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Abstract

The second author introduced with I. Törmä a two-player word-building game [Playing with
Subshifts, Fund. Inform. 132 (2014), 131–152]. The game has a predetermined (possibly finite)
choice sequence α1, α2, . . . of integers such that on round n the player A chooses a subset Sn

of size αn of some fixed finite alphabet and the player B picks a letter from the set Sn. The
outcome is determined by whether the word obtained by concatenating the letters B picked
lies in a prescribed target set X (a win for player A) or not (a win for player B). Typically, we
consider X to be a subshift. The winning shift W(X) of a subshift X is defined as the set of
choice sequences for which A has a winning strategy when the target set is the language of
X. The winning shift W(X) mirrors some properties of X. For instance, W(X) and X have the
same entropy. Virtually nothing is known about the structure of the winning shifts of subshifts
common in combinatorics on words. In this paper, we study the winning shifts of subshifts
generated by marked uniform substitutions, and show that these winning shifts, viewed as
subshifts, also have a substitutive structure. Particularly, we give an explicit description of the
winning shift for the generalized Thue-Morse substitutions. It is known that W(X) and X have
the same factor complexity. As an example application, we exploit this connection to give a
simple derivation of the first difference and factor complexity functions of subshifts generated
by marked substitutions. We describe these functions in particular detail for the generalized
Thue-Morse substitutions.

Keywords: two-player game, winning shift, marked substitution, factor complexity, generalized Thue-

Morse word

1 Introduction

In the paper [15], the second author introduced with I. Törmä a two-player word-building game.
The two players, Alice and Bob, agree on a finite alphabet S, a target set X of words over S, game
length n ∈ N ∪ {N}, and a choice sequence α1α2 · · · αn (a word) of integers in {1, 2, . . . , |S|}n. On
the round j of the game, 1 ≤ j ≤ n, Alice first chooses a subset Sj of S of size αj and then Bob
picks a letter aj from the subset Sj. During the game, Alice and Bob thus together build the word
a1a2 · · · an (finite or infinite). If this built word is in the target set X, then Alice wins, otherwise
Bob does. In other words, Alice aims to build a valid word of X while her adversary Bob attempts
to introduce a forbidden word.

In studying games of this sort, it would be typical to fix a choice sequence and see what
conditions on X guarantee the existence of a winning strategy for one of the players. The work of
[15] adopts the opposite point of view: fix a set X and see for which choice sequences Alice has a
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winning strategy. This set of choice sequences, dubbed as the winning set W(X) of X, turns out
to be a very interesting object. First of all, if X is a subshift, then W(X), now called the winning
shift of X, is also a subshift, and the set of factors of W(X) of length k is exactly the winning set
of factors of X of length k. Actually the winning set W(X) inherits many properties of X. For
instance, if X is a regular language, so is W(X), and if X computable, then so is W(X). The most
interesting result, which sparked the research in this paper, is the fact that the sets X and W(X)

have the same cardinality so, for a subshift X, the winning shift W(X) has the same entropy and
factor complexity function as X. Now the winning set W(X) is in a sense simpler than X because
it is downward closed: if any letter of a choice sequence in W(X) is downgraded to a smaller
letter, then the resulting word is still in W(X). The winning set W(X) is thus a rearrangement of
X to a downward closed set. Indeed, the winning set can be significantly simpler: for instance,
the winning set of a Sturmian subshift is the subshift over {1, 2} whose words contain at most
one letter 2.

Descriptions of the winning shifts for particular subshifts remain largely unknown. In this
work, we provide such descriptions for the winning shifts of subshifts generated by marked
uniform substitutions. A marked substitution is a substitution such that all images of letters
begin with distinct letters and end with distinct letters. We prove that all long enough choice
sequences in such a winning shift are obtained from a few core choice sequences by substitution
(Theorem 4.9). Let us make this more precise. Let τ : S∗ → S∗ be a marked uniform substitution
of length M, and let w be a short choice sequence in the language of the winning shift W(τ) of
the subshift generated by τ. Write w = ⋄ua for letters ⋄ and a. Then zσ(u)a is in the language of
W(τ); here σ is the substitution defined by σ(k) = k1M−1 and the word z is in the winning set of
certain suffixes of the τ-images of a subset of S of size ⋄. All long enough choice sequences in the
language of W(τ) are essentially obtained in this way. In general, the short choice sequences and
possible words z can be very complex and they elude any simple description, but they can be
efficiently computed. This together with Theorem 4.9 allows us to rapidly compute the language
of the winning shift W(τ). If we make additional assumptions on τ, then the situation can be
simplified. For instance, if τ is permutive (letters at a fixed position of the τ-images form a
permutation of the alphabet S), then z is simply of the form ⋄1i for some i such that 0 ≤ i < M

(Proposition 4.10). This class of permutive uniform substitutions includes the generalized Thue-
Morse substitutions. For them, we compute all involved parameters and give full description of
the whole winning shift (Section 5).

The structure of the winning shift of a marked uniform substitution is quite easy to compre-
hend, and we apply our results to give a simple derivation of the first difference function of such
a substitution (Theorem 4.12). This function can in turn be used to derive the factor complexity
function. A. Frid has derived these functions previously with other methods [7]; see also [12].
Our arguments and Frid’s arguments, which by the way apply in a more general setting, in the
end reduce to the same fundamental observations, but the high-level view is completely different.
We prefer gaming and feel that analyzing Alice and Bob’s match is fresh and, more importantly,
fun. The aim of this paper is to describe the winning shift; the connection to factor complexity is
more of a motive for the study, a curiosity. We do, however, derive the factor complexity func-
tion in full detail for the generalized Thue-Morse words, just as we describe their winning shifts
completely (Section 5). These complexity functions have been derived in full generality previ-
ously by Š. Starosta in [14] using an intriguing connection to so-called G-rich words. Results in
specialized cases were known before Starosta, see [5, 6, 16]. A short version of this paper with
results applying only to the generalized Thue-Morse words was presented in the proceedings of
RuFiDiM IV [13].

The paper is organized as follows. In the next section, we give the necessary definitions and
results needed. After this in Section 3, we outline the structure of the winning shift of the Thue-
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Morse substitution and use it as a motivating example to introduce our ideas. Section 4 contains
the main results. We show that generally short choice sequences can be substituted to obtain
longer choice sequences, but the additional assumption of markedness is needed for desubsti-
tution. We end Section 4 by deriving a recurrence for the first difference function of a marked
uniform substitution. The final section is devoted to the generalized Thue-Morse substitutions.
We completely describe their winning shifts and, as an application, derive formulas for their
factor complexity functions.

2 Notation and Preliminary Results

2.1 Standard Definitions

Here we briefly define word-combinatorial notions; further details are found in, e.g., [10]. An
alphabet S is a nonempty finite set of letters, and we denote by S∗ the set of finite words over S.
The set of words over S of length n is denoted by Sn, and by S≤n we denote the set of words over
S with length at most n. Infinite words over S are sequences in SN. The length of a finite word
w is denoted by |w|, and the empty word ε is the unique word of length 0. Suppose that w is a
word (finite or infinite) such that w = uzv for some words u, z, and v. Then we say that z is a
factor of w. If u = ε (respectively v = ε), then we call the factor z a prefix (respectively suffix) of
w. If u = ε and z 6= w, then z is a proper prefix of w; similarly we define a proper suffix of w.
We say that z occurs at position |u| of w; the position |u| is an occurrence of the factor z. Thus we
index letters from 0. The word ∂i,j(w), where i + j ≤ |w|, is obtained from the word w by deleting
i letters from the beginning and j letters from the end. An infinite word is ultimately periodic if
it is of the form uvvv · · · ; otherwise it is aperiodic.

