotes the free monoid generated by Σ. The elements of
Σ∗ are called strings or words; λ denotes the empty string. For a string w ∈ Σ∗, wR denotes the reversal (mirror
image) of w. Likewise, LR and LR are understood for languages L and language families L, respectively. The fam-
ilies of linear, context-free and recursively enumerable languages are denoted by LIN, CF and RE, respectively.
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2.1. Super-linear languages

Being a sub-family of CF, also the linear languages can be described by a particular form of context-free
grammars. Namely, a context-free grammar G = (N,T, S, P ) is called linear if all rules are linear, i.e., their right-
hand sides are from T ∗ ∪ T ∗NT ∗. Alternatively, we can assume the following normal form for linear grammars:
right-hand sides are from T ∪ {λ} ∪NT ∪ TN . The language class LIN is neither closed under concatenation
nor under Kleene closure. This motivates us to consider classes of formal languages built from linear languages
by requiring additional closure properties. This is undertaken in the following.

Let Lop(F) be the smallest language class containing the language family F and being closed under the
operation op. We will mainly study union, i.e., op = ∪, concatenation, i.e., op = ◦, and Kleene star, i.e., op = ∗
as operators. Moreover, we will sometimes study sets OP of these operators, meaning that LOP (F) denotes the
smallest language class containing F and being closed under all operations from OP . For simplicity, we will
omit the set brackets in the subscript and write, e.g., L∪,◦(F), when OP = {∪, ◦}. Since LIN is closed under
union, it is true that L∪(LIN) = LIN. Since LIN is not closed under concatenation and Kleene closure, the
closure classes L◦(LIN) and L∗(LIN) are strict supersets of LIN.

If L ∈ L◦(LIN), then L = L1 ◦ L2 ◦ · · · ◦ Lk (in short L1L2 . . . Lk) for some k ≥ 1, where Li ∈ LIN for each
1 ≤ i ≤ k. Fixing k ≥ 1, we arrive at the class LINk, a subclass of L◦(LIN). In particular, LIN2 = LIN ◦ LIN
and LIN = LIN1 by definition. Clearly,

L◦(LIN) =
⋃
k≥1

LINk .

We shall also discuss the class of meta-linear languages, which can be described as L∪,◦(LIN). Traditionally,

one defines k-LIN = L∪(LINk). Notice that

L∪,◦(LIN) = L∪(L◦(LIN)) =
⋃
k≥1

k-LIN =
⋃
k≥1

L∪(LINk) .

Similarly, if L ∈ L∗(LIN), then either L ∈ LIN or L = (L′)∗ for some linear language L′. The class L := {L∗1L2 |
L1, L2 ∈ LIN} is considered as an extension of L∗(LIN) and LIN2 in [7, 11].1 It has a nice characterization in
terms of pushdown automata with finite turns. Recall the application of the reversal operation on classes of
languages. Hence, we also consider LR := {L2L

∗
1 | L1, L2 ∈ LIN}, and when L is not closed under reversal, it

is worth to consider the union of both classes, i.e., L ∪ LR, which coincides with LR(L ).
Continuing to play around with the concatenation and Kleene closure operators, we have L◦,∗(LIN), the

smallest language family containing LIN and being closed under concatenation and Kleene closure. Recall that
Lreg(LIN) is the smallest language family that contains LIN and is closed under the three regular operators:
union, concatenation and Kleene closure, also written as L∪,◦,∗(LIN) and is commonly called the regular or
rational closure of LIN. All these language families in between LIN and CF will be referred to as super-linear.
The hierarchical relationships between these super-linear language classes have been exhibited in [7, 11].

2.2. Properties of (new) super-linear language classes

In this paper, we will also come across three further super-linear language classes that, to the best of our
knowledge, have not been considered previously.

• L2
∗(LIN) := {L1L2 : L1, L2 ∈ L∗(LIN)}.

In other words, L2
∗(LIN) = L∗(LIN) ◦ L∗(LIN).

• L∪(L2
∗(LIN)) (as a natural extension of the class introduced above).

• L = {L∗1L∗2 : L1, L2 ∈ LIN} (as a natural restriction of this class).

1In [11], L was called L∗, which we avoid due to possible confusions with our Kleene closure operator notation.
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Proposition 2.1. The following assertions are true.

(1) L2
∗(LIN) = LIN2 ∪ (L ∪ LR) ∪ L.

(2) For L1 = {akbk | k ≥ 0}, L2 = {ckdk | k ≥ 0} and L3 = {ekfk | k ≥ 0}, the language L∗1L
∗
2L
∗
3 does not

belong to L∪(L2
∗(LIN)).

(3) L∪(L2
∗(LIN)) ( Lreg(LIN).

Proof.

(1) The stated decomposition follows immediately from the definition of the classes L2
∗(LIN), LIN2, (L ∪LR),

and L.
(2) Assume for the sake of contradiction that there are linear languages Li,j and ki,j ∈ {1, ∗}, for i ∈ {1, . . . , n},

j = 1, 2, such that L∗1L
∗
2L
∗
3 =

⋃n
i=1(L

ki,1

i,1 L
ki,2

i,2 ). Each Li,j is described by some linear grammar with,
say, mi,j many nonterminals. Let m = maxi=1,...,n;j=1,2{mi,j} + 1. For ` ∈ {1, . . . , n + 1}, consider the
n+ 1 strings w` = a`mb`mc`md`me`mf `m from L∗1L

∗
2L
∗
3. By pigeon-hole principle, there must be some

`1, `2 ∈ {1, . . . , n + 1}, `1 6= `2, and correspondingly an i ∈ {1, . . . , n} such that w`1 , w`2 ∈ L
ki,1

i,1 L
ki,2

i,2 .

Hence, there are words u`1 , u`2 ∈ L
ki,1

i,1 and v`1 , v`2 ∈ L
ki,2

i,2 such that w`1 = u`1v`1 and w`2 = u`2v`2 .

Notice that by construction, both w`1`2 := u`1v`2 and w`2`1 := u`2v`1 belong to L
ki,1

i,1 L
ki,2

i,2 . Now, we apply
an interchange argument. If u`1 ends with the same letter with which v`1 starts, or if u`1 ends with an
a and v`1 starts with a b, or if u`1 ends with a c and v`1 starts with a d, or if u`1 ends with an e and
v`1 starts with an f , then clearly w`1`2 does not belong to L∗1L

∗
2L
∗
3. The only remaining cases are: (i) u`1

ends with a b and v`1 starts with a c, or (ii) u`1 ends with a d and v`1 starts with an e. Both cases are
completely symmetric due to the structure of the languages. Hence, assume that (ii) holds. This means
that either (a) u`1 = a`1mb`1mc`1md`1m ∈ Li,1 or (b) u`1 = a`1mb`1mc`1md`1m ∈ L∗i,1. By the choice of m,
both assumptions lead to a contradiction by pumping arguments.
Suppose that (a) holds; then, by the pumping lemma for linear languages with p = mi,1 as the pumping
constant, and by definition of m, it is clear that p ≤ m. Hence, u`1 with |u`1 | = 4`1m ≥ p can be factorized
as stxyz such that |styz| ≤ p ≤ `1m and |ty| ≥ 1. This implies that t = ak1 and y = ak2 for some k1, k2 ≥ 1.

By pumping in a t and y into u`1 we have u′`1 = a`1m+k1+k2b`1mc`1md`1m ∈ Li,1. Hence, u′`1e
qfq ∈ Li,1L

ki,2

i,2

for q = `1m by construction. Clearly, u′`1e
qfq does not belong to L∗1L

∗
2L
∗
3 for any q, giving the desired

contradiction.
Suppose that (b) holds; then u2`1 ∈ L

∗
i,1 also. Hence by construction,

u2`1e
`1mf `1m = a`1mb`1mc`1md`1ma`1mb`1mc`1md`1me`1mf `1m ∈ L∗i,1L

ki,2

i,2

Clearly by its structure, the string u2`1e
`1mf `1m does not lie in L∗1L

∗
2L
∗
3, giving the desired contradiction.

(3) The inclusion follows directly from the definitions of the two languages. The language L∗1L
∗
2L
∗
3 stated in

item (2) acts as a witness language to justify the strictness of the inclusion.

In [7], several closure properties and characterization results for super-linear language classes have been derived.
For this paper, the following ones are useful.

Proposition 2.2 ([7]). The classes LIN, LIN2, 2-LIN, L ∪ LR, L∪(L ∪ LR) and Lreg(LIN) are closed under
reversal.

In the same lines, we show that the following.

Proposition 2.3. The classes L, L∪(L), L2
∗(LIN) and L∪(L2

∗(LIN)) are closed under reversal.

Proof. L is closed under reversal, since (L∗1L
∗
2)R = (L∗2)R(L∗1)R = (LR

2 )∗(LR
1 )∗, as LIN is closed under reversal.

