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COMPUTING THE RABIN INDEX
OF A PARITY AUTOMATON

OLIVIER CARTON1 AND RAMÓN MACEIRAS1

Abstract. The Rabin index of a rational language of infinité words
given by a parity automaton with n states is computable in time O(n2c)
where c is the cardinality of the alphabet. The number of values used
by a parity acceptance condition is always greater than the Rabin in-
dex and conversely, the acceptance condition of a parity automaton
can always be replaced by an equivalent acceptance condition whose
number of used values is exactly the Rabin index. This new acceptance
condition can also be computed in time O(n2c).

AMS Subject Classification. 68Q45, 68Q68, 3D15.

1. INTRODUCTION

Since Büchi introduced automata on infinité words in [1], several acceptance
conditions for paths have been considered. The acceptance condition presented
by Muller in 1963 [8] explicitly spécifies the set of infinitely often repeated states.
Prom McNaughton's theorem [5], it is known that any rational set of infinité words
is recognized by a deterministic automaton with a Muller acceptance condition.
The Rabin condition [9] was first introduced for automata on infinité binary trees
but has since been considered for automata on infinité words. This acceptance
condition defines a hierarchy among rational sets of infinité words based on the
number of accept ing pairs required to recognize a given set of infinité words. This
number of pairs is usually called the Rabin index of the set. It turns out that
the classes of this hierarchy are particular classes of the more gênerai hierarchy
discovered by Wagner [13] and that this hierarchy has a topological interprétation.
Another acceptance condition is the parity acceptance condition also known as the
Rabin "chain" condition. It has been first introduced by Mostowski in [6]. It was
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used independently to obtain forgetful stratégies in [7] and [3]. This acceptance
condition is also convenient for boolean opérations [2].

Krishnan et al. showed that the computation of the Rabin index of languages
given by deterministic Rabin (or Streett) automata is NP-complete [4]. The sit-
uation is different with Muller automata. The methods developed by Krishnan
et al. can be used to design an algorithm to compute the Rabin index in poly-
nomial time, provided the languages are given by deterministic Muller automata.
Wilke and Yoo have presented an efficient algorithm that computes the Rabin
index of a deterministic Muller automaton with n states and m accepting sets
in time O(m2nc) where c is the cardinality of the alphabet [14,15]. The upper
bound obtained using the methods of [4] would be O(m2n2c). In this paper, we
introducé an algorithm which computes the Rabin index of a parity automaton
in time O(n2c). At the same time, this algorithm also computes an acceptance
condition for this automaton which uses the least number of values.

This paper is organized as follows. The basic définitions for automata on infinité
words are recalled in Section 2. The Rabin index and the alternating chains used
to compute it are defined in Section 3. Section 4 présents an algorithm to compute
the Rabin index of a parity automaton and to minimizes its acceptance condition.
Finally, it is proved in Section 5 that the algorithm is correct. The complexity of
the algorithm is also studied in this section.

2. AUTOMATA ON INFINITÉ WORDS

In this paper, we consider automata recognizing sets of infinité words also called
tu-words. We refer the reader to [11] for a complete introduction to such automata
but we recall hère the main définitions. A finite automaton A is an automaton
(<2, A, E, go, $) where Q is a finite set of states, E is the set of transitions, qo is the
unique initial state and $ is the acceptance condition. Ail automata considered
in this paper are deterministic. The accepting condition détermines a family of
sets of states which are said to be accepting. Subsets of states which are not
accepting are said to be rejecting. For an infinité path 7 in the automaton, we
dénote by inf (7) the subset of states which appear infinitely often along 7. Since
the number of states is finite, the subset inf (7) is always nonempty. A path 7
in the automaton is successful if it starts at the initial state and if inf(7) is an
accepting subset of states. Many different kinds of acceptance conditions have
been studied in the literature. In this paper, we are mainly interested in automata
with a parity acceptance condition but we also consider automata with a Muller
or a Rabin acceptance condition.

We recall here briefly the définition of the different acceptance conditions that
we consider in the paper.