A subshift X is a subset of SN defined by some set F of forbidden words:

X = {w ∈ SN : no word of F occurs in w}.

We denote by LX(n) the set of words of length n occurring in words of X and define the language

L(X) of X as the set
⋃

n∈N LX(n). The subshift X is uniquely defined by its language. The
function f defined by letting f (n) = |LX(n)| is called the factor complexity function of X (we
assume that X is known from context), and it counts the number of words of length n in the
language of X. We define the first difference function ∆ by setting ∆(n) = f (n) − f (n − 1) and
∆(0) = 1. This function measures the growth of the factor complexity function.

2.2 Substitutions

A function τ : S∗ → S∗ is a called a substitution if τ(uv) = τ(u)τ(v) for all u, v ∈ S∗. In this paper,
we typically select S = {0, 1, . . . , |S| − 1}. If τ(s) has the same length for every s ∈ S, then we
say that τ is uniform. In this paper, we assume that for uniform substitutions we have |τ(s)| ≥ 2
for all s ∈ S. We call the images of letters, the words τ(s), τ-images. If τ(s) begins with s and
limn→∞|τn(s)| = ∞ for a letter s, then the infinite word obtained by repeatedly applying τ to s,
denoted by τω(s), is a fixed point of the substitution τ. Consider the language L defined as the set

⋃

s∈S

{w ∈ S∗ : w occurs in τn(s) for some n ≥ 0}

consisting of the factors of the words obtainable by applying τ repeatedly to the letters of S. Let

L(τ) = {w ∈ L : there exists arbitrarily long words u and v such that uwv ∈ L}.
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The subshift generated by τ is simply the subshift with the language L(τ) (i.e., we forbid the
complement of L(τ)). The substitution τ is primitive if there is an integer n such that τn(s) con-
tains all letters of S for every s ∈ S. The substitution τ is aperiodic if the subshift generated by τ

does not contain ultimately periodic infinite words. We assume that all substitutions considered
are aperiodic.

We call a substitution τ left-marked if all of its τ-images begin with distinct letters. In other
words, there exists a permutation π : S → S such that τ(k) = π(k)wk for k ∈ S. Analogously
we define right-marked substitutions. If a substitution is left-marked and right-marked, then it is
simply called a marked substitution. Observe also that marked substitutions have an obvious but
important property: if a single letter of a τ-image is changed, then the resulting word is no longer
a valid τ-image. A substitution is permutive if there exists permutations π1, π2, . . ., πM from S

to S such that τ(k) = π1(k)π2(k) · · ·πM(k) for k ∈ S. A permutive substitution is uniform and
marked.

We say that a word w in L(τ) admits an interpretation (a0 · · · an+1, i, j) for letters a0, . . ., an+1
by τ if w = ∂i,j(τ(a0 · · · an+1)), 0 ≤ i < |τ(a0)|, 0 ≤ j < |τ(an+1)|, and a0 · · · an+1 ∈ L(τ). The
word a0 · · · an+1 is called an ancestor of the word w. We say that (u1, u2) is a synchronization point

of w (for τ) if w = u1u2 and whenever v1wv2 = τ(z) for some z ∈ L(τ) and some words v1
and v2, then v1u1 = τ(t1) and u2v2 = τ(t2) for some words t1 and t2 such that z = t1t2. We
say that τ has synchronization delay L if every word in L(τ) of length at least L has at least one
synchronization point and L is minimal. Observe that if τ is marked, then all words in L(τ)

of length at least L have a unique ancestor. We assume that all substitutions considered in this
paper have a synchronization delay. It follows from a theorem of Mossé [11, Corollaire 3.2.] that
the synchronization delay of a uniform, primitive, and aperiodic substitution always exists.1

Let τ be a uniform substitution of length M with synchronization delay L. Let w in L(τ)
be a word such that |w| ≥ L. Suppose that w has an ancestor z, so that w = ∂i,j(τ(z)) with
0 ≤ i, j < M. While w might have several ancestors, the uniformity of τ and the fact that w has
at least one synchronization point ensure that the numbers i and j are independent of the chosen
ancestor z. In fact, the positions i and j mark a synchronization point of w. All in all, the number i

uniquely identifies the positions of w where the τ-images of the letters of any ancestor of w begin
at, and we say that w has decomposition i mod M.

2.3 Word Games

Next we define precisely the word game in which two players, Alice and Bob, build a finite or
infinite word. A word game is a quadruple (S, n, X, α), where S is an alphabet, n ∈ N ∪ {N},
the target set X is a subset of Sn, and the choice sequence α is a word of length n (an infinite word
if n = N) over the alphabet {1, 2, . . . , |S|}. We may allow the target set X to contain words of
distinct lengths by using X ∩ Sn in place of X; this will always be clear from context.

Denote by G the word game (S, n, X, α) with n ∈ N, and write α = α1 · · · αn for letters αi.
During the round i, 1 ≤ i ≤ n, of this game, first Alice chooses a subset Si of S of size αi. Then
Bob picks a letter ai from the set Si. After n rounds, Alice and Bob have together built a word
a1a2 · · · an. If a1a2 · · · an ∈ X, then Alice wins the game G and otherwise Bob does. An example
is provided at the beginning of Section 3, and more examples are found in [15]. The notions
presented in this paragraph extend to the case n = N in a natural way.

Alice’s strategy for G is a function s : S≤i → 2S that specifies which subset of size αi+1 she
should choose next given the word of length i constructed so far. Similarly we define Bob’s
strategy as a partial function s : S≤i × 2S → S specifying which letter Bob should pick given the
word constructed so far and the subset chosen by Alice. Let sA and sB respectively be Alice’s

1Mossé’s Theorem applies to any primitive and aperiodic substitution.
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strategy and Bob’s strategy for the game G. The play p(G, sA, sB) of the strategy pair (sA, sB) is
the word a1a2 · · · an defined inductively by ai+1 = sB(a1 · · · ai, sA(a1 · · · ai)) with a1 · · · a0 = ε

(if n = N, then the play a1a2 · · · is simply infinite). We say that Alice’s strategy s is winning if
p(G, s, sB) ∈ X for all Bob’s strategies sB (Alice wins no matter how Bob plays). Analogously
Bob’s strategy s is winning if p(G, sA, s) /∈ X for all Alice’s strategies sA. If n ∈ N or X is a closed
set in the product topology of SN (in particular, if X is a subshift), then a winning strategy always
exists for one of the players [8]. In this paper, we consider Bob’s strategies only indirectly. Thus
whenever we talk about a winning strategy we mean that it is Alice’s winning strategy. Similarly
by a winning play we mean a play by a strategy pair (sA, sB) where sA is Alice’s winning strategy.

As mentioned in the introduction, we are interested in the choice sequences for which Alice
has a winning strategy. Given a subset X of Sn, where n ∈ N ∪ {N}, we define the winning set

W(X) of X as the set

{α ∈ {1, . . . , |S|}n : Alice has a winning strategy for the word game (S, n, X, α)}.

