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ON THE COMPLEXITY OF THE HIDDEN WEIGHTED
BIT FUNCTION FOR VARIOUS BDD MODELS *

BEATE BOLLIG1, MARTIN LÖBBING1,
MARTIN SAUERHOFF1 AND INGO WEGENER 1

Abst rac t . Ordered binary décision diagrams (OBDDs) and several
more gênerai BDD models have turned out to be représentations of
Boolean functions which are useful in applications like vérification,
timing analysis, test pattern génération or combinatorial optimization.
The hidden weighted bit fanction (HWB) is of particular interest, since
it seems to be the simplest function with exponential OBDD size. The
complexity of this function with respect to different circuit models,
formulas, and various BDD models is discussed.

AMS Subject Classification. 68Q05, 68Q15, 94C10.

1. INTRODUCTION

If one likes to have short représentations of Boolean functions, circuits are the
most powerful model. But if one likes to work with these représentations, one
additionally needs efficient algorithme for certain problems, among them satisfï-
ability test, équivalence test, and synthesis, Le., the combination of two or more
représentations by a Boolean opération. For this purpose, ordered binary décision
diagrams (OBDDs) introduced by Bryant [7] are the most popular représentation
with many applications, e.g., in vérification, timing analysis, test pattern généra-
tion, and combinatorial optimization, see Bryant [9] for a survey. But the OBDD
size is exponential already for rat her simple functions. Hence, different models of
more gênerai BDDs have been investigated and applied, see Bollig and Wegener [6]
for a survey. In this Introduction, we only define gênerai BDDs and OBDDs.

Keywords and phrases: Complexity, binary décision diagram, OBDD, hidden weighted bit
function.
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Définition 1.1.
i) A binary décision diagram (BDD) or branching program is a directed graph

with one source. Each sink is labeled by a Boolean constant and each other
node by a Boolean variable from {x\,..., xn}> These nodes have two outgoing
edges, one labeled by 0 and the other by 1. The BDD represents the Boolean
function ƒ : {0, l}n —> {0,1} defined in the following way. An input a € {0, l } n

activâtes all edges consistent with a, i.e., the edges labeled by a* which leave
nodes labeled by Xi. The value f (a) is defined as the value of the sink reached
by the unique pat h which starts at the source and is activated by a. The size
of the BDD is the number of its nodes.

ii) An ordered binary décision diagram (OBDD) is a BDD where on each directed
path the node labels of the inner nodes are a subsequence of a given variable
ordering cc^i),...,2^(7^ where n is a permutation on {1 , . . . , n}.

This paper focuses on représentations of the hidden weighted bit function
introduced by Bryant [8].

Définition 1.2. The hidden weighted bit function HWB^: {0, l } n -» {0,1} is
defined by HWBn (xi,..., xn) := xsum where sum := xi H h xn and XQ := 0.

HWB has the feature of an indirect storage access function. The whole input
serves as indirect address which is computed as the weight (sum) of the input. This
weight is the direct address of the output bit. Intuitively, HWB is a very simple
function. But Bryant [8] has proved that its OBDD size is exponential for all
variable orderings. One may expect that all useful extensions of the OBDD model
allow a (small) polynomial-size représentation of HWB. This motivâtes an exten-
sive analysis of the complexity of HWB with respect to relevant représentations
of Boolean functions.

In Sections 2 and 3 we gather and extend known results. Section 2 is devoted
to circuits and formulas and Section 3 to BDD models with a polynomial-size
représentation of HWB. Sections 4 and 5 contain the main results of this paper.
In Section 4 we improve the known lower bound on the OBDD size of HWB a little
bit. Then we consider the problem of finding a good variable ordering for HWB. All
intuitive ideas only lead to rather bad variable orderings. We present a variable
ordering which is at least almost optimal. This underlines the statement that
the variable ordering problem is important and difficult even for well-structured
functions like HWB. In Section 5 we consider randomized OBDDs. HWB has a
polynomial-size représentation in the PP-model of OBDDs, but not in the more
important BPP-model of OBDDs. Our results indicate that HWB is difficult as
long as the model does not allow the use of different variable orderings, some kind
of nondeterminism, or the répétition of the test of at least one variable.
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2. CIRCUITS AND FORMULAS

Circuits and formulas are the most fondamental représentations of Boolean
functions, see Wegener [26] for a survey. Hence, we shortly consider bounds on
the circuit and formula size of HWB.