A Muller automaton is a deterministic automaton {Q,A,E,qo,T) where the
acceptance condition ^* is ai-familyo£subsets ©f'statest Â  subset of states isthen
accepting if it belongs to the family T. A Muller condition is thus an explicit
description of the family of accepting subsets. Any automaton can be viewed
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as a Muller automaton whose acceptance condition F is the family of accepting
subsets. McNaughton's theorem [5] states that any rational set of infinité words
is recognized by a Muller automaton.

A Rabin automaton is a deterministic automaton (Q, A,E,qo,7Z) where the
acceptance condition IZ is a family {(£1, C/"i),... , (Lm, t/m)} of pairs of subsets
of states. A subset R is then accepting if R D Li = 0 and RnUi ^ 0 for some
pair (Li)Ui) of the acceptance condition. Any rational set of infinité words is
recognized by a Rabin automaton [9].

A parity automaton is a deterministic automaton (Q, Ay E, (jfO)71") where the
acceptance condition n is a function from Q to N which associâtes an integer with
each state of the automaton. The function n is naturally extended to subsets of
states by setting n(R) = max^i? n(q) for any subset R of states. A subset R of
states is then accepting if TT(R) is odd. Notice that a parity automaton is a par-
ticular case of a Rabin automaton. If the sets Li and Ui are respectively defined
by Li = {q | ir(q) > 2%} and Ui — {q | n(q) — 2z — 1}, the Rabin acceptance condi-
tion {(Li, t / i ) , . . . , (Lm, Um)} for ^ = 1(K(Q) H- 1)/2J is equivalent to the parity
acceptance condition. Conversely, any rational set of infinité words is recognized
by a parity automaton [6]. Parity automata are also called chain automata in the
literature [2].

A subset R of states is said to be essential if it is equal to inf (7) for some
infinité path 7 which starts at the initial state. Clearly, a subset R of states is
essential iff there is a cycle c in the automaton, which is accessible from the initial
state, such that the set of states encountered along the cycle c is exactly R. The
successful paths are then defined by the accepting essential subsets of states. This
justifies the terminology. Note that if two essential subsets R and S intersect non
trivially, the union R U S is also an essential subset.

3. RABIN INDEX AND ALTERNATING CHAINS

In this section, we recall the définition of the Rabin index of a set of infinité
words. We explain how this integer measures the complexity of a rational set of
infinité words from the automata-theoric point of view and from the topological
point of view. We also recall how it can be computed using alternating chains in
automata.

The Rabin index ind(X) of a rational set X of infinité words is the minimal
number of pairs needed in a Rabin acceptance condition to recognize the set X,
More formally, the integer ind(X) is defined by

ind(X) = min{card(7£) | 3A = (Q, A, E, q0, U) such that A recognizes X}-

The Rabin index of X measures the size of a Rabin acceptance condition needed to
recognize X, It also has a topological interprétation. It is known that the rational
sets of infinité words lie very low in the Borel hierarchy. More precisely, any
rational set of infinité words is equal to a boolean combination of G^-sets. The
Rabin index measures then the size of the boolean combination which is equal
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to X. The Rabin index of X is indeed the smallest n such that there are two
séquences (Xi)i<i<n and (Yi)i<i<n of n G^-sets such that X = UILi %i — Y%.

We now come to the définition of alternating chains in automata. This défini-
tion does not depend on a particular acceptance condition. A chain in A is an
alternating chain with respect to set inclusion of accepting and rejecting subsets
of states. More formally, a chain in A of length m is an increasing séquence

R1GR2C'"CRm (1)

of m essential subsets of Q such that Ri is an accepting set and such that, for
1 < i < m, Ri are alternately accepting and rejecting. This means that R2 is
rejecting, R3 is accepting and so on. Notice that it is important in the définition
that the subsets Ri are essential.

It is usually not assumed in the literature that the first set R\ of a chain
is accepting. Chains are usually called positive or négative according as #1 is
accepting or rejecting. However, we are in this paper only interested in positive
chains and we always assume that R\ is accepting. We dénote by m(A) the
maximal length of (positive) chains in A. By convention, we set m(A) = 0 if there
is no chain in A, that is, if the automaton A has no accepting essential set. It is
obvious by définition that m(A) is finite for any finite automaton A. Indeed, one
has the inequality m(A) < card(Q) since the inclusions in (1) are strict. When
the automaton A is a parity automaton (Q, A, E^CO^TT), this upper bound can be
sharpened. Indeed, the séquence 7r(i?i),... ,n(Rm) is then a strictly increasing
séquence of integers and thus m(A) < 7r(Q).