Notice that in general Alice has several winning strategies for a choice sequence in W(X) We
often omit the alphabet S, it will be clear from the context. For a language X ⊆ S∗, we set

W(X) =
⋃

n∈N

W(X ∩ Sn)

and call also this set the winning set of X. If n = N and X is a subshift, then we call W(X) the
winning shift of X; if the subshift X is generated by a substitution τ, then we denote its winning
shift by W(τ). Indeed, in [15, Proposition 3.4], the following result was obtained.

Proposition 2.1. If X is a subshift, then W(X) is a subshift and L(W(X)) = W(L(X)).

We abuse notation and write W(X) for L(W(X)), it is always clear from context whether we
consider finite words or infinite words. In addition, we have the following observation.

Lemma 2.2. Let X and Y be sets containing words of equal length. If X ⊆ Y, then W(X) ⊆ W(Y).

Proof. Alice’s winning strategy for a word game with target set X and choice sequence in W(X)
is sufficient as it is for her to win in the game with the same choice sequence and target set Y.

We endow the alphabet {1, . . . , |S|} with the natural order 1 < 2 < . . . < |S|. Suppose
that u and v are words over this alphabet (finite or infinite), and write u = u0 · · · un−1 and v =
v0 · · · vm−1 for letters ui, vi. Then we write u ≤ v if and only if n = m and ui ≤ vi for i =

0, . . . , n − 1. The winning set W(X) is downward closed with respect to this partial ordering: if
u ≤ v and v ∈ W(X), then u ∈ W(X). This is simply because downgrading a letter from the choice
sequence only makes Bob’s chances of winning slimmer.

Observe that the winning strategies for finite choice sequences ending with the letter 1 are just
trivial extensions of winning strategies of shorter choice sequences ending with a letter greater
than 1. Thus we say that a finite choice sequence is reducible if it ends with 1 and irreducible

otherwise. The infinite words of the winning shift W(X) are obtainable from irreducible choice
sequences by appending infinitely many letters 1 and by taking closure. A rule of thumb for the
rest of the paper is that to describe the structure of the winning sets it is enough to study only
irreducible choice sequences.

Finally, we need the next proposition [15, Proposition 5.7] that motivates the presented results.

Proposition 2.3. If n ∈ N and X ⊆ Sn, then |W(X)| = |X|.

We note that a subset W of {0, 1}n can be interpreted as a family of subsets of {1, 2, . . . , n} (a
so-called set system) by considering a word w ∈ {0, 1}n as the characteristic function of a subset.
Proposition 2.3 has been proven in relation to set systems in [3].2

2Formally, the result of [3] corresponds to the binary case of Proposition 2.3. Their order-shattered sets for the set system
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n n n

1 ⋄ 9 ⋄11111112 17 ⋄1111111111111112
2 ⋄2 10 ⋄111111112 18 ⋄11111111111111112

⋄211111112 ⋄21111111111111112
3 ⋄12 11 ⋄1111111112 19 ⋄111111111111111112

⋄1211111112 ⋄121111111111111112
4 ⋄112 12 ⋄11111111112 20 ⋄1111111111111111112

⋄212 ⋄11211111112 ⋄1121111111111111112
5 ⋄1112 13 ⋄111111111112 21 ⋄11111111111111111112

⋄111211111112 ⋄11121111111111111112
6 ⋄11112 14 ⋄1111111111112 22 ⋄111111111111111111112

⋄21112 ⋄111121111111111111112
7 ⋄111112 15 ⋄11111111111112 23 ⋄1111111111111111111112

⋄121112 ⋄1111121111111111111112
8 ⋄1111112 16 ⋄111111111111112 24 ⋄11111111111111111111112

⋄11111121111111111111112

Table 1: The irreducible choice sequences of the winning shift of the Thue-Morse substitution for
lengths 1 to 24. The letter ⋄ can be substituted by both of the letters 1 and 2.

3 The Motivating Example of the Thue-Morse Substitution

In this section, we consider the winning shift of the Thue-Morse substitution. Through examples,
we describe the substitutive structure of this winning shift and outline how it can be used to
compute the factor complexity of the subshift generated by the Thue-Morse substitution. Our
claims are rigorously derived in the subsequent sections in a more general setting.

Let τ be the Thue-Morse substitution: τ(0) = 01, τ(1) = 10. The substitution τ is uniform,
primitive, and marked, and it is readily proven that it is aperiodic. With an exhaustive search, it
is easily established that its synchronization delay is 4 (see also Lemma 5.2). The fixed point

τω(0) = 01101001100101101001011001101001100101100110100101101001 · · ·

is the famous Thue-Morse word, which is overlap-free (i.e., it does not contain a factor of the
form auaua for a word u and a letter a). For more details on the substitution τ, see for example
[9, Section 2.2].

In Table 1, we list irreducible choice sequences of W(τ) for lengths 1 to 24.3 For the choice
sequence 2212, Alice has the following winning strategy:

ε 7→ {0, 1},

0, 1 7→ {0, 1},

00, 10 7→ {1},

01, 11 7→ {0},

001, 101, 010, 110 7→ {0, 1},

the other arguments being irrelevant. This strategy is depicted in Figure 1 as a strategy tree; this
tree representation is used throughout this paper. Whenever Alice has more than one choice

whose characteristic functions are X ⊆ {0, 1}n correspond to the choice sequences in W(XR)R, where R is word reversal,
that is, their games are played from right to left.

3Here we indeed abuse notation, and we should write L(W(τ)) for W(τ). Remember that reducible choice sequences
of length n are obtained by padding shorter irreducible choice sequences with the letter 1.

6



ε

1

10
1

0

01
1

0

0

10
1

0

01
1

0

ε

10

1001
10

01

0110
10

01

01

1001
10

01

0110
10

01

Figure 1: Winning strategies for Alice for the choice sequences 2212 and 21211121 in the case of
the Thue-Morse substitution.

according to her strategy, the tree branches to several nodes that correspond to Alice’s possible
choices of letters. We omit edges from the tree when there are no branchings.

Table 1 contains many patterns. By Proposition 2.3, the number of irreducible choice se-
quences of length n is counted by the first difference function ∆(n). Based on the data, it seems
that ∆(n) ∈ {2, 4} for all n ≥ 1 and ∆(n) = 4 only if n = 2k + ℓ+ 1 for k ≥ 1 and 1 ≤ ℓ ≤ 2k−1.
This is of course readily observed when looking at the factor complexity function; here we see
much more: the rule described next confirms the preceding observations.

We observe that a choice sequence α in the winning shift always seems to contain at most three
occurrences of 2. Moreover, if α contains exactly three occurrences of 2, then the distance between
the two final occurrences is 2k − 1 for some k ≥ 1, and the middle occurrence is preceded by at
most 2k−1 occurrences of the letter 1. The rule seems to be the following. If n = 3 · 2k + 2, then the
only irreducible choice sequence of length n (up to the difference at the very beginning) is ⋄13·2k

2.
Then the number of 1s increases until there are 2k+2 − 1 of them. Next a third occurrence of 2
can be introduced: the choice sequences of length 2k+2 + 2 are ⋄212k+2−12 and ⋄12k+2

2 (the former
choice sequence downgraded). Then the number of 1s before the second to last occurrence of 2
starts to grow one by one until the choice sequences considered are of length 3 · 2k+1 + 1, and
then the pattern repeats. The observed rule suggests that irreducible choice sequences of W(τ)
of lengths 2k + 2 to 3 · 2k + 1 are related to irreducible choice sequences of lengths 2k+1 + 2 to
3 · 2k+1 + 1. Indeed, these choice sequences look identical: the latter ones are just “blown up” by
a factor of 2. Since the substitution τ also “blows up” words by a factor of 2, we proceed to look
at τ-images of the strategy trees of short choice sequences.