Theorem 2.1.
i) HWB can be represented by circuits over the binary basis with size O(n) and

depth O(logn), %.e.} HWB G NC1.
ii) HWB can be represented by polynomial-size depth-2 threshold circuits, i.e.,

HWB GTC0 '2.
iii) HWB cannot be represented by polynomial-size, constant-depth

unbounded fan-in circuits over the basis {AND, OR, NOT} or {AND,
MODP}; for a prime p, ie.} HWB g AC0 and HWB £ ACC°[p].

iv) HWB can be represented by polynomial-size formulas over the binary basis.

Proof Let T>fc, T<fc, and E^ be the symmetrie Boolean functions computing 1 iff
the number of ones in the input is at least &, at most k or exactly &, resp. Then

HWBn(x)= V EÏ(x)Axk= V T$k{x)AT2k{x)Axk. (1)
l<fc<n l<k<n

Using this, we can prove the four statements in the theorem as follows.

i) All the functions £"(#) , . . . , E%(x) can be computed simultaneously by a
circuit of size O(n) and depth O(logn), see Wegener [26] (Ch. 3.4). Hence,
the statement follows from équation (1).

ii) The représentation (1) directly describes a threshold circuit of polynomial size
and depth 3. With the "wire encoding technique" of Hofmeister et al [12] one
can improve this construction to depth 2.

iii) The majority function MAJn :~ ^>rn/2], n. G N, is a polynomial projection of
HWB. W. 1. o. g. let n = 4fe + 1. Set xk+1 = • • • = x2k = 0 and x2k+i = • • • =
3̂fc+i = 1. This restriction applied to HWBn leads to the function MAJ2A; on

the remaining variables # i , . . . , Xk, ̂ 3fe+25 • • •} ̂ 4fc+i- The lower bounds follow
from the corresponding lower bounds for the majority function (Hâstad [11],
Smolensky [23]).

iv) Again follows from équation (1) using known polynomial-size formulas for the
El- or T£fe~functions (Valiant [24], Wegener [26] (Ch. 8.3)). D

We conclude that HWB belongs to the simplest functions (depending essentially
on all their variables) with respect to the classical model of circuits of fan-in 2,
but not with respect to unbounded fan-in circuits of constant depth.
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3. B D D MODELS WITH EFFICIENT REPRESENTATIONS OF H W B

Generalized OBDD models used in applications take advantage of at least one
of the following three extensions:
- the use of different variable orderings on different paths;
- the possibility of repeating tests of variables;
- the use of nondeterminism.

Définition 3.1.
i) A f ree BDD (FBDD) or read-once branching program is a BDD where each

directed path contains at most one node labeled by x%.
ii) A k-OBDD consists of k layers of OBDDs using the same variable ordering.
iii) A (nondeterministic) &-0BDD, ® e {OR, AND,EXOR}, is an OBDD which

also may contain nodes labeled by <g>. Such a node activâtes all outgoing edges.
The <g)-OBDD computes 1 if at least one (®=OR), all (®=AND), resp. an odd
number (0—EXOR) of activated paths starting at the source reach the 1-sink.

iv) A partitioned OBDD with k parts is based on a partition of {0, l } n into k parts
wï 1(1) , . . . 1w^l(l)i where the functions Wim. {0, l } n —ï {0,1}, i = 1, . . . ,n ,
have polynomial-size OBDDs with respect to the given variable ordering. The
ith part Gi has to represent ƒ A wi.

FBDDs (with some restrictions), fc-OBDDs for constant fc, EXOR-OBDDs, and
partitioned OBDDs (even with some generalizations) allow polynomial-time
algorithms for the opérations used in applications.

Theorem 3.2. HWB can be represented by polynomial-size FBDDs as well as by
k-OBDDs, OR-OBDDs, AND-OBDDs, EXOR-OBDDs, and partitioned OBDDs
for arbitrary variable orderings.