Note that m(A) = 0 iff A has no accepting essential set and that m(A) = 1
iff the family of accepting essential sets is closed by taking superset. Thus m(A)
= 0 iff the set recognized by the automaton is empty and m(A) — 1 iff the set
recognized by the automaton is G§ by Landweber's theorem.

The following theorem relates the maximal length m(A) of chains in an
automaton and the Rabin index of the set X recognized by the automaton [12,13].
It shows in particular that the Rabin index is computable.

Theorem 1 (Wagner 77). The Rabin index of a ratïonal set X of infinité words
recognized by a deterministic automaton A is given by the expression:

ind(X) - l(m(A) + 1)/2J

where [a\ dénotes the greatest integer not greater than a.
The previous theorem shows that the Rabin index can be computed. Indeed,

there are finitely many chains in an automaton which can be efïectively enu-
merated. Thus, the integer m(A) can be effectively computed. However, the
complexity of this computation highly dépends on the acceptance condition. It
was shown in [4] that the computation of the Rabin index is NP-complete for
a Rabin automaton while it was shown in [14,15] that it is polynomial for a
Muller automaton. We prove in this paper that it is polynomial for a parity
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automaton. We describe a polynomial algorithm which takes a parity automa-
ton (Q, A E, qo,7r) and outputs the Rabin index of the set recognized by the
automaton. The algorithm also outputs another acceptance condition 7r' such that
(Q, A, E, ÇOÎ TT') recognizes the same set and which is minimal in a sensé explained
below.

The following définition captures the fact that two parity fonctions n and TT'
define the same set of accepting sets. Let A = (Q, A, 25, qo) be an automaton. Two
fonctions ?r and TT' are said to be equivalent ifffor any essential set R, TT(R) ~ 7rf(R)
mod 2. This définition is motivated by the fact that if TT and TT' are equivalent,
then both parity automata A = (Q, A, E. go, n) and Af — (Q, A, E, 30, TT') have the
same accepting essential sets and thus recognize the same set of infinité words.

The algorithm that we give in the next section computes the Rabin index of the
set recognized by a parity automaton. It also outputs another parity acceptance
condition whose existence is stated by the following theorem.

Theorem 2. Let A = (Q,A,E,qo,7r) be a parity automaton recognizing a set X.
There exists another function TT' from Q to the set {0,... , m(A)} which satisfies

< 7r(g) for any state q and which is equivalent to TT.

For a proof, see [2]. The algorithm that we describe in the next section
provides another proof of this resuit. Since the parity function TT' given by the
theorem is equivalent to 7r, the automaton Af = (Q, A, E^qo^ir') recognizes the
same set of infinité words. The greatest integer used by the parity condition, that
is TT(Q) = maxgeQ 7r(g) may be considered as the size of the condition. It corre-
sponds to the number of pairs (with a factor 2) if this parity condition is viewed
as a Rabin condition. We have already mentioned that for any parity automaton
the inequality m(A) < TT{Q) holds. Thus, the parity function TT' given by the
previous theorem uses the least number of values as possible. For a given Rabin
automaton, it is not possible in gênerai to modify the acceptance condition to
have the minimal number of pairs (i.e.. the Rabin index), although it is possible
to find another Rabin automaton recognizing the same language and which has
the minimal number of pairs in its acceptance condition. In contrary, it is always
possible to modify the acceptance condition of a parity automaton such that the
greatest integer used by the new condition is minimal.

4. THE ALGORITHM

In this section, we describe the algorithm which computes the Rabin index of
a set recognized by a parity automaton A = (Q)A,E,qoy7r). Furthermore, the
algorithm computes the parity function irf given by Theorem 2. We have then the
following theorem which is the main resuit of the paper.

Theorem 3. The Rabin index of a set of infinité words recognized by a parity
automaton A = (Q, A, £?, qo,7r) and the reduced parity function 7r' which is equiv-
alent to 7T can be computed in time O(\Q\2\A\).
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The algorithm is based on some results about parity automata that we first
establish.