By Proposition 2.1, each L ∈ L2
∗(LIN) belongs to one of three classes LIN2, (L ∪LR),L, each of which is closed
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under reversal, so that LR ∈ L2
∗(LIN) follows. As (L1 ∪ L2)R = LR

1 ∪ LR
2 , this also entails that L∪(L2

∗(LIN))
and L∪(L) are closed under reversal.

We next provide some rewriting grammars for certain super-linear grammars.

Proposition 2.4 ([7]). Let L ⊆ T ∗. Then, L ∈ Lreg(LIN) if and only if there is a context-free grammar
G = (N,T, S, P ) with L(G) = L that satisfies the following properties.

• N can be partitioned into N0 and N ′.
• There is a right-linear grammar GR = (N0, N

′, S, P0).
• N ′ can be further partitioned into N1, . . . , Nk for some k, such that the restriction Pi of P involving

symbols from Ni ∪ T are only linear rules, with T serving as the terminal alphabet.
• P can be partitioned into P0, P1, . . . , Pk.

Notice that this characterization corresponds to a two-stage approach: First, the right linear grammar GR is
used to produce a sequence of symbols from N ′ that both serve as terminal symbols for GR and as nonterminal
symbols for linear grammar Gi that can be obtained from G by using rules Pi only. Here, it is not necessary but
possible to insist on using N ′′ ⊆ N ′ instead of N ′ as the terminal alphabet of GR, such that N ′′ ∩Ni = {Si}
for each i ∈ [1 . . . k], i.e., we can single out a start symbol Si for each Gi. Clearly, the linear rules mentioned
in the previous proposition can be assumed to be in normal form; this remark also applies to the following
characterization results of [7] without further explicit mentioning its proof.

Proposition 2.5 ([7]). Let L ∈ T ∗. Then L ∈ L if and only if there are two linear grammars G1 =
(N1, T, S1, P1) and G2 = (N2, T, S2, P2) (w.l.o.g., with N1 ∩N2 = ∅) such that L = L(G1)∗L(G2) if and only if
there is a context-free grammar G = (N,T, S, P ) (based on G1, G2) with L(G) = L such that, for S, S′ /∈ N1∪N2,

• N = N1 ∪N2 ∪ {S, S′} (partitioning of N);
• P = P1 ∪ P2 ∪ {S → S′S2, S

′ → S′S1 , S
′ → λ}.

In the spirit of Proposition 2.5, we can also state:

Proposition 2.6. Let L ∈ T ∗. Then L ∈ L if and only if there are two linear grammars G1 = (N1, T, S1, P1)
and G2 = (N2, T, S2, P2) (w.l.o.g., with N1 ∩ N2 = ∅) such that L = L(G1)∗L(G2)∗ if and only if there is a
context-free grammar G = (N,T, S, P ) (based on G1, G2) with L(G) = L such that, for S, S′ /∈ N1 ∪N2,

• N = N1 ∪N2 ∪ {S, S′1, S′2} (partitioning of N);
• P = P1 ∪ P2 ∪ {S → S′1S

′
2, S
′
1 → S′1S1, S

′
1 → λ, S′2 → S′2S2, S

′
2 → λ}.

2.3. Graph-controlled insertion-deletion systems

We define graph-controlled insertion-deletion systems according to [8].

Definition 2.7. A graph-controlled insertion-deletion system (GCID system for short) with k components is a
construct Π = (k, V, T,A,H, i0, if , R), where

• k is the number of components,
• V is an alphabet,
• T ⊆ V is the terminal alphabet and V \ T is the non-terminal alphabet,
• A ⊆ V is a finite set of axioms,
• H is a set of labels associated (in a one-to-one manner) to the rules in R,
• i0 ∈ [1 . . . k] is the initial component,
• if ∈ [1 . . . k] is the final component, and
• R is a finite set of rules of the form (i, r, j) where r is an insertion rule of the form (u, η, v)ins or a deletion

rule of the form (u, δ, v)del, with i, j ∈ [1 . . . k], i is the current component where the rule r is applied and
j is the target component of where the resultant string moves.
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We say that a GCID system handles terminals properly if terminal symbols are (i) inserted in non-empty
contexts with only non-terminals and (ii) never deleted.

An insertion rule of the form (u, η, v)ins means that the string η is inserted between u and v and it corresponds
to the rewriting rule uv → uηv. Similarly, a deletion rule of the form (u, δ, v)del means that the string δ is deleted
between u and v and this corresponds to the rewriting rule uδv → uv. The pair (u, v) is called the context, η is
called the insertion string, δ is called the deletion string and x ∈ A is called an axiom. If one of the u or v is λ
for all the insertion (deletion) contexts, then we call the insertion (deletion) one-sided. If both u, v = λ for every
insertion (deletion) rule, then it means that the corresponding insertion (deletion) can be done freely anywhere
in the string and is called context-free insertion (context-free deletion). Ci refers to component i. A rule of the
form l : (i, r, j), where l ∈ H is the label associated to the rule, denotes that the string is sent from Ci to Cj
after the application of the insertion or deletion rule r on the string. If the initial component itself is the final
component, then we call the system to be a returning GCID system. In general, we follow the convention to use
rule label names that are carrying some meaning as follows. For instance, if we like to describe the simulation
of a rule p, then this is usually done by several rules in several components, so that pi.j would refer to the jth
simulation rule for rule p in component Ci.

A configuration of Π is represented by (w)i, where i is the number of the current component (initially i0) and
w is the current string. In that case, we also say that w has entered component Ci. We denote by (w)i ⇒l (w′)j
(or simply (w)i ⇒ (w′)j in case the rule application is clear) if (w′)j is derived from (w)i on applying a rule
l : (i, r, j) in R. In such a case, we also say that w′ moves from Ci to Cj (after applying rule l). Let ⇒∗ denote
the reflexive transitive closure of ⇒. We define L(Π) = {w ∈ T ∗ | (S)i0 ⇒∗ (w)i0}. The size of Π is denoted as
(k;n, i′, i′′;m, j′, j′′), where k is the number of components and

n = max{|η| : (i, (u, η, v)ins, j) ∈ R} m = max{|δ| : (i, (u, δ, v)del, j) ∈ R}
i′ = max{|u| : (i, (u, η, v)ins, j) ∈ R} j′ = max{|u| : (i, (u, δ, v)del, j) ∈ R}
i′′ = max{|v| : (i, (u, η, v)ins, j) ∈ R} j′′ = max{|v| : (i, (u, δ, v)del, j) ∈ R}

The underlying control graph of a graph-controlled insertion-deletion system Π with k components is defined
to be a graph on k nodes labelled C1 through Ck. There exists a directed edge from a node Ci to node Cj if
and only if there exists a rule of the form (i, r, j) in R of Π. We also associate a simple undirected graph on k
nodes to a GCID system of k components as follows: There is an undirected edge from a node Ci to Cj (i 6= j)
if and only if there exists a rule of the form (i, r1, j) or (j, r2, i) in R of Π. If this underlying undirected simple
graph is a tree, then Π can be viewed as an insertion-deletion P system (see [8]). In such a case, let us call a
returning GCID system tree-structured. The language class generated by returning GCID systems of size s is
denoted by GCID(s). The class of languages generated by tree-structured GCID systems of size s is denoted by
GCIDT (s). By definition, we know that GCIDT (s) ⊆ GCID(s). Notice that in all our constructions, the derived
GCID systems will be returning. Only when necessary, we will underline this fact again by writing GCIDR(s)
for the corresponding language class.

2.4. Simple properties of GCID

In the following proposition, we discuss a closure property that is usually considered to be easy. Yet, in order
to state and prove it in a general form, we need to be careful. This also underlines the importance of several
properties of GCID systems that we introduced above.

Proposition 2.8. Let τ be some tree and s be some size measure. Let Π1 and Π2 be two returning GCID
systems of size (at most) s with terminal alphabet Σ, whose control graphs are subtrees of τ , that handle
terminals properly. Then there is a returning GCID system Π with terminal alphabet Σ of size (at most) s
whose control graph is a subtree of τ and that handles terminals properly, such that L(Π) = L(Π1) ∪ L(Π2).

Proof. The construction is very simple: w.l.o.g., we can assume that the nonterminal alphabets of Π1 and Π2

are disjoint; their union is the nonterminal alphabet of Π. Now, let the axiom set A of Π be simply the union
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of the axiom sets A1 of Π1 and A2 of Π2; likewise, the rule set associated to the components in Π are simply
the unions of the rule sets associated to that component in Π1 and in Π2. As Π1 and Π2 possess the same
control (super-)structure τ , this is also true for Π. Because Π1 and Π2 handle terminals properly, the derivations
starting with axioms from A1 cannot use rules from Π2 and vice versa, so that the language generated by Π is
L(Π1) ∪ L(Π2). It is clear that Π handles terminals properly, as its constituent systems Π1 and Π2 do.

We will use the previous result in the following way.

Remark 2.9. Whenever we show that a language family LAN is contained in some language family L described
by certain GCID systems, we will make sure that this GCID family obeys the conditions of Proposition 2.8, so
that we can immediately conclude that L∪(LAN) is also included in the same language class L.