Proof. An FBDD of size O(n2) has been presented by Sieling and Wegener [22].
A well-known 2-OBDD can be constructed as follows. We start with an OBDD of
size O(n2) with n-f 1 sinks s 0 , . . . , sn such that each input a where sum = i reaches
Si. At Si it is sufficient to repeat the test of Xi. The resuit for OR-OBDDs follows
from équation (1). Nondeterministic nodes are only used at the beginning. The
OR in (1) can be replaced by an EXOR, since at most one term can compute 1.
This implies the resuit for EXOR-OBDDs (Gergov and Meinel [10], Waack [25]). In
order to obtain the resuit for AND-OBDDs, it is sufficient to consider OR-OBDDs
for HWB, the négation of HWB. The result follows since

HWBn(a:)= V (fiïWAxk)

For the partitioned OBDDs (Narayan et al [18]), we choose Wi := Ef. The OBDD
Gi has to represent Ef{x) A ^ . O

These simple constructions show that all generalizations of OBDDs used in
applications lead to small polynomial-size représentations of HWB. But the size
is quadratic. Is it possible to obtain linear-size représentations?
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Theorem 3.3. BDD représentations of HWB have size fl((nlogn)/loglogn).

Proof. Babai et al [4] have proved an Çl((n log n)/ log log n) bound on the
branching program size of the majority fonction. With the réduction used in
the proof of Theorem 2.1 (ii) this lower bound also holds for HWB. D

4. OBDDs FOR HWB AND THE VARIABLE ORDERING PROBLEM

Since the very first investigations of OBDDs (Bryant [7]) it is known that the
choice of the variable ordering is a main issue to obtain OBDDs of small size.
The hidden weighted bit fonction has a very simple structure and the indirect
address is a symmetrie fonction. So one might expect that one easily may obtain
an optimal or at least almost optimal variable ordering for HWB. The following
considérations show that this is not the case. First we state some bounds on the
OBDD size of HWB for a fixed variable ordering.

For a fixed variable ordering 7r, some k G {0,. . . , n}, and some s € {0, . . . , fc},
let N(k, s) be the minimal number of nodes which are reached by a TT-OBDD for
HWB after the test of the first k variables where s of these A; variables take the
value 1. We then know that sum G W — {s , . . . , s + n — k} where W is called
the window of possible sum-values. Let w — w(k, s) be the number of window
variables, z.e., variables Xj where j G W, which belong to the first k variables
according to TT. Furthermore, let (™) = 0, if i < 0 or i > w.

L e m m a 4 . 1 . N(k,s) = (w_l+s) + • • • + ( ? ) .

Proof. Let v resp. vf be the number of tested window variables Xj such that Xj = 1
resp. Xj = 0. By assumption v < s. Furthermore, vf < k — s and v = w — vf

> w - k + s.
We consider the partial assignments to the first k variables where s of these

variables take the value 1. If for two of these partial inputs ail tested window
variables have the same value, these partial inputs can lead to the same node in
the OBDD. This follows from the fact that any common extensions of these partial
inputs lead to the same output for HWB.

If for two of the considered partial inputs some tested window variables Xj has
different values, these partial inputs have to reach different nodes in the OBDD.
This follows from the fact that there is a common extension of these partial inputs
such that the output equals Xj. •

Hence, each N(k, s) or each (^), w — k + s < i < s, is a lower bound on the
7T-OBDD size of HWB. The sum of ail N(k, s) is an upper bound on the TT-OBDD
size of HWB which is only by a factor of O(n2) larger than the lower bound given
by the largest N(k7s).

Bryant [8] has proved an exponential lower bound for the OBDD size of HWB.
For the sake of completeness we present a simpler proof for a lower bound which
is a little bit larger than Bryant's bound.

Theorem 4.2. The OBDD size of HWB is ü (2 0 2 n ) .
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Proof. W. 1. o.g., let n b e a multiple of 10. Let k = 0.6 n. If s = 0.1 n, then
W = {O.ln, . . . ,0 .5n}, and if 5 = 0.5 n, then VF = {0.5 n , . . . , 0.9 n}. In one
of these two cases the window contains at least 0.2 n tested variables among the
first k variables according to the considered variable ordering. W. 1. o. g. this
happens for s = O.ln. Since (m^~1) > (™)' ̂ ne DOund °f Lemma 4.1 is at least

We know that almost all Boolean functions have an OBDD size of 0(2n/n) for
each variable ordering. HWB has not such bad variable orderings.

