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UNIVERSALITY OF REVERSIBLE HEXAGONAL
CELLULAR AUTOMATA * **

KENICHI MORITA1, MAURICE MARGENSTERN2 AND
KATSUNOBU IMAI1

Abstract. We define a kind of cellular automaton called a hexagonal
partitioned cellular automaton (HPCA), and study logical universality
of a réversible HPCA. We give a spécifie 64-state réversible HPCA
Hi, and show that a Fredkin gate can be embedded in this cellular
space. Since a Fredkin gate is known to be a universal logic element,
logical universality of H\ is concluded. Although the number of stat es
of Hi is greater than those of the previous models of réversible CAs
having universality, the size of the configuration realizing a Fredkin
gate is greatly reduced, and its local transition function is still simple.
Comparison with the previous models, and open problems related to
these model are also discussed.

AMS Subject Classification. 68Q80, 68Q05.

1. INTRODUCTION

A réversible cellular automaton (RCA) is a special type of CA such that every
configuration (Le., the whole state) of the cellular space has at most one predeces-
sor, Le., its global transition function is one-to-one. Such a System, as well as other
réversible Systems (e.g. a réversible Turing machine, réversible logic circuits, etc.),
has a close connection to physical reversibility, and is known to be very important
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when studying inévitable energy dissipation in Computing processes (see e,g. [2,10]
for gênerai surveys). Besides such problems of energy consumption, these Systems
are also interest ing from a computational viewpoint, because they have relat ively
rich ability of computing in spit e of the reversibility constraint.

Bennett [1] first proved that any (irréversible) Turing machine can be sim-
ulated by an equivalent réversible Turing machine (RTM), hence RTMs have
computation-universality. Fredkin and Toffoli [3] proposed a theory of réversible
and bit-conserving logic circuits in which so-called Fredkin gate was shown to be
a universal logic element. In fact, any (even irréversible) logic circuit can be com-
posed of this gate. They also showed that such logic circuits can be realized by
the Billiard Bail Model (BBM), an idealized mechanical model having physical
reversibility.

As for RCAs, Toffoli [9] showed that any &-dimensional irréversible CA can
be simulated by a k + 1-dimensional réversible CA. From this, computation-
universality of two-dimensional RCAs can be derived. Morita and Harao [6] later
proved that one-dimensional RCAs are computation-universal in the sense that
for any given réversible Turing machine we can construct a one-dimensional RCA
that simulâtes it.

On the other hand, in the two-dimensional case, several very simple models of
CAs having logical universality (in the sense that any logic circuit can be embed-
ded in the cellular space) have been shown. Margolus [5] proposed an interesting
two-state RCA model in which the BBM (hence a Fredkin gate) can be simulated.
Differing from a usual CA, his model uses "block rules" for state transition, which
has a little non-uniformity in time and space. Morita and Ueno [8] constructed
two simple models of 16-state RCAs by using a framework of partitioned cellular
automata (PCA), which can be regarded as a subclass of usual CAs and conve-
nient for designing réversible CAs. These two models can also simulate the BBM,
thus they have logical universality. Recently, Imai and Morita [4] showed a logi-
cally universal réversible 8-state triangular PCA. This model has a local transition
function much simpler than the above RCAs.

In this paper, we introducé a new model of 64-state réversible hexagonal PCA
(RHPCA). We show that a Fredkin gate can be embedded in this cellular space.
Therefore it has logical universality. Although the number of states of this model
is greater than those of the previous ones, the size of the configuration realizing a
Fredkin gate is greatly reduced. Furthermore its local transition function is still
simple.

In the following, aft er giving définitions on a HP CA and its réversible version,
we propose a new 64-state RHPCA model Hx. Then we describe how basic func-
tions such as signal transmission, delay, and elementary logical opérations can be
realized. By combining these techniques, we give a configuration that simulâtes a
Fredkin gate. Comparison with the previous models, and open problems related
to these model are also discussed.
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x

FIGURE 1. A hexagonal cellular space.

FIGURE 2. A cell of a hexagonal partitioned cellular automaton
((a, b,c,d,ej) eAx B xC x D x Ex F).