We also call a returning GCID system that handles terminals properly simple-deleting if it contains one rule
of the form h1.1 : (1, (λ, Z, λ)del, 1) (intended to simulate a deletion rule h : Z → λ) and we assume that this
rule is always the last one to be applied in order to obtain a terminal string. For simplicity, we will denote the
class of simple-deleting GCID systems (of size s), as well as the corresponding language family, by GCIDSD(s).
Moreover, we use the subscript SDT if we want to emphasize that the control graph is tree-structured.

3. Examples of super-linear languages and GCID

We now provide a couple of example languages to show that even GCID systems with very restricted resources
can generate quite interesting languages. These examples will also serve as witness languages to show the
strictness of several inclusions between language families that we are going to prove later. Finally, we also make
clear in this way how (non-trivial) GCID systems work and how to prove that GCID systems actually do what
they are supposed to do.

Example 3.1. Consider the language

L#,$ = {#an1bn1#an2bn2 . . .#anpbnp$ck1dk1$ck2dk2 . . . $ckpdkp | p, n1, . . . , np, k1, . . . , kp ≥ 1} ∪ {λ} .

We will prove that L#,$ ∈ (CF ∩GCIDSDT (5; 2, 1, 0; 1, 0, 0)) \ Lreg(LIN).

1. The language is context-free, since the following simple type-2 rules generate L#,$, starting from S:
S → #XS$Y , S → λ, X → aA, A→ Bb, B → aA, B → λ, Y → cC, C → Dd, D → cC, D → λ, where
a, b, c, d,#, $ are terminals and others are non-terminals.

2. We next show that L#,$ /∈ Lreg(LIN). Assume that L#,$ ∈ Lreg(LIN). According to [11], this means that
there is a pushdown automaton A with, say, q states, using s pushdown symbols, that accepts L#,$ and
that satisfies that it always empties its pushdown storage completely before starting to store new symbols
on it. In other words, the work of A on any input word w decomposes into phases φ1, ψ1, φ2, ψ2, . . . , φr, ψr,
where in phase φi, symbols are pushed on the pushdown, while in phase ψi, symbols are popped from the
pushdown, and when changing between ψi and φi+1, the pushdown store is empty.
Consider A working on a word w starting with v = #anbm#. If w should belong to L#,$, it must satisfy
n = m. As n,m are arbitrarily large numbers, this can only be checked by A when using its pushdown
store. According to the conditions put on A, the pushdown store must be nearly empty when finishing
reading v. This means that there might be some left-over symbols, but in order to check that m = n, this
must be a small number of symbols, say `, depending on q and s, as we will see. Now, if w decomposes
like w = vv′v′′, with v′ = an

′
bm

′
#, then a similar argument shows that, for sufficiently large n′, A must

use its pushdown store to check that n′ = m′. In order to do so, A must first empty its pushdown store
completely, either before or after reading the separator #. Assume that A has not emptied its pushdown
when reading #. So, A has to continue emptying its pushdown when reading past #. If ` > qs, then while
emptying the pushdown, reading a’s from the input, some configuration must occur twice by pigeon hole
principle. Hence, we would also accept some word w′ that is obtained from w by omitting some symbols
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Table 1. A GCIDSDT (5; 2, 1, 0; 1, 0, 0) system for the language L#,$ that is context-free but
not in the regular closure of LIN.

Component C1 Component C5

s11.1 : (1, (†1,#X,λ)ins, 2) s25.1 : (5, (†2, $Y, λ)ins, 2)
s21.1 : (1, (λ, †1, λ)del, 1)
s31.1 : (1, (λ, †2, λ)del, 1)

Component C2 Component C3 Component C4

p12.1 : (2, (X, p1, λ)ins, 3) p13.1 : (3, (λ,X, λ)del, 2) p14.1 : (4, (λ, p1, λ)del, 2)
p12.2 : (2, (p1, aA, λ)ins, 4)

q12.1 : (2, (A, q1, λ)ins, 3) q13.1 : (3, (λ,A, λ)del, 2) q14.1 : (4, (λ, q1, λ)del, 2)
q12.2 : (2, (q1, Bb, λ)ins, 4)

r12.1 : (2, (B, r1, λ)ins, 3) r13.1 : (3, (λ,B, λ)del, 2) r14.1 : (4, (λ, r1, λ)del, 2)
r12.2 : (2, (r1, aA, λ)ins, 4)

h12.1 : (2, (λ,B, λ)del, 5)

p22.1 : (2, (Y, p2, λ)ins, 3) p23.1 : (3, (λ, Y, λ)del, 2) p24.1 : (4, (λ, p2, λ)del, 2)
p22.2 : (2, (p2, cC, λ)ins, 4)

q22.1 : (2, (C, q2, λ)ins, 3) q23.1 : (3, (λ,C, λ)del, 2) q24.1 : (4, (q2, Dd, λ)ins, 2)
q22.2 : (2, (λ, q2, λ)del, 4)

r22.1 : (2, (D, r2, λ)ins, 3) r23.1 : (3, (λ,D, λ)del, 2) r24.1 : (4, (λ, r2, λ)del, 2)
r22.2 : (2, (r2, cC, λ)ins, 4)

h22.1 : (2, (λ,D, λ)del, 1)

from the second block of a’s (and leaving the rest unchanged), contradicting the structure of the language
L#,$. We arrive at a similar contradiction assuming that A has already emptied its pushdown before
reading #. A similar argument proves that, upon reading the first part #an1bn1#an2bn2 . . .#anpbnp$ of
w, the pushdown store must be emptied within qs symbols to the left or right of the separators #, $. Notice
that we also know that A has worked in phases φ1, ψ1, φ2, ψ2, . . . , φp, ψp when processing this prefix.
This also means that A cannot use its pushdown storage to memorize the number p of occurrences
of the anbn-pattern. Hence, again by pigeon hole, if p is bigger than 3q + 1, when reading the suffix
$ck1dk1$ck2dk2 . . . $ckpdkp – with phases φp+1, ψp+1, . . . , φ2p, ψ2p as A must also check this ckdk-patterns
– there must be a situation where in the sequence of states sp, . . . , s2p encountered when leaving phase
ψp, . . . , ψ2p, respectively, configurations repeat. (Recall that a configuration is determined by the current
input symbol, the state and the current pushdown symbol; as the pushdown store is empty in the described
configurations, and as we only have three different (reasonable) input symbols, the bound follows.) This
would allow to also accept words violating the structure of L#,$, assuming that w is accepted. This
concludes the proof of our claim.

3. We now construct a GCID system Π of size (5; 2, 1, 0; 1, 0, 0) to describe L#,$ as follows:

Π = (5, {†1, †2,#, $, X,A,B, Y, C,D, a, b, c, d}, {a, b, c, d,#, $}, {†1†2}, H, 1, 1, R) ,

where the rule labels of H and the rules of R are given in Table 1. We now explain how the rules work in
order to prove that L(Π) = L#,$.
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Let L1 = {anbn | n ≥ 1} and L2 = {cmdm | m ≥ 1} denote two basic constituents of L#,$. Starting from
the axiom †1†2 in C1, we can apply s11.1, s21.1 or s31.1. If we apply s21.1 and s31.1 together, then
λ ∈ L#,$ is produced. Actually, when starting with s21.1, we have to apply s31.1 next in order to produce
some terminal string. When starting with s31.1 instead, we might be tempted to apply s11.1 next. It
would then be possible to continue a derivation as intended when immediately starting with s11.1, as
it is explained below. However, at some point of time, the string will be stuck at C5 (which is not a
final component) as there was no †2 to apply the rule s25.1. We now move on to discuss the non-trivial
(intended) rule application s11.1 that works in phases, starting in phase s1.

Phase s1: on starting to apply s11.1, we insert #X on the right of †1 and the string †1#X†2 is sent to
C2. In C2, using X (which acts as a start symbol for a grammar part that describes L1), we can produce
a string of L1 in three phases p1, q1, r1 as follows:

Phase p1: Applying the rules p12.1, p13.1, p12.2, p14.1 in order, we have the following derivation, starting
in configuration (†1#X†2)2 and applying p12.1:

(†1#Xp1†2)3 ⇒p13.1 (†1#p1†2)2 ⇒p12.2 (†1#p1aA†2)4 ⇒p14.1 (†1#aA†2)2.

At this point, the only applicable rule in C2 is q12.1, which initiates Phase q1.

Phase q1: applying the rules q12.1, q13.1, q12.2, q14.1 in order we have the following derivation, starting
in configuration (†1#aA†2)2 and applying q12.1:

(†1#aAq1†2)3 ⇒q13.1 (†1#aq1†2)2 ⇒q12.2 (†1#aq1Bb†2)4 ⇒q14.1 (†1#aBb†2)2.

At this point, the applicable rules in C2 are r12.1 and h12.1, which initiates Phase r1 and Phase h1,
respectively.