Theorem 4.3. For each variable ordering the OBDD-size o/HWB is O(n-2°-5n).

Proof. If k variables are tested, at most 2k nodes can be reached. This implies
the bound for the first 0.5 n levels of the OBDD. If k > 0.5 n, the length of the
window is bounded by 0.5 n. Hence, each N(k,s) < 2n~k. D

Considering the bounds of Theorems 4.2 and 4.3, it is worthwhile to look for
good variable orderings. In the following we analyze five variable orderings. Easy
but tedious calculations are left to the reader. The bounds are based on Lemma 4.1
and the following fact based on Stirling's formula.

Fact. Let 0 < 7 < /3, a = f3/7 and ö = 7log (aa/(a - l)""1). Then (^)

In the literature three different variable orderings are discussed without analysis:
- the natural variable ordering xi, x<z,..., xn;
- the variable ordering "important variables first" xm, xm_ij x m + i , xm_2,

Xm+2,. • • for m = \(n + l)/2];
- the alternating or zigzag variable ordering (Jain et al. [14]) arn, #i, xn_i, x^

Xn~2i ^ 3 Ï • • •

The variable Xk is the output variable for those (£) inputs where sum = A;. Hence,
variables seem to be more important if (£) is large, z.e., \ïk& n/2. The alternating
variable ordering tests the important variables last, since the OBDD has "to store
the tested window variables". All these variable orderings are not good. Hence,
we state upper and lower bounds on the corresponding OBDD size but we only
prove the lower bounds.

Theorem 4.4. The OBDD size o/HWB is
~ ft (2°-5n/n1/2) and O(n2°'5n) for the variable ordering "important variables

first";
- Q (20A0n) and O (20Aln) for the natural variable ordering;
- Ü (2°-255ri) and O (2°-26TI) for the alternating variable ordering.

Sketch of proof. The upper bound for the variable ordering "important variables
first" follows from Theorem 4.3. The lower bound follows from Lemma 4.1 for
k = 0.5 n and s = 0.25 n.

The lower bound for the natural variable ordering follows from Lemma 4.1 for
k = 0.59n+ 1 and 5 = 0.18n. Then w = 0.41 n and N{k,s) > (w

s) = ( J ^ ) .
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1

12 10 14 9

16 24 20 28 18 26 22 30 17 25 21 29 19 27 23 31

X5 X n X3 X1 0
 X7 ^13 X2 X9 X6 x\2 X4

FIGURE 1. The uniform variable ordering for n = 13.

The lower bound for the alter nating variable ordering follows from Lemma 4.1
for k = 0.74 n + 1 and s = 0.11 n. Then w = 0.26 n and N(k,s) > (™)
_ (0.26 n\ U

It should be obvious that we may assume for our asymptotic bounds that the
values for k and s are integer s.

It seems to be important to have a small number of tested variables in each
possible window. An ordering is called perfectly uniform if after (3n tests, 0 < (3
< 1, each interval of jn variables contains fijn tested variables. Obviously, it is
not possible to fulfill these requirements exactly. We describe the so-called uniform
variable ordering which has the property that the number of tested variables in
each interval differs from the perfect value at most by the small additive term
O{n1'2).

Let m be chosen such that 2m < n < 2m + 1 . Then we construct a complete
binary tree with m + 2 levels 0, . . . , m + 1. The nodes are numbered by the so-
called scattered numbering. The root has the number 1. A node with number r on
level l has node r + 2l as left child and node r + 2 Ï+1 as right child, e.g., the node
6 on level 2 has the children 6 + 22 = 10 and 6 + 22+1 = 14. On the last level we
take the leftmost n leaves and map them order-preserving to the indices 1,. . . ,n
of the variables (see Fig. 1 for n = 13).