2. HEXAGONAL PARTITIONED CELLULAR AUTOMATA

A two-dimensional hexagonal cellular automaton (HCA) is a System where
identical finite automata are placed uniformly on the infinité hexagonal lattice
space, and synchronously change their states by communicating with neighbour-
ing cells. Figure 1 shows a hexagonal cellular space, and the coordinates employed
hère.

We now introducé a six-neighbor hexagonal partitioned cellular
automaton (HPCA), which is a subclass of HCAs. A cell of an HPCA is di-
vided into six parts (Fig. 2). They are north-east, east, south-east, south-west,
west, and north-west parts, and have their own state sets, say A, B, C, D, E, and
F. Therefore the state set of a whole cell is AxBxCxDxExF.

Each cell changes its state depending on the states of the six neighboring parts
of the adjacent cells (Le., the south-west part of the north-east-adjacent cell, the
west part of the east-adjacent cell, etc.) by a local transition function (Fig. 3). Ail
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FIGURE 3. A state transition of a cell by a local function g such
that g(d, e, ƒ,a, b, c) = (a',b',c',d', e', ƒ')•

the cells change their states synchronously. In this way, the whole cellular array
changes its configuration.

An HPCA is formally defined as follows.

Définition 2.1- A deterministic six-neighbor hexagonal partitioned cellular
automaton (HPCA) is defined by

H = (Z2, , C, D, E,F),g, ( # , # , # , # , # , # ) ) ,

where Z is the set of all integers (Z2 is the set of two-dimensional points at which
cells are placed), A,B,C,D,E, and F are non-empty finite sets of states of six
parts of a cell, g : DxExFxAxBxC—>AxBxCxDxExF is a local
function, and (#, # , # , # , # , # ) G i x E x C x D x ^ x F is a quiescent state
that satisfies <,(#, # , # , # , # , #) = (#, # , #, # , # , #) .

A configuration over the set Q = A x ^ x C x D x S x F i s a mapping
a : Z2 —»• Q. Let Çonf(Q) dénote the set of all configurations over Qy ie.,
Conf(Q) - {a \ a : Z2' -> Q}.

Let pro^ : Q —• A is a projection funetion such that pro^(a, 6, c, <i, e, ƒ ) = a
for all (a, 6, c, d, e, ƒ ) € Q. We can also define a projection functions pvox : Q ̂  X
for each X G {5, C, D, S, F} similarly.

The global function G : Conf (Q) —> Conf (Q) of Jï is defined as follows.

( y )
G(a)(x, ?/) = g(proD(a(x, y + 1)), pioE(a(x + 1, y)), proF(a(x + 1, y - 1)),

( (a(x - 1,3/ + 1)))-

In the following, an équation g(d,eif^aybic) = (a',6A, c^d', e', ƒ') depicted in
Figure 3 is called a r^/e of H. We can also write it by

We regard the local function g as the set of such rules for convenience.
For the special case such that A = B = C — D = E ~ F, we can define the

notions of rotation symmetry and renection symmetry for HPCAs as follows.

Définition 2.2. Let H = (Z2, (A,B7C, D,E,F),gy (#, # , # , # , # , # ) ) be an
HPCA. H is called a rotation symmetrie HPCA iff (i) and (ii) hold,
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(i) A = B = C = D = E = F.
(ii) V (a, b, c, d, e, ƒ), (a', b', c', d',e', ƒ') e A6:

if g(d,e,f,a,b,c) = (a',b',c',d',e'J')
then g(e, f, a,b,c,d) = (b', c',d', e', ƒ', a')-

H is called a reftection symmetrie HPCA ifï H is rotation symmetrie and (iii)
holds.

(iii) V (a, b, c, d, e, ƒ), (a', b', c',d', e', ƒ') € A6:
if g(d,e,f,a,b,c) = (a',b',c',d',e'J')
then g(c,bra,f,e,d) = (f',e',d',c',b',a').

Intuitively speaking, a rotation symmetrie HPCA is a one that obeies the same
local (and global) function even if its space is rotated by 60, 120, 180, 240,
or 300 degrees, and thus it is "isotropic". A reflection symmetrie HPCA is a
one that has the same local (and global) function as its mirror image.

Next, we define the notion of reversibility for HPCAs.

Définition 2.3. Let H = (Z2, {A,B,C,D,E,F),g, ( # , # , # , # , # , # ) ) beau
HPCA. We say H is globally réversible iff its global function G is one-to-one, and
locally réversible iff its local function g is one-to-one.