Phase r1: applying the rules r12.1, r13.1, r12.2, r14.1 in order, we have the following derivation, starting
in configuration (†1#aBb†2)2 and applying r12.1:

(†1#aBr1b†2)3 ⇒r13.1 (†1#ar1b†2)2 ⇒r12.2 (†1#ar1aAb†2)4 ⇒r14.1 (†1#aaAb†2)2 ,

which is very similar to phase p1. Continuing to apply rules in Phases q1 and r1 alternatingly for the
desired, say n1, number of times, we obtain the configuration (†1#an1Bbn1†2)2. To terminate this process,
we move to Phase h1.

Phase h1: on applying the rule h12.1 in C2, the nonterminal B is deleted and the resultant string
(†1#an1bn1†2)is moved to C5. In C5, $Y is introduced after †2 by s25.1.
Analogously to phases p1, q1, r1 (and again q1), h1, Y generates a string ck1dk1 ∈ L2 in C2 by the phases
p2, q2, r2 (and again q2), h2. Hence, we will be having a configuration of the form (†1#an1bn1 †2 $ck1dk1)1.
We highlight a main difference in the application of h12.1 (in phase h1) and h22.1. In the former case, the
string is taken to C5 while in the latter case, the string is taken to C1.
Now the whole process is repeated again: applying the rules in phases s1, p1, q1, r1, h1, s2, p2, q2, r2, h2,
in order, for desired number (any p) number of times, we get a configuration of the form

(†1#an1bn1#an2bn2 . . .#anpbnp †2 $ck1dk1$ck2dk2 . . . $ckpdkp)1 .

To terminate the derivation, we apply the rules s21.1 and s31.1, which will delete the markers †1 and †2,
respectively. With these details, one can see that L(Π) = L#,$.

4. The claimed tree structure of the given GCID system can be seen by the illustration given in Figure 1a.

Example 3.2. Consider the language L′ = {anbicibkckdn | n, i, k ≥ 0}. We now show that L′ ∈ (CF ∩
GCIDSD(5; 1, 1, 0; 1, 0, 0)) \ Lreg(LIN).
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Figure 1. Control graphs of the GCID systems that describe the context-free languages of
Example 3.1 and Table 2.

1. Clearly, L′ is context-free.
2. Observe that L′ /∈ LIN, which can be shown by applying the pumping lemma for linear languages as

stated in [10]. If L′ ∈ Lreg(LIN), then L′ would be described by substituting linear languages into a
regular expression E. If E would contain a single symbol, then L′ would be linear, which is not the
case. If E = F ∗ for some regular expression F , then (assuming, w.l.o.g., that a non-regular language is
substituted for F ) L′ would equal L∗ for some non-regular language L. This contradicts the structure of
L′. If E = E1E2 (catenation of two regular expressions E1 and E2), then (excluding again trivial cases
when E1 or E2 are substituted by regular languages) there is no way to synchronize the number of a’s
and d’s in any string, so that L′ cannot be described, as sufficiently long strings anwdn (where n is bigger
than the number of nonterminals of any linear language that is substituted, assuming only rules of the
form A→ bB or A→ Bb in these grammars) can be changed to generating some word not in L′, as due
to the lengths of the strings, in particular the beginning grammar (corresponding to the first letter in E1)
will run into a loop by pigeon hole; this loop can be omitted (zero-pumped) to create such an unintended
word. Finally, if E = E1 ∪E2, then the arguments presented above can be applied to infinite sublanguages
of L′.

3. The language L′ can be generated by the GCID system

Π ′ = (5, {S, S2, S
′
3, S3, a, b, c, d}, {a, b, c, d}, {S}, H, 1, 1, R) ,

where the rules from R are presented in Table 2. The size of Π ′ is (5; 1, 1, 0; 1, 0, 0). We note that λ ∈ L′
is derived by the following sequence of derivations.

(S)1 ⇒h11.1 (SS2)4 ⇒s14.1 (S2)5 ⇒s15.1 (S2S
′
3)1

⇒h21.1 (S′3)4 ⇒s24.1 (S′3S3)1 ⇒h31.1 (S′3)5 ⇒s35.1 (λ)1 .

We now explain why L(Π ′) = L′. Starting from the axiom S, we can only apply h11.1 (as discussed above), or
p11.1.

Phase p1, starting with p11.1. Component C3 only contains deletion rules. In configuration (Sp1)3, only
p13.1 and p13.2 are applicable. Applying p13.2 brings us back to the original configuration (S)1, so that, to
make progress, p13.1 has to be applied, leading to (p1)1. Back in C1, only p11.2 is applicable, leading us to
(p1p

′
1)2. Rule p12.2 brings us back to (p1)1, so that finally p12.1 has to be applied, yielding the configuration
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Table 2. A GCIDSD(5; 1, 1, 0; 1, 0, 0) system for the language L′ that is context-free but not
in the regular closure of LIN.

Component C1 Component C2 Component C3

p11.1 : (1, (S, p1, λ)ins, 3) p12.1 : (2, (p1, a, λ)ins, 3) p13.1 : (3, (λ, S, λ)del, 1)
p11.2 : (1, (p1, p

′
1, λ)ins, 2) p12.2 : (2, (λ, p′1, λ)del, 1) p13.2 : (3, (λ, p1, λ)del, 1)

p11.3 : (1, (p′1, A, λ)ins, 2)

q11.1 : (1, (A, q1, λ)ins, 3) q12.1 : (2, (q1, q
′
1, λ)ins, 3) q13.1 : (3, (λ,A, λ)del, 1)

q11.2 : (1, (q1, d, λ)ins, 2) q12.2 : (2, (λ, q′1, λ)del, 1) q13.2 : (3, (λ, q1, λ)del, 1)
q11.3 : (1, (q′1, S, λ)ins, 2)

h11.1 : (1, (S, S2, λ)ins, 4)

p21.1 : (1, (S2, p2, λ)ins, 3) p22.1 : (2, (p2, b, λ)ins, 3) p23.1 : (3, (λ, S2, λ)del, 1)
p21.2 : (1, (p2, p

′
2, λ)ins, 2) p22.2 : (2, (λ, p′2, λ)del, 1) p23.2 : (3, (λ, p2, λ)del, 1)

p21.3 : (1, (p′2, B, λ)ins, 2)

q21.1 : (1, (B, q2, λ)ins, 3) q22.1 : (2, (q2, q
′
2, λ)ins, 3) q23.1 : (3, (λ,B, λ)del, 1)

q21.2 : (1, (q2, c, λ)ins, 2) q22.2 : (2, (λ, q′2, λ)del, 1) q23.2 : (3, (λ, q2, λ)del, 1)
q21.3 : (1, (q′2, S2, λ)ins, 2)

h21.1 : (1, (λ, S2, λ)del, 4)

p31.1 : (1, (S3, p3, λ)ins, 3) p32.1 : (2, (p3, b, λ)ins, 3) p33.1 : (3, (λ, S3, λ)del, 1)
p31.2 : (1, (p3, p

′
3, λ)ins, 2) p32.2 : (2, (λ, p′3, λ)del, 1) p33.2 : (3, (λ, p3, λ)del, 1)

p31.3 : (1, (p′3, C, λ)ins, 2)

q31.1 : (1, (C, q3, λ)ins, 3) q32.1 : (2, (q3, q
′
3, λ)ins, 3) q33.1 : (3, (λ,C, λ)del, 1)

q31.2 : (1, (q3, c, λ)ins, 2) q32.2 : (2, (λ, q′3, λ)del, 1) q33.2 : (3, (λ, q3, λ)del, 1)
q31.3 : (1, (q′3, S3, λ)ins, 2)

h31.1 : (1, (λ, S3, λ)del, 1)

Component C4 Component C5

s14.1 : (4, (λ, S, λ)del, 5) s15.1 : (5, (S2, S
′
3, λ)ins, 1)

s24.1 : (4, (S′3, S3, λ)ins, 5) s25.1 : (5, (λ, S′3, λ)del, 1)

(p1ap
′
1)3. Now, the application of p13.2 is enforced, yielding (ap′1)1. Now, only p11.3 is applicable, leading to

(ap′1A)2 and further to (aA)1. This enables us to begin with the next phase q1.

Phase q1, starting with q11.1, as this is the only applicable rule. Avoiding useless loops when applying q13.2,
we are led to (aAq1)3 ⇒ (aq1)1. Now, the following derivation is enforced, starting with (aq1)1 ⇒q11.2 (aq1d)2:

(aq1d)2 ⇒q12.1 (aq1q
′
1d)3 ⇒q13.2 (aq′1d)1 ⇒q11.3 (aq′1Sd)2 ⇒q12.2 (aSd)1 .