We describe properties of the scattered numbering. Let u and v be nodes on
the same level such that all leaves of the subtrees rooted at u and v belong to the
n leftmost leaves. The subtree rooted at u has at most one more leaf belonging
to the first k variables with respect to the scattered numbering than the subtree
rooted atv. In the following, we consider the subtrees rooted at nodes on the level
[~(l/2)logn~|. These are Q(n1^2) subtrees with 0(n1/2) leaves each. An interval
I of leaves belongs to several complete subtrees and at the borders to at most
two noncomplete subtrees. If we compare the number of the first k variables
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Xi,..., Xk which correspond in the scattered numbering to an interval I with the
number for a different interval V of the same length, the différence is bounded
by O(nx/2). The différence is at most one per complete subtree and O(n1//2) for
the noncomplete subtrees, so we call the variable or der ing based on the scattered
numbering uniform.

Theorem 4.5. The OBDD size of HWB is 2°'25n±o(™1/2) for the uniform variable
ordering.

Proof. Since we allow an error term of Oin1'2) in the exponent, we can argue with
the perfectly uniform variable ordering where intervals of length 772 contain pjn
of the k = pn variables tested first. The lower bound follows from Lemma 4.1 for
ifc = 0.5nands = 0.25n. Then w = 0.25 n + 1 and N(k,s) = 2°-25n+1 - 2 . For the
upper bound we consider N(k,s) for arbitrary k = pn. The window has length
(1 — P)n + 1 and contains /3(1 — P)n + P < 0.25 n + 1 tested variables. Hence,
N(k,s) <2°- 2 5 n + 1 . D

We are still quite far away from the lower bound 2°-2n. The best variable
ordering we could find combines the advantages of the alternating and the uniform
variable ordering. It is therefore called hybrid variable ordering. It starts like the
alternating variable ordering until the first 0.1 n and the last 0.1 n variables are
considered. The remaining 0.8 n variables are ordered according to the uniform
variable ordering for 0.8 n variables.

Theorem 4.6. The OBDD size of HWB is tt(2°-2028n) and O(2°-2029n) for the
hybrid variable ordering.

Proof. We perform the analysis under the assumption that the uniform part of
the variable ordering is perfectly uniform. The error is a drO(n1//2) term in the
exponent. At the end of our considérations we round the constant of the linear
term in the exponent. Hence, the error term does not matter.

The lower bound follows from Lemma 4.1 for k = 0.5942 n and 5 = 0.0884 n.
The window W = {0.0884 n , . . . , 0.4942 n} contains

0 5942 — 0 2
w = (0.1 - 0.0884)n -f 1 + (0.4942 - 0.1) • - — — — - - n

O.o

= 0.20584205n+l

tested variables. Then

= Q (2°-202S7n)

The upper bound for N(k, s) is obvious for k < 0.2 n. If k > 0.8 n, the length of
the window is bounded by 0.2 n and the upper bound follows. Let k — Pn and
0.2 < P < 0.8. Because of symmetry we assume w. 1. o. g. that 5 < /?n/2.

Case 1: s > 0.1 n. The length of the window equals n— fc + 1 = (1 — P)n + 1.
We have tested (P — 0.2)n of the 0.8 n variables of the uniform part of the variable
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ordering, a ratio of (/? — 0.2)/0.8. Hence,

t t > n + 1 < 0 . 2 n + 1
0.8

and the upper bound follows.

Case 2: 5 — 771 and 0 < 7 < 0.1. Again the length of the window equals
n — fc + 1 = (1 — (3)n + 1. By the same arguments as in Case 1 we obtain that

We like to dérive an upper bound on w for ail (3 G [0.2, 0.8].
The function (0.9 - (3 + -y)(/3 - 0.2) takes its maximal value for (3 = 0.55 + O.57.

Hence,

w < wf = (0.253125 - 0.56257 + 0.312Ö72) n + 1.

Since 7 < 0.1, the largest term in the sum for N(k,s) is (™) < (™). A careful
analysis of (™ ) leads to the proposed upper bound. D

With respect to the lower bound of Theorem 3.2, the hybrid variable ordering
is almost optimal. Although we have the knowledge of the structural properties
of HWB, it has turned out to be not easy to dérive an almost optimal variable
ordering. Hence, the OBDD variable ordering problem is important and difficult
already for simple and well-structured functions like HWB.