Consider the strategy tree for the choice sequence 2212 depicted in Figure 1. Substitute all let-
ters of this tree with τ while preserving the branch structure to obtain the right tree of Figure 1.
The obtained strategy tree gives a winning strategy for Alice in a word game with choice se-
quence 21211121. Let us next give an intuitive explanation for the strategy from Alice’s point of
view. Alice can beat Bob in the word game with choice sequence 21211121 by imagining that she
plays the word game with choice sequence 2212, for which she has a winning strategy. On her
first turn, Alice lets Bob choose between 0 and 1. Since Alice wins this game of length 1, Alice
can also win the game of length 2 with choice sequence 21 played on the τ-images τ(0) and τ(1)
(choice sequence 11 is also possible but less interesting). Continuing, Alice lets Bob again choose
between 0 and 1. The win on this play of length 2 ensures Alice winning the game of length 4
with choice sequence 2121 played on the τ-images τ(00), τ(01), τ(10), τ(11). Next, Alice gives
Bob only one choice to ensure a win, so Bob, having no options, loses in the game of length 6
with choice sequence 212111 played on the respective τ-images. Overall, we see that the short
winning strategy for the choice sequence 2212 enables Alice to always win the game with choice
sequence 21211121. This longer choice sequence is constructed in such a way that all occasions of
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Bob having a real choice (branches of the strategy tree) correspond to Bob having a choice of two
letters in the shorter game with choice sequence 2212; Alice just imagines playing a short game
with choice sequence 2212 filling the suffixes of the τ-images by not letting Bob choose. Alice’s
method can indeed be viewed as a branch-preserving substitution of the strategy tree.

The method described above does not explain if it is possible for Alice to obtain a winning
strategy for, e.g., the choice sequence 2211121 from some shorter winning strategy. Let us see
how she could do this. Alice again imagines playing the winning strategy of the word game
with choice sequence 2212 using her winning strategy of Figure 1. Now, however, during the
first turn Alice lets Bob pick a suffix of length 1 of the τ-images of the letters 0 and 1 (which
Bob is allowed to play on the first turn of the shorter game). Continuing as above, the played
word will be a suffix of a word played in the word game with choice sequence 21211121 and a
suffix of a τ-image of a word played in the word game with choice sequence 2212. Therefore
also 2211121 ∈ W(τ). Similarly the play on the τ-images does not have to complete the final
image, the play can be restricted to a proper prefix of the τ-images. In this particular case of the
Thue-Morse substitution, it is easy to be convinced that all long enough winning strategies are
obtainable by substitution by working out some example desubstitutions on strategy trees.

In the next section, we will prove that the above methods always produce longer winning
strategies from short winning strategies, even in the case of a general uniform substitution. We
will show that not all long enough winning strategies are necessarily obtainable from short ones
by substitution, but we will show that this holds for marked uniform substitutions. In essence,
Alice can derive winning strategies for all long enough choice sequences in W(τ) from a few core
strategies. Moreover, we are able to deduce the first difference function of a marked uniform
substitution, which makes it possible to derive a formula for the factor complexity function.

Knowing that winning strategies are obtained by substitution is not enough to give a complete
description of the winning shift W(τ). There is typically some ambiguity on short prefixes of
words in W(τ) due to the fact that they are related to the winning sets of word games played on
suffixes of τ-images. The winning sets of proper suffixes of τ-images of a marked substitution
can be very complicated—nothing general can be stated about their form. Thus at the end of
Section 4, we introduce additional assumptions that simplify these winning sets. We show that
the winning sets of proper suffixes of the τ-images of permutive uniform substitutions are trivial,
so that W(τ) admits a complete description. In this case, it can be shown that also the winning
shift W(τ), not only the winning strategies, has a substitutive structure.

Let us conclude this section by describing the substitutive structure of W(τ) in our example
case of the Thue-Morse substitution. Let σ be a substitution defined by σ(1) = 11 and σ(2) = 21,
and let ⋄w2 be an irreducible choice sequence in W(τ) for a letter ⋄. The result is that the words
⋄σ(w)2 and σ(⋄w)2 are in W(τ) and that all irreducible choice sequences of length at least 5 are
obtained in this manner. Thus in our particular example it is sufficient to know all irreducible
choice sequences of W(τ) of length at most 4 to completely describe W(τ).

4 Main Results

In general, for a uniform substitution τ : S∗ → S∗, substituting short winning strategies yields
longer winning strategies in a manner similar to what was outlined in the previous section. To
figure out the longer choice sequence obtained from a substituted short winning strategy, we
need to identify the positions of the τ-images τ(A) of a subset A of S where Bob can make
choices without compromising the chances of Alice winning; in other words, we need to identify
the winning set of τ(A). Notice that in general we obtain many possible choice sequences as the
winning set of τ(A) might contain several words. We also want to consider the winning sets of
prefixes and suffixes of these τ-images since we want to include plays where in the beginning Bob
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plays a proper suffix of a τ-image of a letter and in the end he plays a proper prefix of a τ-image
of a letter, just like in the examples of the previous section. Throughout this section, we assume
that τ : S∗ → S∗ is a uniform and aperiodic substitution of length M with synchronization delay
L.

Before formalizing the ideas in the following lemma, we introduce some notation. Let s be
Alice’s strategy for a word game G. We define its language L(s) to consist of all possible plays
with this strategy, that is, it is the set containing all words p(G, s, sB) for Bob’s strategies sB. Here,
we let Ls(n) denote the set prefn(L(s)), that is, Ls(n) contains the words that are playable in n

rounds when Alice uses the strategy s.

Lemma 4.1. Let s be Alice’s winning strategy for a word game (S, n,L(τ), α) with n ≥ 2. Then

W(suffi(τ(s(ε)))) ·
n−2

∏
k=1

⋂

a∈Ls(k)

W(τ(s(a))) ·
⋂

a∈Ls(n−1)

W(prefj(τ(s(a)))) ⊆ W(τ)

for all integers i and j such that 1 ≤ i, j ≤ M.

Proof. Let β be in the set on the left side of the inclusion in the statement of the lemma. Notice
that this set is indeed nonempty as the intersected sets all contain the word 1M or 1j. We can
factorize β as β0β1 · · · βn−1, where |β0| = i, |βn−1| = j, and |βk| = M for 1 ≤ k < n − 1. We
define a strategy s′ for Alice for the word game (S, i + (n − 2)M + j,L(τ), β) as follows:

• first Alice plays according to a winning strategy for the game (S, i, suffi(τ(s(ε))), β0) (such
a strategy exist as β0 was chosen to be in the winning set of suffi(τ(s(ε))));

• after i + rM rounds have been played, Alice plays according to a winning strategy for the
game (S, M, τ(s(a)), βr+1), where a is a word in Ls(r + 1) such that τ(a) has the word
of length i + rM played so far as a suffix (the winning strategy exists because βr+1 is in
W(τ(s(a))) for all a ∈ Ls(r + 1));

• finally, after i + (n − 2)M rounds, Alice plays according to a winning strategy for the game
(S, j, prefj(τ(s(a))), βn−1), where a is a word in Ls(n − 1) such that τ(a) has the word of
length i + (n − 2)M played so far as a suffix (again, the winning strategy exists because
βn−1 is in W(prefj(τ(s(a)))) for all a ∈ Ls(n − 1)).

