
INFORMATIQUE THÉORIQUE ET APPLICATIONS

J. J. M. M. RUTTEN
A note on coinduction and weak bisimilarity
for while programs
Informatique théorique et applications, tome 33, no 4-5 (1999),
p. 393-400
<http://www.numdam.org/item?id=ITA_1999__33_4-5_393_0>

© AFCET, 1999, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1999__33_4-5_393_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Theoretical Informaties and Applications
Theoret. Informaties Appl. 33 (1999) 393-400

A NOTE ON COINDUCTION AND WEAK BISIMILARITY
FOR WHILE PROGRAMS

J.J.M.M. RUTTEN1

Abstract- An illustration of coinduction in terms of a notion of weak
bisimilarity is presented. First, an operational semantics O for while
programs is defined in terms of a final automaton. It identifies any two
programs that are weakly bisimilar, and induces in a canonical manner
a compositional model T>. Next O = T> is proved by coinduction.

AMS Subject Classification. 68Q10, 68Q55.

1. AUTOMATA

Let O be a (possibly infinité) set of output symbols. An automaton with outputs
in O is a pair S = (5, a) consisting of a set S of states and a transition function
a : S —> O + S. The transition function a spécifies for a state s in 5 either an
output o in O or a next state s' in 5. The intuition is that in the first case,
the computation is terminating, with observable output o; in the second case, the
computation takes one step and will continue from the new state s'. We shall
sometimes write s j o if a(s) = o G O, and s—>s s' if a(s) = sf G 5. If S is clear
from the context, we shall simply write s—»s'.

This type of automaton is sometimes referred to as Elgot machine, because of
the prominent rôle similar such structures play in the work of Elgot (cf. [3]).

Keywords and phrases: Coalgebra, automaton, weak bisimulation, coinduction, while
program.
1 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands; e-mail: janr@cwi.nl URL:
www. c wi. ni / ~ j anr

© EDP Sciences 1999

394 J.J.M.M. RUTTEN

A homomorphism between automata S — (5, ce) and T = (T, f3) is a function
ƒ : S —> T for which the following diagram commutes:

O + S — * ;

Here ido + ƒ acts as the identity on O, and maps 5 to T by ƒ. A function ƒ is
a homomorphism precisely when s—>$ sf implies ƒ (s)—>T ƒ (S ') an<3 s I ° iniplies
ƒ (s) I o, for all' s in 5.

A bisimulation between two automata S and T is a relation R <Z S x T with,
for all 5 in S and £ in T: if s Rt then

1. if s—>s s' then t—>Ttf and s' E £';
2. if s i o then t J, o;
3. if t—>T tf then 5—>s s' and 5' R t'\
4. if t [o then s i o.

A bisimulation between S and itself is called a bisimulation on S. Unions and
(relational) compositions of bisimulations are bisimulations again. We write s ~ 5'
whenever there exists a bisimulation R with sRs''. This relation ~ is the union of all
bisimulations and, therewith, the greatest bisimulation. The greatest bisimulation
on one and the same automaton, again denoted by ~, is called the bisimilarity
relation. It is an équivalence relation.

Let Af = {0 ,1 , . . . } and let C = (OxAf)ö {00}. The set C can be supplied with
a transition function 7 : C —> O + C by defîning 7((o, 0)) = o, 7({o, n + 1)) = (o, n),
and 7(00) = 00. The automaton C = (C^j) is of special interest because it
is final in the sense that for any automaton 5 = (5, a), there exists a unique
homomorphism a$: S —> C:

defined, for s in 5, by

OO II S =

If ofi(s) = 00 then we say that (the computation starting in) s diverges. If 5 does
not diverge we say it converges.

There is the following principle:

COINDUCTION: Vs, 5' € 5, s ~ sf <̂=̂> aö(s) = aö(s'). (1)

COINDUCTION AND WEAK BISIMILARITY FOR WHILE PROGRAMS 395

Coinduction can be used as a proof principle: in order to prove cfi(s) = a"(s'), it
is sufficient to establish the existence of a bisimulation relation R on 5 with sRsf.