There are two other BDD models which rely on a fixed variable ordering without
repeated tests and which do not allow nondeterminism. Our resuit also holds
for zero-suppressed BDDs (ZBDDs), since the size of OBDDs and ZBDDs for a
given function and variable ordering only can differ by a factor of O(n) (Löbbing
et al. [17]). Becker et al. [5] have proved an exponential lower bound on the size
of ordered functional décision diagrams (OFDDs) for HWB.

5. RANDOMIZED O B D D S

Randomized algorithme are known to be very power fui. Hence, it is interest ing
to investigate randomized BDDs, see Ablayev and Karpinski [2], Ablayev [1], and
Sauerhoff [19-21]. Is randomization another possibility to give QBDDs the power
to represent HWB in polynomial size?

Définition 5.1. A randomized OBDD G is an OBDD defined onn + m Boolean
variables x\> , xn, y i , . . . , ym. The variables yi,..., ym are called probabilistic
variables. Let g(x,y) be the Boolean function computed by the (deterministic)
OBDD G. We say that G represents a function ƒ : {0, l } n —>• {0,1} with worst-case
error probability p, if for ail x G {0, l}n it holds that Prob{/(x) = g(x, y)} > 1 —p,
where y = (2/1,..., ym) G {0, l } m is chosen according to the uniform distribution.
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G is called a PP-OBDD for ƒ if it represents ƒ with worst-case error probability
p < 1/2; and G is called a BPP-OBDD for f if it represents ƒ with worst-case
error probability p < 1/2 — s for some constant e > 0.

In a similar way it is possible to define RP-OBDDs and ZPP-OBDDs. The main
resuit of this section is an exponential lower bound on the size of BPP-OBDDs
(and, therefore, also RP-OBDDs and ZPP-OBDDs) for HWB.

Before proving this result we describe a polynomial-size PP-OBDD for HWB.
This result is not surprising, since NP Ç PP and HWB has polynomial size for non-
deterministic OBDDs. We use an arbitrary variable ordering on the x-variables.
Let m > n be the smallest power of 2. Then m < 2n. With log m probabilistic
variables we branch into m randomized OBDDs. If i < n, we use a determinis-
tic OBDD with 2{n + 1) sinks (6, 5) G {0,1} x {0,. . . , n} representing the inputs
where Xi = b and sum = s. The sink (b, i) is replaced by a b-sink and the sinks
(6, 0) are replaced by 0-sinks. All other sinks are replaced by a test of another
probabilistic variable to output 0 and 1 each with probability | . If i > n, we ran-
domly output 0 or 1. Hence, each input x activâtes 2m paths and at least m + 1
give the right output. The probability of computing the correct output is at least
\ + ^ . Since it is possible to store the value of O(logn) variables in an OBDD of
polynomial size, the probability of computing the correct output can be increased
for polynomial-size randomized OBDDs to \ -f c^lp for each constant c. But the
following considérations show that it is not possible to increase this probability to
I + e for a constant e > 0.

The proofof the exponential lower bound for BPP-OBDDs relies on results from
communication complexity theory; for définitions and an introduction to this field,
we refer to the monographs of Hromkovic [13] and Kushilevitz and Nisan [16].

The proof technique which we are going to apply is to "reduce" a communication
problem which is known to be "hard" for a certain type of protocols to the function
to be represented by BPP-OBDDs. This technique is described in detail in [21].

Theorem 5.2. Let G be a BPP-OBDD for HWB with arbitrary worst-case error
probability e, e < 1/2. Then it holds that \G\ = 2QW.

Proof First, we consider the special case e < 1/8. We construct a réduction from
the following communication problem to HWB. Let INDEXm: I x F 4 {0,1},
X := {0, l}m , Y := { l , . . . , m } , be defined by INDEX^u,^) := uv for u -
( i i i , . . . , Um) G X and v £Y. Kremer et al [15] have proved that randomized one-
way communication protocols for INDEXm, where the player with the X-values
starts the communication and the worst-case error is smaller than 1/8 have length
fi(n).