The described procedure clearly defines a strategy for Alice. What is left is to prove that the
strategy s′ is a winning strategy for Alice in order to conclude that β ∈ W(τ).

We show that Bob cannot produce a forbidden word during any round. During the first i

rounds Alice plays according to a winning strategy for the word game (S, i, suffi(τ(s(ε))), β0),
so a forbidden word cannot be produced. Suppose then that i + rM rounds have been played
without producing a forbidden word. The word played so far is a suffix of length i + rM of the
word τ(a0a1 · · · ar) where a0a1 · · · ar ∈ L(τ). Alice plays next according to a winning strategy
for the word game (S, M, τ(s(a0a1 · · · ar)), βr+1), so the word played during the first i + (r + 1)M

rounds is a suffix of length i+(r+ 1)M of the word τ(a0a1 · · · ar+1) for some ar+1 ∈ s(a0a1 · · · ar).
Since s is a winning strategy, we see that a0a1 · · · ar+1 ∈ L(τ), so also τ(a0a1 · · · ar+1) ∈ L(τ).
This means that no forbidden words are produced during the first i + (r + 1)M rounds. Similarly
we see that no forbidden word is produced during the final j rounds. We conclude that s′ is a
winning strategy for Alice.

Example 4.2. In general, not all choice sequences in W(τ) are obtainable from shorter ones as in
Lemma 4.1. Consider for instance the left-marked substitution

τ :
0 7→ 001
1 7→ 120
2 7→ 201

9



1

120001001120
1

0

001120201001
2

1

⋄

1001
1

0

0120
2

1

Figure 2: Example of a long strategy that cannot be desubstituted into a short strategy.

with synchronization delay 5.4 Its fixed point is

001001120001001120120201001001001120001001120120201001120201001201001 · · · .

The left strategy of Figure 2 is a winning strategy of Alice for the choice sequence 12111111111112.
Let us show that this strategy is not obtainable from a shorter strategy by substitution. If it
would be the case then, by desubstituting the words on the four paths of the strategy tree, we
would obtain a winning strategy for Alice. This desubstituted strategy is depicted on the right
in Figure 2. The letter ⋄ stands for one of the letters 0, 1, and 2; as τ is not right-marked, it is not
immediately obvious what ⋄ should be. Consider the words ⋄01201 and ⋄01202 corresponding
to the two top paths of this desubstituted tree. It is straightforward to see that in L(τ) the factor
01201 is extended to the left only by the letter 0, but 01202 is not extended to the left by 0. This
means that there is no choice for ⋄, so no desubstituted strategy is winning for Alice. Observe
that this happens essentially due to the fact that the τ-images of 0 and 2 have a common suffix
of length 2. Notice also that the right tree of Figure 2 corresponds by its branch structure to the
choice sequence 21112, which can checked not to be in W(τ).

Next we turn our attention to substitutions whose winning shifts consist essentially only of
choice sequences as in Lemma 4.1. We begin with a definition.

Definition 4.3. Let α in W(τ) be a (finite) choice sequence such that |α| > L. If the winning
strategies of α are obtainable from the winning strategies of shorter choice sequences in W(τ) by
substitution as in Lemma 4.1, then we call α substitutive.

Our first step towards desubstituting long enough winning strategies is to consider left-
marked substitutions for which we can prove the following lemma.

Lemma 4.4. Suppose that τ is left-marked. Let α in W(τ) be an irreducible choice sequence such that

|α| > L. Then all winning plays of the game (S, |α|,L(τ), α) have decomposition |α| − 1 mod M.

Proof. Let s be any winning strategy for Alice for the word game (S, |α|,L(τ), α). We will prove
that the last branching at the end of the strategy tree of s marks a synchronization point of any
winning play, that is, we claim that all winning plays by Alice with strategy s have decomposition
|α| − 1 mod M. Let ua be a word in L(s) for some word u and letter a, and suppose that ua has
decomposition i mod M (the decomposition is well-defined as |ua| ≥ L). Let r be the largest
integer such that rM < |α| − i. Consider the suffix v of u of length |α| − rM − i − 1, so that va is a
prefix of τ(c) for some c ∈ S. Since α is irreducible, the word ub is a winning play for some letter b

such that a 6= b. Now the word ub must also have decomposition i mod M as otherwise deleting
the last letter from the words ua and ub would yield two different decompositions mod M for the
word u contradicting the assumption |u| ≥ L. Thus by repeating the preceding arguments, we
see that vb is a prefix of τ(d) for some d ∈ S. Since τ is left-marked, the only option is that v is
empty. Consequently, we have i ≡ |α| − 1 (mod M). Since s was an arbitrary winning strategy,
the claim follows.

4This is quite tedious to find by hand, we used a computer.
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ε

210010
2

0

100210
2

1

010021
2

0

Figure 3: Example of a long winning strategy whose plays have different decompositions mod3.

Example 4.5. Continuing Example 4.2, consider the winning plays of the word game with choice
sequence 12111111111112, depicted on the left in Figure 2. All four possible plays 10011202010011,
10011202010012, 11200010011200, and 11200010011201 indeed have decomposition 14 − 1 ≡ 1
(mod 3).

Lemma 4.4 lets us define the notion of decomposition modM for long enough irreducible
choice sequences.

Definition 4.6. Suppose that τ is left-marked, and let α be an irreducible choice sequence in W(τ)
such that |α| > L. We say that α has decomposition i mod M where i is the unique number such
that all winning plays of the game (S, |α|,L(τ), α) have decomposition i mod M.

Example 4.7. Let us show that without assuming that τ is left-marked, the claim of Lemma 4.4 is
not always true. Consider the primitive substitution

τ :
0 7→ 021
1 7→ 010
2 7→ 210,

which is not left-marked, nor are any of its conjugates since τ does not have any.5 The substitution
τ has synchronization delay 6, and its fixed point is

021210010210010021021010021210010021021010021021210010021210010021010 · · · .

The strategy tree of Figure 3 shows that 3111112 ∈ W(τ). Now not all plays with this winning
strategy have the same decomposition mod3 because in the τ-images only two distinct letters
may occur at a fixed position. In fact, we conjecture something stronger: 31n2 ∈ W(τ) for in-
finitely many n.

Before we begin desubstituting long strategies, we prove the following lemma, which gives a
description of the form of the choice sequences in W(τ). Let σi : {1, 2, . . . , |S|}∗ → {1, 2, . . . , |S|}∗

be the substitution defined by σi(k) = k1i−1 for k ∈ {1, 2, . . . , |S|}.

Lemma 4.8. Suppose that τ is left-marked. If α is an irreducible choice sequence in W(τ) such that |α| =

rM + i + 1 > L with 0 ≤ i < M (α has decomposition i mod M), then ∂i,1(α) ∈ σM({1, 2, . . . , |S|}r).