2. WHILE PROGRAMS

Let E be an abstract set of program states and let the set Prog of while
programs, be given by the following syntax:

P ::= a\ P]Q \ if ç then P else Q | while c do P.

Hère a is in Act, the set of actions, and ç is in Cond, the set of conditions, with

Act = {a | a : E -^ E} and Cond = {c | c Ç E},

where S ^ E is the set of all partial fonctions on E. Clearly, more concrete
définitions can be given for either of these sets. Skip statements and assignments
would be typical atomic actions, Boolean expressions could be used as a syntax
for conditions, and program states are usually defined as functions from variables
to values. We are not interested in such details here. Although not needed for
a standard interprétation of while programs, atomic actions are allowed to be
partial, which will be convenient later.

Next the behaviour of programs is defined by specifying, in the usual manner,
a transition function on pairs {P, a) of programs and program states, as follows:

{&•>&) I o,{a)y if a(a) is defined; {a,a)—>(a, cr), otherwise;

(; Q ,) { Q 1) , (,) i ;
(if ç then P else Q, a)—• (P, a), if a G c;
(if ç then P else Q, a)—> (Q,a), if a 0 c;
{while c do P, a)—> (P; (while ç do P), a), if a G c;
{while ç do P, a) j cr, if cr ^ c.

The above détermines a transition function a : (Prog x E) —> E + (Prog x S).
Taking O = S in Section 1 then yields a function

a* : (Prog x E) -> (E x jV) U {oo},

which can be viewed as a first operational semantics for while programs. The
function a$ assigns to a pair {P, cr) either oo, corresponding to the fact that the
computation when started in (P, cr) is diverging, or a$ yields a pair (a\n), con-
sisting of an end resuit af together with a natural number indicating the number
of computation steps that were needed to obtain it.

Coinduction may now be applied to establish some familiar identities. Let us
write P ~ Q whenever (P, a) ~ (Q, a), for ail cr. Writing c' for the complement of
c Ç S, we have, for instance,

if c then P else Q ~ if d_ then Q else P,

396 J-J.M.M. RUTTEN

since for any er, the following relation obviously is a bisimulation:

{((if c then P else Q, er), ((if d_ then Q else P, <r))} U A,

where A is the identity relation on Prog x E. It follows that, for any er G E,

a t t«ifç then P else Q, a)) = ^«ifç^ then Q else P, cr)).

Because ofi keeps track of the number of computation steps, it is clearly not very
abstract. For instance, letting 1 be the identity on E (corresponding to a skip
statement), P and 1; P are generally not bisimilar (unless the program P will
diverge for any a). Consequently, the two programs will not be identified by the
operational semantics aK A more abstract semantics is needed.

3. WEAK BISIMILARITY

Recall from Section 1 that C = (O x J\f) U {oo}. Let p : C —> O map (o, n) to
o and let p be undefined in oo. Let a* = p o a$:

The partial function a} is a more abstract version of ofi in that it no longer registers
the number of computation steps. It can be characterized as follows. Let ==>s
dénote the reflexive and transitive closure of the transition relation —»$ of an
automaton 5 = (5, a). A weak bisimulation between automata S and T is a
relation R Ç S x T with, for ail s in S and t in T\ if s Rt then

1. if s—>s s' then t=>T t1 and s1 R t';
2. if s l o then t = > T t' | o;
3. if t—>T t

f then s=>s s' and s' R t';
4. if 11 o then s = ^ s s' | o.

Unions and compositions of weak bisimulations are weak bisimulations again. Two
éléments s and 5' in S are called weakly bisimilar, denoted by s ~ s', if there exists
a weak bisimulation R on S with s R s'.