For an automaton A = (Q, Ay E, #o> TT), the integer m(A) is equal to the maximal
length of chains in A- We extend the function m to a function from V(Q) to N
which assigns to every subset P of Q, the maximal length of a chain contained
in P. More formally, m(P) is the greatest integer m such that there is a chain
Ri,... , Rm with Rm C P. By convention, we set m(P) — 0, if there is no chain
contained in P, that is, if no accepting essential subset is included in P. Clearly,
we have m{A) = m(Q). Note also that if P ' C P, then m(Pf) < m(P).

The algorithm is based on the following two propositions. The first
proposition essentially states that if suffices to compute the values of m{R) when
R is a maximal essential subset.

Proposition 4. Let A ~ (Q, A, E, go,7r) &e a parity automaton. Let P be a subset
of Q and let R\^R2^.^Rn be the maximal essential subsets (with respect to set
inclusion) included in P . One then has

myP) = <
10 otherwise.

Proof Any essential subset of a chain in P is included, by définition, in a maximal
essential subset included in P. D

We now introducé some définition. Let A = (Q, A,E,qOi7r) be a parity
automaton and let P be a subset of states. We define the derivative Rf of R
by R' = {q <E R\ n(q) < TT(R)}. The derivative Rf of R is thus a strict subset of R
and if TT(R) > 0, it satisfies 7r(Rf) < TT(R). Furthermore, the complement R — R'
of B! in R is equal to {q e R \ ir(q) = ?r(iï)}.

The following proposition relates the value m(R) with the value m(Rf).

Proposition 5. Let A = (Q,A,E,qoy7r) be a parity automaton and let R be an
essential subset of Q. One then has

{0 if7v(R) = 0

m(R') if7r(R) - m{Rf) is even
m(Rf) + 1 otherwise.

Proof If TT(R) = 0, then any essential subset included in R is rejecting and there
is no chain contained in R. Thus, one has m(R) = 0.

Let m be the integer m(Rf). By définition of m, there is a chain Rlt... , jRm

contained in R'. Since this chain is also contained in R, one has m(R) > m.
Conversely, suppose that R±y... ,i2m+i is a chain contained in R. The définition
of m implies that Rm+i is not included in Rf. Thus, the intersection # m + 1 n
(iï — i2;) is nonempty and 7r(i2m+i) = 7t(R).

We first suppose that n(R) — m is even. Since both integers m and TT(R)
have the same parity, both sets i?m and i? are either accepting or rejecting. If



COMPUTING THE RABIN INDEX OF A PARITY AUTOMATON 501

Ri,... , jRm+i is a chain contained in R, then ir(R7n+i) = TT(R). Therefore, both
sets Rm and Rm+i are either accepting or rejecting. This is a contradiction with
the alternation of the chain.

We now suppose that TT(R) — m is odd. Since the integers m and ir(R) do not
have the same parity, one of the two sets Rm and R is accepting and the other is
rejecting. The séquence j?i, . . . , Rm, R is then a chain contained in R. This shows
that m(R) > m + 1. Conversely, if i?i , . . . , Rm+2 is a chain contained in R, then
7r(#m+i) = TT(R) and since Rm+i C Rm+2 C #, one also has 7r(i?m+2) = ?r(iîm+i).
This is a contradiction with the alternation of the chain. D

These propositions above motivate the following algorithm Computing the Rabin
index of a parity automaton and minimizing its acceptance condition. The states
which are not accessible from the initial state can be found by a depth first search
in time O(|Q||A|). These states are removed and we can assume that any state of
the automaton is accessible from the initial state.

The algorithm RABININDEX is the following.
Algorithm RABININDEX
Input A = (Q, A, E, qOy TT)

for each q in Q do
TT'M-0

m(A) <- M(Q)
Output l(m(A) + 1)/2J and A' = (Q,A,E,qO:7rf).
The algorithm inputs a parity automaton. The recursive function M computes
the value of rn(Q). It also computes the reduced acceptance condition TT'. The
algorithm uses then Theorem 1 to compute the Rabin index. It outputs both
the Rabin index and the automaton with the reduced acceptance condition. The
function M is computed as follows.
function M(P)

max <— 0
for each maximal essential subset Ri included in P do

if iï{Ri) = 0 then
m<-0

else
m <
if 7r(Ri) — m is odd then m <— m -h 1

for each q G Ri - R[ do
7r'[g] <— m

max <— max(max , m)
Return max.