Proof. If r = 0, then there is nothing to prove, so we assume that r > 0. Consider the positions
|α| − M − 1, |α| − (M − 1)− 1, . . . , |α| − 2 of α. Among these positions only the position |α| −

M − 1 may contain a letter that is greater than 1. Otherwise in some play Bob could make a
choice inside a τ-image; recall that the decomposition modM of the plays is fixed before the

5The conjugate of a substitution τ is the substitution obtained by cyclically shifting the common prefix of the τ-images.
A substitution and its conjugate have the same language.
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game even starts, see Lemma 4.4. This is impossible as τ is left-marked. Thus the letters at
positions |α| − M − 1 to |α| − 2 spell out a word of the form k1M−1 with k ∈ {1, 2, . . . , |S|}. Thus
by repeating this argument r − 1 more times, the claim follows.

Next we consider only marked substitutions and show that then desubstitution is possible.

Theorem 4.9. Suppose that τ is marked. Let α in W(τ) be an irreducible choice sequence such that

|α| > L. Then α is substitutive and if α has decomposition i mod M, then there exists an irreducible

choice sequence a0a1 · · · an−1 in W(τ) with winning strategy s such that

α ∈ W(suffi(τ(s(ε))))σM(a1 · · · an−2)an−1

where n is the largest integer such that (n − 2)M < |α| − i.

Proof. Let α in W(τ) be an irreducible choice sequence having decomposition i mod M such that
|α| > L. Let s be Alice’s winning strategy for the word game with choice sequence α. By defini-
tion, the strategy tree of s branches at positions where α contains a letter that is greater than 1.
Let us show how to perform a branch-preserving desubstitution on s to obtain a shorter winning
strategy s′.

Consider first a leaf of the strategy tree of s. Since i ≡ |α| − 1 (mod M) by Lemma 4.4, the
last letter a of the play corresponding to this leaf is the first letter of some τ-image. Since τ is left-
marked, there is a unique letter b such that τ(b) begins with a. We replace the leaf corresponding
to a with a leaf corresponding to b.

Next we show how to desubstitute the factors between two branchings in the middle of the
strategy tree s. Say j and k are consecutive positions of α containing letters that are greater than
1 such that k > j ≥ i. By Lemma 4.8, the factor of α starting at position j and ending at position
k − 1 is of the form ℓ1tM−1 for some ℓ ∈ {2, . . . , |S|}. Let w be any winning play with the strategy
s. Since w has decomposition i mod M, it follows that the factor of w starting at position j and
ending at position k− 1 is a τ-image of some shorter word in L(τ). This means that after i rounds
have been played, any time Alice’s strategy branches, Bob has just completed a τ-image on his
previous turn. This means that it is possible to do a branch-preserving desubstitution on the
subtrees of length |α| − i of the strategy tree of s: the factor played between two branchings is a
τ-image of a shorter word in L(τ) and can be directly desubstituted (since τ is injective). If there
are no branchings before the final branching, then we can directly desubstitute the factor of any
play starting at position i and ending at position |α| − 2 (which could be empty).

Now if i = 0, then we have desubstituted the whole strategy tree of s, and we are done.
Suppose that i > 0. As τ is right-marked, the letter at position i − 1 of w uniquely identifies a
letter a in S such that the prefix of w of length i is a suffix of τ(a). We modify s by replacing the
first i choices by a single choice of a on a path corresponding to the play w. In other words, we let
a ∈ s′(ε) and set s′(a) to contain the desubstituted subtree obtained above for the suffix of w of
length |α| − i. Now s′ is a strategy and it has the same branch structure as s save for the initial part
of i rounds. By construction, all plays by s′ are ancestors of the plays with the winning strategy
s, so s′ must also be a winning strategy. The strategy s is clearly obtained from the strategy s′ by
substitution as in Lemma 4.1. Therefore α is substitutive. The desubstitution process described
clearly indicates that α has the claimed form.

The essential message of Theorem 4.9 is that knowing all winning strategies for irreducible
choice sequences in W(τ) up to length L is enough to derive winning strategies for all irre-
ducible choice sequences—Alice does not need to learn much to beat Bob. Notice also that we
can effectively enumerate W(τ) when τ is marked, the sets W(prefi(τ(s(ε)))) in the statement of
Theorem 4.9 are easily found by exhaustive search.

12



Notice that substituting a strategy tree by σM preserves its branch structure. Conversely,
desubstituting, as in Theorem 4.9, preserves most of the branch structure. Indeed, supposing
that τ is marked, then the subtree of the winning strategy of a word in W(τ), as in the third para-
graph of the proof of Theorem 4.9, has the same branch structure as the desubstituted subtree.
The initial part of the tree comes from a winning set played on suffixes of τ-images. As there are
finitely many of these, we conclude that there can be only finitely many different branch struc-
tures in the winning trees associated to the winning shift W(τ). This means that in any choice
sequence the number of letters greater than 1 is bounded. In essence, Bob can almost never make
a difference: on most turns, he has no options but to play what Alice wants. Compared to real
life games, this makes our game somewhat degenerate. We emphasize that a priori it is not clear
if Bob gets to play often or not.

Observe that substituting two short winning strategies for two distinct choice sequences of
the same length could yield the same longer choice sequence. For instance, if 2u and 3u are in
W(τ), then cutting a branch of length |u|+ 1 from the winning strategy s for the choice sequence
3u yields a winning strategy s′ for the choice sequence 2u. It follows that W(suffi(τ(s

′(ε)))) ⊆

W(suffi(τ(s(ε)))), so all choice sequences obtained by substituting the winning strategy s′ are
already obtained by substituting the winning strategy s. This is further elaborated in the proof of
Theorem 4.12. Moreover, it is possible that by substituting two distinct winning strategies for a
fixed choice sequence produces distinct long choice sequences.

Notice that the prefix of α of length i, as in the statement of Theorem 4.9, can be very com-
plicated: we only assume that τ is aperiodic and marked and that it has synchronization delay,
so the interior parts of the τ-images can be chosen almost arbitrarily. To simplify the situation,
assume that τ is permutive. It is now clear that the suffix games related to the τ-images are triv-
ial: W(suffi(τ(A))) = {k1i−1, (k − 1)1i−1, . . . , 1i}, where A is a subset of S of k elements. To put
it in other words: W(suffi(τ(A))) = σi({k, k − 1, . . . , 1}). Thus by Theorem 4.9, we see that the
winning shift W(τ) has the following substitutive structure.

Proposition 4.10. Suppose that τ is permutive. If α in W(τ) is an irreducible choice sequence such that

α = ⋄wa with letters ⋄ and a, then σi(⋄)σM(w)a is in W(τ) for 1 ≤ i ≤ M, and all choice sequences α

of length at least L + 1 are obtained in this way.

Since σi is injective, the relation of the preceding proposition is a bijection from irreducible
choice sequences of length |α| to irreducible choice sequences of length i + (|α| − 2)M + 1. Such
a bijection exists also in the case where τ is only marked as we shall see next in Theorem 4.12.
For its proof, we need the following lemma.

Lemma 4.11. Let ku ∈ W(X) for a set X, a letter k, and a word u, and suppose that k is maximal (for u).

Then there exists a unique subset A of S of size k such that s(ε) ⊆ A for all Alice’s winning strategies s

for a choice sequence tu with 0 ≤ t ≤ k.