Now, we have two alternatives: either to restart Phase p1, followed by Phase q1, leading (after n repetitions)
to (anSdn)1, or to change to Phase p2 using rule h11.1, followed by applying two more rules as an interludium.
Hence, we get:

(anSdn)1 ⇒h11.1 (anSS2d
n)4 ⇒s14.1 (anS2d

n)5 ⇒s15.1 (anS2S
′
3d

n)1 .
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Instead of taking the route to Phase p2, we could also skip this phase by directly applying h21.1, finally leading
to the possibility of having i = 0 as follows.

Phase p2, starting with p21.1. Omitting loops, we apply the following derivation:

(anS2S
′
3d

n)1⇒p21.1 (anS2p2S
′
3d

n)3 ⇒p23.1 (anp2S
′
3d

n)1 ⇒p21.2 (anp2p
′
2S
′
3d

n)2
⇒p22.1 (anp2bp

′
2S
′
3d

n)3⇒p23.2 (anbp′2S
′
3d

n)1
⇒p21.3 (anbp′2BS

′
3d

n)2 ⇒p22.2 (anbBS′3d
n)1 .

Observe how the sequence of rule applications is enforced once it was started; also, there is no other way how
to deal with configuration (anS2S

′
3d

n)1. Similar remarks are in order for the phases discussed in the following.
Now, the next phase can begin.

Phase q2, starting with q21.1. Omitting loops, we apply the following derivation:

(anbBS′3d
n)1⇒q21.1 (anbBq2S

′
3d

n)3 ⇒q23.1 (anbq2S
′
3d

n)1 ⇒q21.2 (anbq2cS
′
3d

n)2
⇒q22.1 (anbq2q

′
2cS
′
3d

n)3 ⇒q23.2 (anbq′2cS
′
3d

n)1
⇒q21.3 (anbq′2S2cS

′
3d

n)2⇒q22.2 (anbS2cS
′
3d

n)1

Now, one can repeat Phase p2 and q2 i times altogether to arrive at (anbiS2c
iS′3d

n)1. Finally, h21.1 has to be
applied, leading to a second bridge:

(anbiS2c
iS′3d

n)1⇒h21.1 (anbiciS′3d
n)4⇒s24.1 (anbiciS′3S3d

n)5⇒s25.1 (anbiciS3d
n)1

Instead of travelling through Phase p3, we could also skip this phase by applying h31.1 directly, leading finally
to the possibility of having k = 0 in the following case analysis.

Phase p3, starting with p31.1. Omitting loops, we apply the following derivation:

(anbiciS3d
n)1 ⇒p31.1 (anbiciS3p3d

n)3 ⇒p33.1 (anbicip3d
n)1

⇒p31.2 (anbicip3p
′
3d

n)2 ⇒p32.1 (anbicip3bp
′
3d

n)3
⇒p33.2 (anbicibp′3d

n)1 ⇒p31.3 (anbicibp′3Cd
n)2

⇒p32.2 (anbicibCdn)1

Now, the next phase can begin.

Phase q3, starting with q31.1. Omitting loops, we apply the following derivation:

(anbicibCdn)1 ⇒q31.1 (anbicibCq3d
n)3 ⇒q33.1 (anbicibq3d

n)1
⇒q31.2 (anbicibq3cd

n)2 ⇒q32.1 (anbicibq3q
′
3cd

n)3
⇒q33.2 (anbicibq′3cd

n)1 ⇒q31.3 (anbicibq′3S3cd
n)2

⇒q32.2 (anbicibS3cd
n)1

Now, one can repeat Phase p3 and q3, k times altogether, to arrive at the configuration (anbicibkS3c
kdn)1.

Finally, on applying h31.1, which deletes S3, the derivation stops at C1, showing anbicibkckdn ∈ L(Π ′).
From the argument we gave above, it is clear that L′ = L(Π ′), as no malicious derivations are possible.

Remark 3.3. The GCID system given in the last example is not tree-structured, as witnessed by Figure 1b.
We do not know if this language can be described by a tree-structured system of size (5; 1, 1, 0; 1, 0, 0).



ON DESCRIBING THE REGULAR CLOSURE OF THE LINEAR LANGUAGES 13

Figure 2. How simple-deleting GCID systems with non-tree structure and of size
(3; 1, 1, 0; 1, 0, 0) could describe all the linear languages.

4. Describing super-linear languages by GCID systems

In order to simplify the presentation and derivation of some of our main results in the paper, the following
observations are helpful.

Proposition 4.1 ([5]). Let L be a language class that is closed under reversal and k, n, i′, i′′,m, j, j′′ be non-
negative integers. The following statements are true.

(1) GCID(k;n, i′, i′′;m, j′, j′′) = [GCID(k;n, i′′, i′;m, j′′, j′)]R.
(2) L ⊆ GCID(k;n, i′, i′′;m, j′, j′′) iff L ⊆ GCID(k;n, i′′, i′;m, j′′, j′).

In the following, we are building on earlier results concerning simulations of linear grammars. We summarize
these results in the following proposition.

Proposition 4.2 ([1, 5]). For any β ∈ {(3; 1, 1, 0; 1, 0, 0), (3; 1, 0, 1; 1, 0, 0), (3; 2, 1, 0; 1, 0, 0), (3; 2, 0, 1; 1, 0, 0)},
simple-deleting GCID systems of any size β can describe all linear languages. Moreover, for β ∈ {(3; 2, 1, 0;
1, 0, 0), (3; 2, 0, 1; 1, 0, 0)}, this is even possible with the control graph always being a tree.

GCID systems of size β (as mentioned in the above proposition) are not known to characterize RE. Unfor-
tunately, we were not able to describe even CF with GCID systems of these four sizes and this question is left
open to the reader.

To better explain how such a simulation might work, we show in Figures 2a and 3a how rules in the lin-
ear normal form p : X → aY , q : X → Y a and h : X → λ could be simulated using rules of the systems
GCIDSD(3; 1, 1, 0; 1, 0, 0) and GCIDSDT (3; 2, 1, 0; 1, 0, 0), respectively. For instance, a sentential form αXβ in
C1 would develop as follows when simulating an application of q rule from the table shown in Figure 2a.

(αXβ)1 ⇒ (αXqβ)3 ⇒ (αqβ)1 ⇒ (αqaβ)2 ⇒ (αqq′aβ)3

⇒ (αq′aβ)1 ⇒ (αq′Y aβ)2 ⇒ (αY aβ)1

It is also clear from the description of the working rules stated in Figure 2a that the underling control struc-
ture is not a tree; see Figure 2b. In fact, it is an open question if linear languages that can be obtained by
GCIDSDT (3; 1, 1, 0; 1, 0, 0).

On the other hand, a sentential form αXβ in C1 would develop as follows when simulating q rule from the
table shown in Figure 3a.

(αXβ)1 ⇒ (αXqβ)2 ⇒ (αqβ)1 ⇒ (αqaY β)3 ⇒ (αaY β)1

Clearly, the underlying (undirected simple graph) control structure of the simulating rules presented in Figure 3a
is a tree; see Figure 3b.

If we add two more components to the GCID systems stated above, then these (extended) GCID systems
are shown to describe L◦(LIN) and L∗(LIN) in [1, 6].
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Figure 3. How simple-deleting GCID systems with tree structure and of size (3; 2, 1, 0; 1, 0, 0)
could describe linear languages.

4.1. Describing the regular closure of the linear languages

Initially, our main objective was to find how much beyond LIN, GCID systems (of the four sizes stated in
Prop. 4.2) can lead us. However, we then succeeded to provide a general result by showing the following: If there
exist graph-controlled ins-del systems of ID size (n, i′, i′′;m, j′j′′) describing LIN, then these constructions can
be extended to graph-controlled ins-del systems of the same ID size at the expense of two more components to
describe Lreg(LIN).2

Theorem 4.3. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1 and for X ∈ {SD, SDT}, if
LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) was shown by a simple-deleting simulation, then Lreg(LIN) ⊆ GCIDX(t +
2;n, i′, i′′;m, j′, j′′) follows.

Proof. Let L ∈ Lreg(LIN) for some L ⊆ T ∗. By Proposition 2.4 (and the explanation that follows it), we can
assume that L is described by a context-free grammar G = (N,T, S, P ) that basically consists of a right-linear
grammar GR = (N0, N

′′, S, P0) and linear grammars Gi = (Ni, T, Si, Pi) for i ∈ [1 . . . k]. For technical reasons
that should become clear soon, we rather consider G′i = (N ′i , T, Si, P

′
i ), where N ′i = Ni ∪ {〈Si, A〉 | A ∈ N0}

and P ′i contains, besides all rules from Pi, rules of the form 〈Si, A〉 → w whenever Si → w ∈ Pi for some
w ∈ (Ni ∪ T )∗. This means that L(G′i) = L(Gi) (as the new nonterminals will never be used in terminating
derivations) and L((N ′i , T, 〈Si, A〉, P ′i )) = L(Gi) for any A ∈ N0.