Based on the notion of weak bisimulation, there is the following principle:

Vs,5 ;eS, s « s' <̂=̂> (^(s) = a1"(5'). (2)

Again, the implication from left to right may serve as a proof principle: in order
to prove c^(s) = a^s ') , it is sufficient to show that 5 and s! are weakly bisimilar.

COINDUCTION AND WEAK BISIMILARITY FOR WHILE PROGRAMS 397

Applying all this to while programs by taking O = £, we obtain a (partial)
function ofi : Prog x S - > S . Equivalently, there is a function

O : Prog -> (E - E), O{P){a) = a\{P,a)),

which is the classical operational semantics of while programs. Writing P « Q
whenever (P, a) ~ (Q, a) for ail a, coinduction takes the following form:

^-COINDUCTION: VP,Q e Prog, P « Q <=> O(P) = 0(Q).

Many semantic equalities are now immédiate by coinduction from the fact that
there exist a suitable weak bisimulation, such as for the following pair of programs:

while c do P « if ç then (P; while ç do P) else 1.

Note that these statements are not bisimilar in the sensé of Section 2.

4. A COMPOSITIONAL SEMANTICS

An operational semantics for while programs is usually followed by a composi-
tional semantics (also called denotational), which is typically obtained as a least
fixed point of a monotone or continuous operator on a complete lattice or com-
plete partial order {cf. [2]). Hère we show that such a compositional semantics
can be directly obtained from the automaton {Prog x £,a) or, equivalently, from
the operational semantics Ö. As a conséquence, the équivalence of bot h semantics
will be immédiate by coinduction.

Recalling that for any partial function a : E —̂ S, we have an element a in
Prog, we can define semantic operators of the following types

if ç then (—) else (—)
while ç do (—)

: (E
: (E
: (S

->•£)'
^ E) :

- S)

< - (E -
2 ^ (E ^

-> (E-ï

S)

S)

S)

by simply putting, for partial fonctions a, b : S —̂ S,

a; 6 = 0(a;6)
if ç then a else b = O (if c then a else b)

while c do a = O (while ç do a).

Next a compositional semantics V : Prog —» (S —̂ E) can be defmed as usual:

V{a) = a
V{P-Q) - 2>(P);2>(Q)

Z>(if ç then P else Q) = if ç then V{P) else V(Q)
î>(while ç do P) = while ç do V(P).

398 J.J.M.M. RUTTEN

In order to prove the équivalence of O and P, we first observe that

P « O(P), (3)

for all P in Prog. Secondly, weak bisirnilarity is a congruence relation; that is, for
instance,

if P « P ' then (while c do P) « (while ç do P'), (4)

and similarly for the other construct s. It is now straightforward to prove

O(P) = V(P)

for ail P, by induction on the structure of P. Supposing, for instance, that O(P)
— V(P), it follows that

V (while ç do P)
= while ç do V(P)

= while ç do O(P) [by the inductive hypothesis]
= O (while ç do O{P)) [by définition]

= O(while ç do P)

since P ~ O{P) implies (while ç do F) ~ (while ç do O(P)), from which the last
equality follows by coinduction.

5. NOTES AND DISCUSSION

Since the automata we have been dealing with are coalgebras of the functor
O + (—) on the category of sets and functions, the present note can be considered
as yet another exercise in coalgebra, similar to that of [6], which deals with de-
terministic automata. Thus a further illustration is given of the fact that many
apparently different manifestations of circular behaviour-such as modelled by au-
tomata and while programs but furthermore including various kinds of transition
Systems, infinité data types and many other examples-can be described in a con-
ceptually uniform and simple way, the only ingrédients of the theory being the
notions of coalgebra (= automaton), bisimulation, and homomorphism. This uni-
formity regards also the définitions of both operational and denotational semantics
in one and the same framework, where the operational automaton does the work,
so to speak, of defining the semantic operators, without the need of introducing
sets carrying additional structure (such as partial orders).