5. CORRECTNESS AND COMPLEXITY OF THE ALGORITHM

In this section, we prove that the algorithm described in the previous section
is correct and we analyse its running time. This analysis is based on a labeling of
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the nodes of the call tree of the function M. This labeling is described in the next
section.

5.1. LABELING OF THE CALL TREE OF M

The algorithm is mainly based on the recursive function M whose call tree
we now study. Each node of the call tree corresponds to a call M(P) for some
subset P of Q, The root of the tree corresponds to the call M(Q). The sons of
a node corresponding to a call M(P) correspond to the calls M(R[),... , M(Rf

rn)
where R±,... , Rm are the maximal essential subsets included in P. Notice that
the sets Ri are pairwise disjoint. Indeed, if two essential subsets intersect non
trivially, their union is still an essential subset and they cannot be maximal in P
unless they are equal. Notice also that if 7r(Ri) > 0, the derivative R!i is a strict
subset of Ri and thus it is also a strict subset of P. This shows that if the
nodes along a branch of the tree correspond to the séquence M (Pi), . . . , M (Pk)
of calls, one has the séquence Pi 2 * * * 2 Pk of strict inclusions. Furthermore,
since ir(Rf) < 7r(R) < TT(P), the séquence TT(PI), . . . ,7r(Pfc) is a strictly decreasing
séquence of integers. Recall that two sons of the same node correspond to calls
M (Pi) and M(P2) with Pi n P2 = 0. Combining these two properties, one has
that there is at most one node corresponding to a call M(P) for any nonempty
subset P. Furthermore the nodes corresponding to a call M(0) are leafs of the
trees and these calls always return 1. In the sequel, we identify a node of the call
tree with the corresponding call.

We now define a labeling of the nodes of the tree. This labeling will allow us
to show that the number of nodes in the whole tree is bounded by the number of
states. It will also be used to show the correctness of the algorithm. We label each
node of the tree which is different from the root with a nonempty subset of states.
Let M(P) be a node of the tree and let M(R) be one of its sons where R is one
of the maximal essential subsets included in P. We label the node M(Rf) with
the subset R — Rf of states. Observe that this label is a nonempty subset since
the derivative R! is a strict subset of R whenever n(R) > 0. Observe also that the
label of the call M(R) is disjoint from Rf but it is included in R. By the chain
property along the branch, if the node M (Pi) is an ancestor of the node M(P2)>
the label of M(P2) is included in a maximal essential subset R included in Pi.

We claim that the labels of the nodes are pairwise disjoint. Consider two
different nodes M (Pi) and M(P2) of the call tree. Either, these two nodes are
on the same branch of the tree and one of them is the ancestor of the other or
they have a least common ancestor M(P) in the tree which is different from both
M(Pi) and M(P2).

In the former case, one may suppose that M(Pi) is an ancestor of M(P2).
The label of M(P2) is then included in Pi which is disjoint of the label of M (Pi).
The labels of the two nodes M (Pi) and M(P2) are then disjoint.

In the latter case, there are two different maximal essential subsets i?i and R2

included in P such that the labels of the call M (Pi) and M(P2) are respective
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subsets of Ri and i?2- The labels of the two nodes M (Pi) and M(P2) are then
disjoint since Ri and R2 are disjoint.

5.2. CORRECTNESS

We prove in this section that the value returned by any call M(P) of the
function M is m(P) and that the function ix1 which is globally computed by ail
the recursive calls made by M(Q) satisfies the properties of Theorem 2.

We first claim that the function M computes m(P). The computation of the
function M is based on Propositions 4 and 5. The outer loop of the function M
computes the maximum value of M (Ri) for ail maximal essential subsets Ri in-
cluded in P as in Proposition 4. The value of M(Ri) is, as in Proposition 5,
computed from the value of M(Rf

t) which is itself computed by a recursive call of
the function M. The function M terminâtes since any recursive call is made for
a strictly smaller set. We actually prove below that the total number of recursive
calls is bounded by the number of states of the automaton.