Since LIN ⊆ GCIDSD(T )(t;n, i
′, i′′;m, j′, j′′), each G′i can be simulated by a simple-deleting GCID system

Πi = (t, Vi, T, {Si}, Hi, 1, 1, Ri) for 1 ≤ i ≤ k, each of size (t;n, i′, i′′;m, j′, j′′). We assume, without loss of
generality, that Vi ∩ Vj = T if 1 ≤ i < j ≤ k. Let us first consider the case i′ ≥ 1 and i′′ = 0. We construct a
graph-controlled ins-del system Π for G as follows3:

Π =
(
t+ 2, V, T, {SiA

′ | S → SiA ∈ P}, H ∪H ′, 1, 1, (R \ R̂) ∪R′ ∪R′′
)

, where

• V =

(
k⋃

i=1

(Vi ∪ {〈Si, A〉 | A ∈ N0})

)
∪N0 ∪ {A′ | A ∈ N0};

• H ′ ⊂
⋃

p∈P0

{rp(t+ 1).1, rp(t+ 1).2, rp(t+ 2).1};

• H =

k⋃
i=1

Hi; R =

k⋃
i=1

Ri; R̂ =

k⋃
i=1

{hi1.1 : (1, (λ,Xi, λ)del, 1)};

• R′ =

k⋃
i=0

{hi1.1 : (1, (λ,Xi, λ)del, t+ 1) | Xi → λ ∈ Pi};

2Notice that the simulations presented below differ from the ones presented in the conference version, because we found the
normal form for Lreg(LIN) employed in this paper easier to explain.

3There is one subtlety with the case when λ ∈ L(G): in that case, λ should be added as an axiom of Π.
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Figure 4. Control graph underlying the simulation of Lreg(LIN) as in Theorem 4.3.

• R′′ is the set with the following rules: for each p : A→ SiB ∈ P0, we add:

rp(t+ 1).1 : (t+ 1, (A′, 〈Si, B〉, λ)ins, t+ 2),
rp(t+ 1).2 : (t+ 1, (〈Si, B〉, B′, λ)ins, 1)
rp(t+ 2).1 : (t+ 2, (λ,A′, λ)del, t+ 1);

Further, rq(t+ 1).1 : (t+ 1, (λ,A′, λ)del, 1) for q : A→ λ ∈ P0.

Since Li = L(Gi) is generated by Πi, for 1 ≤ i ≤ k, the linear rules of Πi are simulated by rules of Ri in the
first t components. Also, there is no interference between rules of different systems Πi and Πj , since Vi ∩Vj = T
if 1 ≤ i < j ≤ k. Moreover, the simulation could start with any symbol 〈Si, A〉 instead of Si itself due to the
rules 〈Si, A〉 → w added when moving from Gi to G′i.

We start with the axiom SiA
′ for some rule S → SiA of GR. Now, a string w1 ∈ L(Gi) is produced by

simulating G′i in the first t components of the system Π. In this simulation of G′i, finally the terminating rule of
Li, namely hi.1.1, takes the string to component t+ 1. There, two things might happen: either, there is a rule
q : A→ λ in GR that we decide to simulate, then we apply rq(t+ 1).1 and move the terminal string w1 back to
C1; or, we choose to simulate a rule p : A→ SjB from GR. Then, we see the following derivation:

(w1A
′)t+1 ⇒ (w1A

′〈Sj , B〉)t+2 ⇒ (w1〈Sj , B〉)t+1 ⇒ (w1〈Sj , B〉B′)1

As 〈Sj , B〉 can play the same role as Sj in G′j , we can now produce a terminal word w2 ∈ L(Gj) by simulating
G′j within the first t components etc. By our description, it should be clear that all terminal words of G can be
derived by using Π.

Conversely, any derivation within Π can be split into phases, where each linear phase starts and ends in the
first component with a string that starts with a terminal string, followed by SiA

′ or 〈Si, A〉A′ for some A ∈ N0

in the beginning, and by some XivA
′ in the end of this phase, where v is some terminal string. Now, on applying

hi1.1, Xi gets deleted and the transition phase is initiated, moving a string starting with a terminal string and
ending with some A′ into C(t+ 1). Now, apart from the special case when A′ is going to be (correctly) deleted,
some string is moved back to C1 that satisfies the conditions expressed as the beginning of a linear phase. This
shows that every terminal string that can be generated by Π is also contained in L(G).

The case when i′ = 0 and i′′ ≥ 1 follows from Propositions 2.3 and 4.1.

Remark 4.4. In Theorem 4.3, suppose G is the underlying control graph for the simulating rules of LIN ⊆
GCID(t;n, i′, i′′;m, j′, j′′). Then the underlying control graph of Lreg(LIN) ⊆ GCID(t;n, i′, i′′;m, j′, j′′) is as
shown in Figure 4.

Table 3 shows how the construction of the previous proof works for the concrete case of L1 = {anbn | n ≥ 0}
and L2 = {cmdm | m ≥ 0} ∈ LIN. If the reader tries to generate, say, abaabbcdcd, (s)he will understand how the
phases work.

Corollary 4.5. Combining the results of Proposition 4.2 and Theorem 4.3, we have:

• Lreg(LIN) ( GCIDSDT (5; 2, 1, 0; 1, 0, 0) ∩GCIDSDT (5; 2, 0, 1; 1, 0, 0).
• Lreg(LIN ( GCIDSD(5; 1, 1, 0; 1, 0, 0) ∩GCIDSD(5; 1, 0, 1; 1, 0, 0).
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Table 3. GCID(5; 2, 1, 0; 1, 0, 0) describing languages of {L∗1L∗2 : L1, L2 ∈ LIN} ⊆ Lreg(LIN)
according to Theorem 4.3.

Phase Component C1 Component C2 Component C3

p1 p11.1 : (1, (S1, p1, λ)ins, 2) p12.1 : (2, (λ, S1, λ)del, 1) p13.1 : (3, (λ, p1, λ)del, 1)
p11.2 : (1, (p1, aB, λ)ins, 3)

q1 q11.1 : (1, (B, q1, λ)ins, 2) q12.1 : (2, (λ,B, λ)del, 1) q13.1 : (3, (λ, q1, λ)del, 1)
q11.2 : (1, (q1, S1b, λ)ins, 3)

p2 p21.1 : (1, (S2, p2, λ)ins, 2) p22.1 : (2, (λ, S2, λ)del, 1) p23.1 : (3, (λ, p2, λ)del, 1)
p21.2 : (1, (p2, cD, λ)ins, 3)

q2 q21.1 : (1, (D, q2, λ)ins, 2) q22.1 : (2, (λ,D, λ)del, 1) q23.1 : (3, (λ, q2, λ)del, 1)
q21.2 : (1, (q2, S2d, λ)ins, 3)

h1 h11.1 : (1, (λ, S1, λ)del, 4)

h2 h21.1 : (1, (λ, S2, λ)del, 4)

Phase Component C4 Component C5

r1 r14.1 : (4, (S′, 〈S1, S〉, λ)ins, 5) r15.1 : (5, (λ, S′, λ)del, 4)
r14.2 : (4, (〈S1, S〉, S′, λ)ins, 1)

r2 r24.1 : (4, (S′, 〈S2, A〉, λ)ins, 5) r25.1 : (5, (λ, S′, λ)del, 4)
r24.2 : (4, (〈S2, A〉, A′, λ)ins, 1)

r3 r34.1 : (4, (A′, 〈S2, A〉, λ)ins, 5) r35.1 : (5, (λ,A′, λ)del, 4)
r34.2 : (4, (〈S2, A〉, A′, λ)ins, 1)

r4 r44.1 : (4, (λ, S′, λ)del, 1)

r5 r54.1 : (4, (λ,A′, λ)del, 1)

The strictness of the two subset relations stated above follow from Examples 3.1 and 3.2, respectively.

5. Reducing components for some super-linear classes

In this section, we show that with GCID systems of ID size s and t + 1 components we can describe
L∪(L2

∗(LIN)), based on simulation results for LIN with GCID systems of ID size s and t components. According
to Proposition 2.1, L2

∗(LIN) = LIN2 ∪ (L ∪ LR) ∪ L. We first provide independent descriptions of the three
stated subsets and then describe L2

∗(LIN) by GCID systems. Using Remark 2.9, we get the desired result.

Lemma 5.1. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1 and X ∈ {SD, SDT},
if LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) was shown by a simple-deleting simulation, then LIN2 ⊆ GCIDX(t +
1;n, i′, i′′;m, j′, j′′).