The theory of ordinary bisimulation is a by now rather well developed part of
(universal) coalgebra. This is not at all the case for weak bisimulation. The present
définition has been inspired by Milner's canonical example of weak bisimulation for
concurrent processes {cf. [4]). A gênerai coalgebraic theory of weak bisimulation
remains still to be formulated.

COINDUCTION AND WEAK BISIMILARITY FOR, WHILE PROGRAMS 399

The present treatment of while programs can be related to the discipline of
itération théories (see [1] for a recent over view) as follows. From the diagram in
Section 3, it follows that o^ = [ido?^] ° a> which we recognize as one of the
fundamental laws of itération théories. The coinduetion principle of (2) can be
viewed as a coalgebraic counterpart of this algebraic law,

6. PROOFS

The proofs of the statements in Section 1, including (1), all follow from more
genera! observations on universal coalgebra (cf. [5]). Direct proofs are not very
difHcult either.

For (2), from left to right, consider a weak bisimulation R with s Rt. It follows
from the weak bisimulation property that s converges iff t converges. If o^(s) = o
then s=>s s' I o. Because R is a weak bisimulation, this implies t==>s t11 d with
o = of. Thus a*{t) = a

For (2), from right to left, suppose a^(s) ~ ^(t). If both are undefined then
there are Si and U with s •= SQ—>Si—>S2—• • •• * and t — ÏQ—>i\—>t2—>•
Now {(si, ti)}i is a (weak) bisimulation. If both are defined then there exist n, m,
Si. and ti with s — SQ—>si—» • • — -* s n J, o and t — to—>t\—> • >tm J, o. In
this case, {{si, tj) \ 0 < i < n, 0 < j < ra} is a weak bisimulation.

For (3), consider a program P and a program state o. The following relation
can be readily shown to be a weak bisimulation:

{ ((P', a>), (OÇP), a)) I {P, a>=» (P\ a') } ,

using the fact that {O(P),a) ï r if ö{P)(a) = T, and (O(P),<r) -> (ö(P),a), if
O(P)(a) is undefined.

For (4), let R be a weak bisimulation with (Pycr) R {P', er), for any a in S. Then

{{ {while e do P,a) , (while ç do P',<J)) | a € S} U

{((Q; (while e do P), r) , (Q'; (while ç do P'), r')) | (Q, r) R (Q', r')}

is a weak bisiniulation,, showing that (while c do P) w (while e do Pf). Sirnilarly
for the other constructs.

REFERENCES

[1] S..L. Bloom and Z. Ésik, The equational logic of fixed points. Theoret. Comput. Sci. 179
(1997) 1-60.

[2] J.W. de Bakker, Mathematical theory of program correctness. Prentice-Hall International
(1980).

[3] C.C. Elgot, Monadic computation and itérative algebraic théories, H.E. Rose and J.C.
Shepherdson, Eds., Logic Colloquium '73. North-Hoüand, Stud. Log. Found. Math. 80
(1975) 175-230.

400 J.J.M.M. RUTTEN

[4] R. Milner, Communication and Concurrency. Prentice Hall International, New York,
Prentice Hall Internat. Ser. Comput. Sci. (1989).

[5] J.J.M.M. Rutten, Universal coalgebra: A theory of Systems. Report CS-R9652, CWI,
1996. FTP-available at ftp.cwi.nl as pub/CWIreports/AP/CS-R9652.ps.Z. Theoret.
Comput. Sci., to appear.

[6] J.J.M.M. Rutten, Automata and coinduction (an exercise in coalgebra). Report SEN-
R9803, CWI, 1998. FTP-available at ftp.cwi.nl as pub/CWIreports/SEN/SEN-
R9803.ps.Z. Also in the proceedings of CONCUR '98, Lecture Notes in Comput. Sci.
1466 (1998) 194-218.

Received October 20, 1998. Revised April 26, 1999.