We now study the function 7r' which is computed by the function M. We claim
that for each state ç, there is at most one assignment ^[q] <— m in the running
of M. If the value 7rf(q) is set by a call M(P), the state q belongs to R — R!
where R is a maximal essential subset included in P, The state q belongs then to
the label of the son M(Rf) of M(P). Since the labels of the nodes are pairwise
disjoint, there is at most one such assignment. Furthermore, irf(q) is then set to
m(R) bythe previous discussion.

We now claim that the parity function TF' computed by the function M is
equivalent to n and that 7r'(ç) < ir(q) for any state q of the automaton.

We need the following lemma which relates the functions m and TT.

Lemma 6. Let A = (Q,A, E,qo,7v) be a parity automaton and let R be an
essential subset of Q, we then have

m(R) < TT(R)

m(R) = it(R) mod 2.

Proof. Let m be m(R). By définition, there is a chain jRi,... , it!m contained in R.
The séquence ^(it^), . . . ,7r(Rm) is a strictly increasing séquence of integers and
thus m(R) < TT(R). Furthermore, if m and TT(R) do not have the same parity, the
séquence R^ . . . , Rm, Ris a, chain of length m+ 1 which contradicts the définition
of m. Thus one has m(R) = TT(R) mod 2. D

We are now able to prove the two statements about the function TT'. We first
prove that 7rf(q) < TT(Ç) for any state q. Let q be state of the automaton. If
7r'(g) = 0, the inequality trivially holds. Otherwise, there is a unique node M(P)
in the call tree such that q belongs to R — R! for some maximal essential subset R
included in P. Since q € R — Rf, one has ix(q) = TT(R). The value Kf{q) is then set
to m(R) and the inequality holds by the previous lemma.
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We finally prove that the functions n and TT' are equivalent, that is, irf(S) = TT(S)
mod 2 for any essential subset 5 of the automaton. Let S be an essential subset of
the automaton. Note first that if S is included in a subset F, it is then included in
one of the maximal essential subsets included P and it is disjoint from all others.
By définition, S is included in at least one of the maximal essential subsets. If S
intersects non trivially two essential subsets JRI and i?2, the three subsets Suiüi,
S U R2 and S U R\ U R2 are also essential. Thus R\ and R2 cannot be maximal
unless R\ = R2 and S C R±. Furthermore, if S is included in an essential subset R>
one has S C R! iff n(S) < ir(R) since R - Rf = {q\ ir(q) = TT(R)}. It follows tha t
there is a unique branch M (Pi),... , M (Pk) of nodes in the tree such that P\ — Q,
Pi 2 • • ' 2 pk 2 S and TT(PI) > • • • > T T ^ ) = TT(S). Thus, all assignments to
7Tf(q) for the states of S are made by calls which belong to the subtree rooted in
M(Pk). There is then a maximal essential subset R of Pk such that S Ç R. Since
TT(5) = 7r(it!) = 7r(Pjt)) the intersection 5 fl (i2 — iï') is nonempty. For any state q
oï S n(R- Rf), 7Tf(q) is set to m(R). For any state q of 5 fl E', 7r'(g) is set to a
value m(P) for some subset P of Rf and thus Tr'(g') < m(R) since P Ç R. Finally,
TT'(S) is equal to m(R). By the previous lemma, one has TT'(S) = TT(S) mod 2.

5.3. COMPLEXITY

The running time of the algorithm is the running time of the function M. The
function needs to compute the maximal essential sets included in the subset P.
Let Gp be the oriented graph obtained by restricting the automaton to the states
of P. A subset R is a maximal essential subset included in P iff it is a strongly
connected component of Gp which is not reduced to a single vertex with no loop.
The graph Gp can be computed in time O(|Q||A|) and by Tarjan's algorithm [10],
its strongly connected components can be computed in time O(|Q||A|). Finally,
the maximal essential subsets included in P can be computed in time Ó(|Q||^4|).

To analyze this running time, it remains to upper bound the number of recursive
calls made by M. Since the labels of the nodes are pairwise disjoint, the number
of nodes in the call tree is bounded by \Q\. We have then proved that the running
time of the algorithm is bounded by O(|Q|2|A|) as stated in Theorem 3.
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