Proof. Let G1 = (N1, T, S1, P1) and G2 = (N2, T, S2, P2) be linear grammars of L1 and L2, respectively, with
N1 ∩ N2 = ∅. We can assume that the rules are of the forms pi : Xi → aYi, qi : Xi → Yia and hi : Xi → λ,
with Xi, Yi ∈ Ni for = 1, 2. Since LIN ⊆ GCIDSD(t;n, i′, i′′;m, j′, j′′), each of the rule types pi, qi, hi can be
simulated by rules of a simple-deleting GCID system Πi = (t, Vi, T, {Si}, Hi, 1, 1, Ri) for i = 1, 2, each of size
(t;n, i′, i′′;m, j′, j′′). The hi rule type is simulated by the GCID rules hi1.1 : (1, (λ,Xi, λ)del, 1). First, consider
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the case when i′ ≥ 1 and i′′ = 0. We construct a graph-controlled ins-del system

Π = (t+ 1, V1 ∪ V2 ∪ {S′2}, T, {λ, S1S
′
2}, H1 ∪H2 ∪ {r1.1, r(t+ 1).1}, 1, 1, R)

for L(G1)L(G2), with R = ((R1 ∪R2) \ {h11.1 : (1, (λ,X1, λ)del, 1)})∪R′ where R′ is the set with the following
three rules: (i) h11.1 : (1, (λ,X1, λ)del, t+ 1), (ii) r(t+ 1).1 : (t+ 1, (S′2, S2, λ)ins, 1), (iii) r1.1 : (1, (λ, S′2, λ)del, 1).

The linear rules are simulated in the first t components, since L1 and L2 are generated by Π1 and Π2,
respectively. There is no interference of the rules in R1, R2, since N1 ∩N2 = ∅ and the GCID systems Π1, Π2

handle terminals properly.
We start with the axiom S1S

′
2. From S1 using R1, a string w1 ∈ L1 is produced first and the simulation of

the linear rules in G1 ends with the application of h11.1 : (1, (λ,X1, λ)del, t + 1) ∈ R′ which leads to w1S
′
2 in

C(t+ 1). The only rule in C(t+ 1) is applied, which inserts S2 after S′2 and moves back to C1. Starting with
w1S

′
2S2 from C1, w2 ∈ L(G2) is generated, reaching to the configuration (w1S

′
2w2)1, where S′2 is deleted by

r1.1. Note that, in C1, the rule r1.1 : (1, (λ, S′2, λ)del, 1) can be applied at any point of the derivation. If this
rule is applied before applying h11.1 (i.e., before producing w1 ∈ L(G1)), then when h11.1 is applied, there will
be no S′2 present in the string at C(t+ 1) and the derivation is stuck in C(t+ 1). Recall that C(t+ 1) is not the
target component. Hence by the preceding discussion, any string derivable by Π belongs to L1L2. Obviously,
the resulting GCID system is returning and simple-deleting. Also, if Π1 and Π2 are tree-structured, then Π is
tree-structured, as well. Since LIN2 is closed under reversal; see Proposition 2.2, the case when i′ = 0, i′′ ≥ 1
follows from Proposition 4.1.

Combining the results of Remark 2.9 and Lemma 5.1, we have the following.

Corollary 5.2. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1 and X ∈ {SD, SDT},
if LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) was shown by a simple-deleting simulation, then 2-LIN ⊆ GCIDX(t +
1;n, i′, i′′;m, j′, j′′) follows.

Lemma 5.3. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1 and X ∈ {SD, SDT}, if
LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) is shown by a simple-deleting simulation, then L ∪ LR ⊆ GCIDX(t +
1;n, i′, i′′;m, j′, j′′) can be concluded.

Proof. Let G1 = (N1, T, S1, P1) and G2 = (N2, T, S2, P2) be linear grammars of L1 and L2, respectively, with
N1 ∩N2 = ∅, where the rules are of the forms pi : Xi → aYi, qi : Xi → Yia and hi : Xi → λ, with Xi, Yi ∈ Ni

for = 1, 2. Notice that these assumptions are the basis of Proposition 2.5, so that we can take over the grammar
construction G for L(G1)∗L(G2) and consider this as a basis for the GCID system that we are going to build
to describe L(G) = L(G1)∗L(G2).

Since LIN ⊆ GCID(t;n, i′, i′′;m, j′, j′′), for i = 1, 2, each of the rule types pi, qi, hi can be simulated by rules
of a simple-deleting GCID system Πi of size (t;n, i′, i′′;m, j′, j′′). Let Πi = (t, Vi, T, {Si}, Hi, 1, 1, Ri). First,
consider the case when i′ ≥ 1, i′′ = 0. We now show the inclusion L ⊆ GCIDSD(t + 1;n, i′, i′′;m, j′, j′′). We
construct a graph-controlled ins-del system for L(G) as follows.

Π = (t+ 1, V1 ∪ V2 ∪ {S′}, T, {λ, S′S2}, H1 ∪H2 ∪ {r(t+ 1).1, r(t+ 1).2}, 1, 1, R)

with R = ((R1 ∪ R2) \ {h11.1 : (1, (λ,X1, λ)del, 1), h21.1 : (1, (λ,X2, λ)del, 1)}) ∪ R′, where R′ is the set of the
following rules.

h11.1 : (1, (λ,X1, λ)del, t+ 1) h21.1 : (1, (λ,X2, λ)del, t+ 1)
r(t+ 1).1 : (t+ 1, (S′, S1, λ)ins, 1) r(t+ 1).2 : (t+ 1, (λ, S′, λ)del, 1)

The linear rules are simulated in the first t components and there is no interference of the rules of R1 and
R2, since N1 ∩N2 = ∅ and the GCID systems Π1, Π2 handle terminals properly. We start with the axiom S′S2

(notice that this corresponds to the rule S → S′S2 of grammar G), which produces w2 ∈ L2 and the simulation
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ends with the application of h21.1 ∈ R′ which leads the derivation to C(t + 1). The rules in C(t + 1) initiate
the simulation of the rules of G1 by inserting S1 after S′ and thereafter continuing with S′S1w2 from C1, the
configuration (S′w1w2)t+1 is reached, with w1 ∈ L1 and w2 ∈ L2. Now if r(t+ 1).1 is applied (which corresponds
to applying the rule S′ → S′S1 in G), the simulation of G1 is restarted, and after generating w1 ∈ L(G1) for
any desired number of times, the whole derivation stops. With this observation, we conclude that Π generates
L(G) = (L(G1))∗L(G2) ∈ L . Obviously, the resulting GCID system Π is returning as well as tree-structured if
Π1 and Π2 are.

Consider the case when i′ = 1, but we want to prove the inclusion for LR. We aim at constructing a GCID
system Π ′ for L2L

∗
1. The simulation is identical to the one just presented except for the axiom, which is S2S

′

in this case.4

The case when i′ = 0 and i′′ ≥ 1 follows from the fact that L ∪LR is closed under reversal; see Propositions 2.2
and 4.1.

Combining the results of Remark 2.9 and Lemma 5.3, we have the following.

Corollary 5.4. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1 and X ∈ {SD, SDT}, if
LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) is shown by a simple-deleting simulation, then L∪(L ∪ LR) ⊆ GCIDX(t +
1;n, i′, i′′;m, j′, j′′).

Lemma 5.5. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1 and X ∈ {SD, SDT}, if LIN ⊆
GCIDX(t;n, i′, i′′;m, j′, j′′) is shown by a simple-deleting simulation, then L ⊆ GCIDX(t+ 1;n, i′, i′′;m, j′, j′′).

Proof. We recall that L = {L∗1L∗2 | L1, L2 ∈ LIN}. For i = 1, 2, let Gi = (Ni, T, Si, Pi) be a linear grammar
of Li and let us assume that N1 ∩ N2 = ∅. Let the rules of Pi (i = 1, 2) be of the forms pi : Xi → aYi,
qi : Xi → Yia and hi : Xi → λ, with Xi, Yi ∈ Ni. Since LIN ⊆ GCIDSD(t;n, i′, i′′;m, j′, j′′), each of the rule
types pi, qi, hi, can be simulated by rules of a simple-deleting GCID system Πi = (t, Vi, T, {Si}, Hi, 1, 1, Ri),
each of size (t;n, i′, i′′;m, j′, j′′), that can handle terminals properly. The rule type hi is simulated by the GCID
rules hi1.1 : (1, (λ,Xi, λ)del, 1). First, consider the case when i′ ≥ 1 and i′′ = 0. We construct a graph-controlled
ins-del system Π = (t+ 1, V1 ∪ V2 ∪ {S′1, S′2}, T, {S′1S′2}, H ∪ {r1(t+ 1).1, r2(t+ 1).1, s1(t+ 1).1, s2(t+ 1).1}, t+
1, t+ 1, (R \ R̂) ∪R′ ∪R′′) such that L(Π) = L∗1L

∗
2, where

• R̂ = {h11.1 : (1, (λ,X1, λ)del, 1), h21.1 : (1, (λ,X2, λ)del, 1)};
• R′ = {h11.1 : (1, (λ,X1, λ)del, t+ 1), h21.1 : (1, (λ,X2, λ)del, t+ 1)};
• R′′ is the set formed by the following four rules:

r1(t+ 1).1 : (t+ 1, (S′1, S1, λ)ins, 1) r2(t+ 1).1 : (t+ 1, (S′2, S2, λ)ins, 1)
s1(t+ 1).1 : (t+ 1, (λ, S′1, λ)del, t+ 1) s2(t+ 1).1 : (t+ 1, (λ, S′2, λ)del, t+ 1)