The réduction is a refined version of the proof of Theorem 4. Again, let n be a
multiple of 10 and k = 0.6 n. Let x i , . . . , xn be the variables of HWB in G, and
let these variables be ordered according to n. Let t / i , . . . , yr be the probabilistic
variables of G, w. 1. o. g. let these variables be ordered by the natural variable
ordering. As in the proof of Theorem 4, choose s G {0.1 n, 0.5 n} such that the
window W = {5 , . . . , s+n — k} contains at least 0.2 n indices from {?r(l),... ,TT(À;)}.
Let m := 0.1 n and choose w±,... ,wm G W n {TT(1), . . . ,TT(/C)}.
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For every u = ( u i , . . . , u m ) G {0, l } m , we construct an assignment a(u)
G {0,1}* to r c^ i ) , . . . ,œ (̂fc) as follows. Let a(u)Wj := «j for j G { l , . . . , r n } .
Fix the values of the a(u)i, i ^ {wi , . . . , tu m }, such that a(u) altogether contains
exactly s ones. This is possible for both choices of 5, since 0 < u\-\ hnm < 0.1 n.
Next, we define an assignment b(v) to a^fc+i), . . . , x<,r(n) f° r every u e { l , . . . , m} .
Choose 6(u) such that it contains exactly wv — s ones. This is possible since
wv G W.

Now we describe a randomized one-way protocol for INDEXm. The first player
A obtains some u G X and the second player B some v G Y. Both players use a
copy of G. Let 3/1,..., ys, s < r, be the y-variables tested before x^k) m G.

The flrst player starts by choosing a random assignment for the variables
3/1, • • • > Vs and following the path in G from the source to some node z activated by
this assignment and the assignment a(u). Then she communicates z to player B.
In the same manner, player B chooses a random assignment for ys+i,. •., yr and
follows the path activated by this assignment and b(v) from the node z to one of
the sinks of G. The output of the protocol is the value of this sink.

We claim that this randomized one-way protocol computes INDEXm(w, v). Let
c be the assignment to x±,..., xn where x^^),. -., ^(fc) obtain the same values as
in a(u) and xn(k+1^ . . . ,x7r(n) obtain the same values as in b(v). Then it holds
that HWB(c) = c ^ , since the number of ones in c is s + (wv — s) — wv. It holds
that cWv = a(u)Wv = uv because of the définitions of c and a(u) and the fact that
wv G{7r(l),...,7r(A;)}.

Obviously, the above protocol uses |~log|G|] bits of communication. By the
lower bound result for INDEX mentioned above, it follows that \G\ = 2n^n\

It remains to show that this lower bound also holds for an arbitrary worst-case
error probability e, e < 1/2. We obtain this by using the following "probability
amplification" technique (independently discovered by Agrawal and Thierauf [3]
and Sauerhoff [19]).

Let G be an arbitrary BPP-OBDD with arbitrary worst-case probability e,
e < 1/2, and let e1 < e. Then we can construct a BPP-OBDD G from G with
worst-case probability ef and size \Gf\ = O(|G|m), where

Essentially, the proof of this fact works in the same way as the well-known proof
of the analogous fact for Turing machines. Here, we compute the majority vote
of m "itérations" of G by applying the OBDD-synthesis algorithm to m copies of
G, where each copy uses a different set of probabilistic variables. The opération
which we apply is the threshold function ^^jm /2 i+ i- I n contrast to the situation
for Turing machines, the number of "itérations" m has to be constant here (instead
of polynomial) in order to avoid an exponential blow-up of the OBDD size. D



114 B. BOLLIG ET AL.

CONCLUSION

The investigation of the well-structured function HWB has shown a lot of
interesting features. The function is simple for binary fan-in circuits and formulas
and BDD models which allow the implicit use of different variable orderings (like
FBDDs) or some kind of nondeterminism or the répétition of a single test. The
function is difficult for all deterministic BDD models which are strictly limited to
one variable ordering. This even holds if randomization (and bounded error) is
allowed. Moreover, the deep understanding of the structure of the function does
not lead easily to an optimal or almost optimal variable ordering.
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