Proof. Let s and s′ be two different winning strategies for the choice sequence ku. If s(ε) 6= s′(ε),
then there would be a letter in, say, s(ε) \ s′(ε). By removing the subtree of length n associated
to this letter from the strategy tree of s and attaching it to the strategy tree of s′, we obtain a new
strategy. This new strategy clearly is a winning strategy for Alice for the choice sequence (k + 1)u
contradicting the maximality of the letter k. Thus the set s(ε) is the same for all Alice’s winning
strategies s for the choice sequence ku, and we may denote it by A.

Consider then a choice sequence tu with t < k, and let e be Alice’s arbitrary winning strategy
for it. It must be that e(ε) ⊆ A as otherwise there would be a letter in e(ε) \ A, and we could
attach the subtree associated to it to the strategy tree of Alice’s winning strategy for the choice
sequence ku, like above, to obtain a contradiction with the maximality of the letter k.
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The next theorem states the same result as [7, Corollary 3]. For the statement, we define K to
be the least integer such that MK + 1 ≥ L.

Theorem 4.12. Assume that τ is marked. Suppose that n ≥ K + 2, and write n = Mkr + ℓ+ 1 with

k ≥ 0, r ∈ {K, K + 1, . . . , KM − 1}, and ℓ ∈ {1, . . . , Mk}. Then ∆(n) = ∆(r + 2)

Proof. Consider irreducible choice sequences in W(τ) of length n ending with a word u of length
n − 1. Let k be the largest letter such that ku ∈ W(τ). When a winning strategy for the choice se-
quence ku is substituted, as in Lemma 4.1, we obtain a winning strategy for an irreducible choice
sequence of length n(i), where n(i) = i + (n − 2)M + 1 with 1 ≤ i ≤ M. Moreover, the final
(n − 2)M + 1 letters of such a choice sequence are independent of the prefix k by Theorem 4.9.
Further, as n(i) > L, Theorem 4.9 implies that all irreducible choice sequences of length n(i) are
obtained by substitution. Now there are a total of k irreducible choice sequences of length n with
suffix u, so if we show that a total of k distinct irreducible choice sequences of length n(i) are ob-
tainable from them by substitution, then we have shown that there are equally many irreducible
choice sequences of length n and n(i).

Let A be as in Lemma 4.11. Consider a choice sequence tu, 0 ≤ t ≤ k, with winning strategy s.
The choice sequences of length n(i) obtained from tu by substitution are determined by the words
in W(suffi(τ(s(ε)))). Lemmas 4.11 and 2.2 imply that W(suffi(τ(s(ε)))) ⊆ W(suffi(τ(A))), so
what is relevant is the size of W(suffi(τ(A))). Lemma 4.11 and Proposition 2.3 show that the
size of W(suffi(τ(A))) is k. Therefore a total of k irreducible choice sequences of length n(i) are
obtainable from choice sequences with suffix u. As mentioned in the previous paragraph, we
have proved that ∆(n) = ∆(n(i)). The claim follows by a straightforward computation.

Example 4.13. Theorem 4.12 is not true if τ is only left-marked. Consider for instance the substi-
tution τ of Example 4.2 Now 14 = 3 · 4+ 1+ 1, so Theorem 4.12 would predict that ∆(14) = ∆(6).
However, by a direct computation, it can be seen that in this case ∆(14) = 5 but ∆(6) = 4.

Theorem 4.12 can be used to derive the factor complexity function f of a marked uniform
substitution τ because f (n) = 1 + ∑

n
i=1 ∆(i). As the precise details in finding the exact formula

do not involve word games, we omit the details and refer the reader to [7, Theorem 2].
Notice also that Theorem 4.12 proves that the first difference function is a M-automatic se-

quence, so the factor complexity function is a M-regular sequence; see [2]. This holds for arbitrary
uniform substitution.

5 Winning Shifts of Generalized Thue-Morse Words

In this section, we describe the winning shifts of generalized Thue-Morse words and, using our
results, derive the known formulas for their factor complexity functions. For more on generalized
Thue-Morse words, see e.g. [1]. Our notation largely follows [14].

Let sb(n) denote the sum of digits in the base-b representation of the integer n. For b ≥ 2
and m ≥ 1, the generalized Thue-Morse word tb,m is defined as the infinite word whose letter at
position n equals sb(n) mod m. It is straightforward to prove that tb,m is the fixed point, beginning
with the letter 0, of the primitive substitution ϕb,m defined by

ϕb,m(k) = k(k + 1)(k + 2) · · · (k + (b − 1)),

for k ∈ {0, 1, . . . , m − 1}, where the letters are interpreted modulo m. The word tb,m is ultimately
periodic if and only if b ≡ 1 (mod m) [1]. We make the assumption that tb,m is aperiodic.

To clarify the notation, from now on we assume that letters are elements of the group Zm, so
that we can naturally add letters. Moreover, we keep b and m fixed and simply write ϕ for ϕb,m.
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Let π : Zm → Zm denote the permutation defined by setting π(k) = k+ b− 1. In other words,
the permutation π maps k to the final letter of the word ϕ(k). We set q to be the order of π, that
is, the least positive integer such that q(b − 1) ≡ 0 (mod m).

To describe the winning shift W(ϕ) of ϕ, it is crucial to know words of L(ϕ) of length 2 and
3. Our proof is almost verbatim from [14].

Lemma 5.1. We have

• Lϕ(2) = {πi(k − 1)k : k ∈ Zm, 0 ≤ i < q} and

• Lϕ(3) = {πi(k− 1)k(k+ 1) : k ∈ Zm, 0 ≤ i < q}∪ {(k− 1)kπ−i(k+ 1) : k ∈ Zm, 0 ≤ i < q}.

Proof. Set L0 = {(k − 1)k : k ∈ Zm}. Clearly L0 ⊆ Lϕ(2). Let Lj+1 to be the set of factors of length
2 of the words in ϕ(Lj). By the definition of π, we have Lj = {πi(k − 1)k : k ∈ Zm, 0 ≤ i < j + 1}.
Since Lq = Lq−1, we have Lϕ(2) = Lq−1.

By the form of ϕ, either the first two letters of a factor of length 3 are equal or its last two
letters are. The claim thus follows from the form of the factors of length 2.

The following lemma concerning the synchronization delay of ϕ is proven in [4]; we repeat
the proof here.

Lemma 5.2. The substitution ϕ has synchronization delay 2b.

Proof. Consider a word w of L(ϕ) of length 2b. If w contains a factor kℓ with ℓ 6= k + 1, then the
factor kℓ cannot occur inside a ϕ-image, so the position where ℓ occurs marks a synchronization
point. If such a factor does not occur in w, then the word w is of the form k(k + 1) · · · (k + 2b− 1),
that is, w = ϕ(k(k + b)). Suppose for a contradiction that w has ancestor x1x2x3. Due to the
form of w, we have x2 = x1 + b and x3 = x1 + 2b, that is, x1(x1 + b)(x1 + 2b) ∈ L(ϕ). This is
impossible as x1 + b 6= x1 + 1 and x1 + 2b 6= x1 + b + 1 due to our assumption that b 6= 1. Thus
the only ancestor of w is k(k + b). We have thus shown that L ≤ 2b.