Notice that this construction parallels the characterization of L stated in Proposition 2.6.
The linear rules of Gi, i ∈ {1, 2}, are simulated in the components C1, . . . , Ct, since L1, L2 ∈

GCID(t;n, i′, i′′;m, j′, j′′). There is no interference of the rules among R1 and R2 since N1 ∩ N2 = ∅. The
initial and as well the final component is C(t + 1). Starting with S′1S

′
2 in C(t + 1), any rule in R′′ can be

applied. Assume that r1(t + 1).1 is applied. This will insert S1 after S′1, and the resultant string S′1S1S
′
2 is

sent to C1. In C1, the start symbol S1 of G1 will start simulating the rules for L1 and the simulation ends by
applying the rule h11.1 of R′. This will produce a configuration of the form (S′1w1S

′
2)t+1, with w1 ∈ L1. Note

that after the rule h11.1 is applied, none of variables of G1 will be present in the string and the string is back
to C(t+ 1). Repeated applications of these rules r1(t+ 1).1, . . . , h11.1, will produce the Kleene closure part of
L1. Assuming that r2(t + 1).1 is applied at any point of time in the derivation when the string is available in
C(t+ 1), S2, the start symbol of G2, is introduced to the right of S′2 and the string is sent to C1. In C1, S2 would
start simulating the rules for L2 and the simulation ends by applying the rule h21.1 of R′. This thus generates

4In [7], the reader can also find a corresponding grammatical characterization of LR.
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Table 4. GCID(4; 2, 1, 0; 1, 0, 0) describing languages of {L∗1L∗2 : L1, L2 ∈ LIN} according to
Lemma 5.5.

Phase Component C1 Component C2 Component C3

p1 p11.1 : (1, (S1, p1, λ)ins, 2) p12.1 : (2, (λ, S1, λ)del, 1) p13.1 : (3, (λ, p1, λ)del, 1)
p11.2 : (1, (p1, aB, λ)ins, 3)

q1 q11.1 : (1, (B, q1, λ)ins, 2) q12.1 : (2, (λ,B, λ)del, 1) q13.1 : (3, (λ, q1, λ)del, 1)
q11.2 : (1, (q1, S1b, λ)ins, 3)

p2 p21.1 : (1, (S2, p2, λ)ins, 2) p22.1 : (2, (λ, S2, λ)del, 1) p23.1 : (3, (λ, p2, λ)del, 1)
p21.2 : (1, (p2, cD, λ)ins, 3)

q2 q21.1 : (1, (D, q2, λ)ins, 2) q22.1 : (2, (λ,D, λ)del, 1) q23.1 : (3, (λ, q2, λ)del, 1)
q21.2 : (1, (q2, S2d, λ)ins, 3)

h1 h11.1 : (1, (λ, S1, λ)del, 4)

h2 h21.1 : (1, (λ, S2, λ)del, 4)

Phase Component C4

r1 r14.1 : (4, (S′1, S1, λ)ins, 1)

r2 r24.1 : (4, (S′2, S2, λ)ins, 1)

s1 s14.1 : (4, (λ, S′1, λ)del, 4)

s2 s24.1 : (4, (λ, S′2, λ)del, 4)

a string w2 of L2 after S′2. Repeated applications of these rules r2(t+ 1).1, . . . , h21.1, will produce the Kleene
closure part of L2. In C(t+ 1), at any point of time, S1(t+ 1).1 (or S2(t+ 1).1) is applied, then it will delete
S′1 (correspondingly, S′2), thus the production of strings from L1 (correspondingly, from L2) is stopped. If both
these rules si(t+ 1).1, i ∈ {1, 2}, are applied in the initial stage itself, then λ is generated. With these details,
it is easy to verify that the rules of Π generate L∗1L

∗
2. As claimed, Π has t+ 1 components. Just by re-labelling

the components, the resulting GCID system can be made returning and tree-structured if Π1 and Π2 are.
The case when i′ = 0 and i′′ ≥ 1 follows from Propositions 2.3 and 4.1.

Table 4 shows how the construction of the previous proof works for the concrete case of L1 = {anbn | n ≥ 0}
and L2 = {cndn | n ≥ 0} ∈ LIN. If the reader tries to generate, say, abaabbcdcd, (s)he will understand how the
phases work. Combining the results of Remark 2.9 and Lemma 5.5, we have the following.

Corollary 5.6. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1 and X ∈ {SD, SDT}, if
LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) was shown by a simple-deleting simulation, then it is true that L∪(L) ⊆
GCIDX(t+ 1;n, i′, i′′;m, j′, j′′).

Remark 5.7. The proof of Lemma 5.5 can be extended to describe the language class L′ =
⋃

k≥1{L∗1L∗2 . . . L∗k :
Li ∈ LIN for 1 ≤ i ≤ k}. Consider the GCID system Π ′ as in Lemma 5.5 with alphabet and label set extended
from 2 to k. Let the axiom be #1#2 . . .#k. The rules of R̂, R′ ∈ Π3 are similarly extended to k rules and there
are 2k rules in R′′. This shows that also L∗1L

∗
2 . . . L

∗
k ∈ GCID(t + 1;n, i′, i′′;m, j′, j′′) under the assumptions

stated therein. In particular, L∗1L
∗
2L
∗
3 can be generated by GCID(t + 1;n, i′, i′′;m, j′, j′′) whenever Li can be

generated by GCID(t;n, i′, i′′;m, j′, j′′) for each i = 1, 2, 3.

Remark 5.8. To highlight how the reduction in the number of components happened, we invite the reader to
observe the difference in the simulating rules that generate L∗1L

∗
2 according to Theorem 4.3 and Lemma 5.5,

stated in Tables 3 and 4 respectively. We notice that in Theorem 4.3, strings of L∗1 and L∗2 are generated one
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after the other. However in Lemma 5.5, strings of L∗1 and L∗2 are generated simultaneously in an independent
manner.

Combining the results of Lemmas 5.1, 5.3 and 5.5, we have the following main result that was claimed at the
start of this section.

Theorem 5.9. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1 and X ∈ {SD, SDT}, if
LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) was shown by a simple-deleting simulation, then L2

∗(LIN) ⊆ GCIDX(t +
1;n, i′, i′′;m, j′, j′′).

Combining Remark 2.9 with Theorem 5.9, we have the following.

Corollary 5.10. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1 and X ∈ {SD, SDT}, if
LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) was shown by a simple-deleting simulation, then L∪(L2

∗(LIN)) ⊆ GCIDX(t+
1;n, i′, i′′;m, j′, j′′).

Corollary 5.11. Combining Proposition 4.2 and Corollary 5.10, we conclude that:

• L∪(L2
∗(LIN)) ( GCIDSDT (4; 2, 1, 0; 1, 0, 0) ∩GCIDSD(4; 2, 0, 1; 1, 0, 0).

• L∪(L2
∗(LIN)) ( GCIDSD(4; 1, 1, 0; 1, 0, 0) ∩GCIDSD(4; 1, 0, 1; 1, 0, 0).

The strictness of these two subset relations follow from Remark 5.7and (item (2) of) Proposition 2.1, as {akbk |
k ≥ 0}∗{ckdk | k ≥ 0}∗{ekfk | k ≥ 0}∗ can serve as a witness language.

6. Summary and future challenges

In this paper, we simulate the rewriting grammars of certain super-linear languages (languages between LIN
and CF) using GCID systems of sizes that are not known to describe RE (not even CF). Our main technical
contribution is to describe these simulations in quite a general fashion, so that we can save giving similar
simulations for each specific case of sizes of the systems. Specifically, we have proved that if a graph-controlled
ins-del system of ID size s with t components can describe LIN, then there is a graph-controlled ins-del system
of ID size s with t + 2 components that will describe Lreg(LIN), the regular closure of LIN. We also proved
that we do not need two but only one additional component to describe L∪(L2

∗(LIN)), a subset of Lreg(LIN).
In fact, the class L∪(L2

∗(LIN)) seems to have been never considered before. We feel that for simulation results
as the ones presented in this paper, this class might be an interesting family of languages to look at. These
simulation results might also inspire further language-theoretic investigations of the other (new) super-linear
language classes introduced in this paper.

One natural challenge is to see with which resources we can still describe all context-free languages, not only
super-linear languages as endeavored in this paper.

A second challenge would be to prove corresponding upper bounds, i.e., we should find (classical) grammar
families (not describing RE already) that can simulate certain (graph-controlled) ins-del systems with a given
size bound, like the ones mentioned in this paper. This would then also rule out RE results for these systems.
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[10] G. Horváth and B. Nagy, Pumping lemmas for linear and nonlinear context-free languages. Acta Univ. Sapientiae Inform. 2
(2010) 194–209.

[11] M. Kutrib and A. Malcher, Finite turns and the regular closure of linear context-free languages. Discret. Appl. Math. 155
(2007) 2152–2164.
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