Fix k ∈ Zm. Since k − b = k − 1 + (q − 1)(b − 1), we see that (k − b)k ∈ L(ϕ) by Lemma 5.1.
Consider the prefix u of ϕ((k − b)k) of length 2b − 1. This prefix has ϕ(k − 1) as a suffix, and its
prefix of length b − 1 is a suffix of ϕ(k − b − 1). Because (k − 1 − b)(k − 1) ∈ L(ϕ), the word u

has two ancestors proving that L ≥ 2b.

Since ϕ is permutive, it now follows that every choice sequence in W(ϕ) having length at least
2b + 1 is obtainable by substitution from a shorter choice sequence. Next we describe the choice
sequences of length at most 2b.

Proposition 5.3. Let α in W(ϕ) be an irreducible choice sequence of length n.

(i) If 2 ≤ n ≤ b + 1, then α = ⋄1n−2a with ⋄ ∈ {1, . . . , m} and a ∈ {2, . . . , q}.

(ii) If b + 2 ≤ n ≤ 2b, then α = ⋄1n−2a or α = ⋄1ℓ21b−12 with ⋄ ∈ {1, . . . , m} and a ∈ {2, . . . , q}.

Moreover, each word of such form is in W(ϕ).

Proof. Consider first the case 2 ≤ n ≤ b + 1. Write α = ⋄ur with letters ⋄ and r, and let w be a
winning play in the game with choice sequence α. First we argue that the prefix of w of length
n − 1 is of the form k(k + 1) · · · (k + n − 2) for some k ∈ Zm, that is, it equals ϕn−1,m(k). If this
were not the case, then this prefix equals xijy for some words x and y and letters i and j such that
j 6= i + 1. Thus w has decomposition |xi| mod b. Since w is a winning play, Bob cannot choose
inside a ϕ-image, and it must thus be that |jy| is a positive multiple of b. This is impossible as
now |α| > |xijy| ≥ b + 1. Due to the restricted form of the prefix of w of length n − 1, we see
that Bob cannot make any choices between his first and last turns, so α = ⋄1n−2r. Suppose for a
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k · · · (k + ℓ)

(π−1(k + ℓ) + 1) · · · (π−1(k + ℓ) + b)
k + ℓ+ 2

π−1(k + ℓ) + 2

(k + ℓ+ 1) · · · (k + ℓ+ b)
k + ℓ+ 2

k + ℓ+ b + 1

Figure 4: The subtree of Alice’s winning strategy after Bob has chosen k in the game with choice
sequence ⋄1ℓ21b−12.

contradiction that r > q. Now Bob can pick a letter c such that c /∈ {πi(k + n − 1) : 0 ≤ i < q}.
It follows that π−1(k + n − 2)c is an ancestor of the played word ϕn−1,m(k)c. This is however a
contradiction with Lemma 5.1. Therefore r ≤ q. It is now clear that any word of the form ⋄1n−2r

with ⋄ ∈ {1, . . . , m} and r ∈ {2, . . . , q} is in W(ϕ): after Bob has chosen k, Alice forces him to
play ϕn−1,m(k) after which she lets him choose among the q letters c such that π−1(k + n − 2)c is
in Lϕ(2).

Suppose then that b + 2 ≤ n ≤ 2b. If α contains exactly two letters that are greater than 1, one
at the beginning and one at the end, then α must again be of the form ⋄1n−2a with ⋄ ∈ {1, . . . , m}
and a ∈ {2, . . . , q} (after Bob has chosen k, Alice forces him to play ϕn−b−1(k)ϕ(π−1(k + n − b −

2)+ 1) after which she lets him choose among the q letters c such that π−1(k+n− b− 2)(π−1(k+

n − b − 2) + 1)c ∈ L(ϕ); see Lemma 5.1). Otherwise write α = ⋄urvs with letters ⋄, r, and s such
that r, s > 1, and let w again be a winning play in the game with choice sequence α. Analogous
to the arguments of the preceding paragraph, we see that |α| > |⋄urv| ≥ 2b + 1 unless the prefix
of w of length |u| + 1 is of the form ϕ|u|+1,m(k) for some k ∈ Zm. Again, we have u = 1|u|

and, further, v = 1b−1. Assume for a contradiction that r ≥ 3. After |u| + 1 rounds Bob can
choose a letter c such that c /∈ {k + |u| + 1, π−1(k + |u|) + 1}. Clearly the word played so far
has decomposition |u|+ 1 mod b, so during her next b − 1 turns Alice must let Bob complete the
ϕ-image beginning with c. During his final turn Bob can pick a letter d such that d 6= c + 1. It
follows that the played word has the word π−1(k + |u|)cd as an ancestor. By Lemma 5.1, this
ancestor is not in Lϕ(3), so Bob wins. This is a contradiction, so r = 2. The preceding arguments
also show that w must have ϕ|u|+1,m(k)(k + |u|+ 1) or ϕ|u|+1,m(k)(π

−1(k + |u|) + 1) as a prefix.
Let us consider the former case. Since Bob wins if he can choose inside a ϕ-image, Alice must now
force Bob to play ϕn−1,m(k) to ensure that the word played so far has multiple ancestors. If s ≥ 3,
then as his ultimate move Bob can pick a letter c such that c /∈ {k + n − 1, π−1(k + n − 2) + 1}.
Then w has unique ancestor π−1(k + n − 2 − b)π−1(k + n − 2)c. Our assumption that b 6= 1
implies by Lemma 5.1 that π−1(k + n − 2) + 1 = c, which is impossible by the choice of c. Thus
s = 2, that is, α = ⋄1|u|21b−12. It is now straightforward to derive a winning strategy for Alice
for any ⋄ ∈ {1, . . . , m}. The subtree of length n − 1 of such a strategy is depicted in Figure 4; it is
readily verified that the corresponding strategy is winning for Alice using Lemma 5.1. The claim
follows.

Since ϕ is permutive, all long enough choice sequences α in W(ϕ) are of the form σi(⋄)σb(w)a,
where ⋄wa ∈ W(ϕ) for letters ⋄ and a. Combining this with Proposition 5.3, we see that the
winning shift W(ϕ) indeed has the same form as described in Section 3. Either α is of the form
⋄1|α|−2a with ⋄ ∈ {1, . . . , m} and a ∈ {2, . . . , q} or α = ⋄1ℓ21bk−12, where ⋄ ∈ {1, . . . , m}, k is the
largest k such that bk < |α| and 0 ≤ ℓ ≤ bk − bk−1 − 1.

Proposition 5.3 together with Theorem 4.12 implies that for n ≥ 2 the first difference function
∆(n) for tb,m takes only two values: (q− 1)m and qm. Using induction, we can derive the values of
∆(n) and C(n) (the factor complexity function of tb,m) for any n ≥ 1; see Table 2. These functions
have been derived by Š. Starosta with other methods [14].
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n ∆(n) C(n)

1 m − 1 m

2 ≤ n ≤ b + 1 (q − 1)m qm(n − 1)− m(n − 2)

bk+1 + ℓ+ 1
qm qm(n − 1)− m(bk+1 − bk)

k ≥ 0, 1 ≤ ℓ ≤ bk+1 − bk

2bk+1 − bk + ℓ+ 1
(q − 1)m qm(n − 1)− m(bk+1 − bk + ℓ)

k ≥ 0, 1 ≤ ℓ ≤ bk+2 − 2bk+1 + bk

Table 2: The values of the first difference function ∆(n) and the factor complexity function C(n)
of the generalized Thue-Morse word tb,m.
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