We show the following proposition on HPCA. It is proved in a similar manner
as in the one-dimensional case [6].

Proposition 2.4. Let H - (Z2,. (A, B, C, DyE, F), g, ( # , # , # , # , # , # ) ) be an
HPCA. H is globally réversible iff it is locally réversible.

Proof. Let G be the global function of H. We first show the "if part. Assume
H is locally réversible but not globally réversible. Then, there are two different
configurations ai and cv% such that G(ai) = G(a2)- Thus, for àny (x,y) € Z2,
G(ai)(x, y) ~ G(oL2){x,y). Hence, by the définition of a global function

+ l , y - 1)),

(ar - l,2/)),proc(o;i(£ - 1,2/ + 1)))

+ l,y - 1)),

- l))ypioB(a2(x - l,y)),proc(a2(x - l ,y + I))) (1)

holds for ail (x, y) € Z2. On the other hand, there must be some (xf\ y() G Z2 that
satisfies the following condition, since OL\ ̂  a2.

'\yf + 1)) ̂  proD(a2(x\y' + 1»
V pvogicuix' + 1,2/')) ^ proE(a2(x' + 1,2/'))
V proF(a1(x / + 1,2/' - 1)) + WOF{oi2(x

f + 1,
V proA (a i (x / ,y / - l ) ) ^proA(a2{x\yr - 1))
V proB(o;1(a;/ - l,yf)) / p r o ^ o ^ z ' - 1,2/'))
V proc(ai(x ; - l.y' + 1)) ̂  p r o e ^ ^ ' - l , y + 1)).

This contradicts the assumption of local reversibility, since the équation (1) must
hold for xf and yf.
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We next show the "only if" part. Assume H is globally réversible but not locally
réversible. Then, there are ai,a2 G A, 61,62 £ •#, ci,c2 £ C, di,d2 £ -D, ei,e2

G E, ƒ1, ƒ2 € F that satisfy the following condition.

i, ei, ƒ1, ai, 61, ei) = g(d2i e2, ƒ2, a2ï 62, c2)
A (ai ^ a2 V 61 ̂  62 V c ^ c 2 V di / d2 V e ^ e 2 V ƒ1 ^ /

Let ai and a2 be two configurations defmed by

proton (0,-1)) = ai, proA(a2(0, -1)) = a2,
proB(ai(- l ,0)) = 61, proB(a2(-l ,0)) = 62,
p ro c (a x ( - l , 1)) = ei, p ro c (a 2 ( - l , 1)) = c2,
proD(ai(0,1)) = di, projD(a2(0J 1)) = d2,
proÉ(ai(l,0)) = ei, pros(a2(l,0)) = e2,
proF(ai(l, -1)) = ƒ1, proF(a2(l, -1)) = jf2,
proi4(ai(x,2/)) = proA(a2(:r,;t/)) = # for all (a;,t/) / (0,-1),
projB(ai(a;,2/)) = proB(a2(x,2/)) = # for all (x,t/) ^ (-1,0),
proc(ai(a;,3/)) = proc(a2(x,2/)) = # for all (x,y)^ (-1,1),
proD(ai(x,y)) =proz?(a20c,2/)) = # for all (a:,?/) ^ (0,1),
pro£(ai(a;,y)) = proE(a2(xyy)) = # for all (x,y) ^ (1,0), and
proF(ai(a;,2/)) = proF(a2(a;,y)) = # for all (x,y) / (1,-1).

Apparently ai 7̂  a2. Furthermore, the équation (1) holds for all (x,y) E Z2

because of the above conditions. Thus G (ai) = G(a2) is concluded, and this
contradicts the assumption of global reversibility of H.

By Proposition 2.4, a globally or locally réversible HPCA is called simply
"réversible" and denoted by RHPCA. By this, if we want to construct a réversible
HCA, it is sufncient to give an HPCA whose local function g is one-to-one. This
makes it easier to design a réversible HCA.

3. A UNIVERSAL 64-STATE R H P C A

Here, we give a spécifie RHPCA model Hi that has logical universality. Each
of six parts of a cell in Hi has two states, hence a cell has 64 states in total. It is
defined as follows.

Hi is a rotation symmetrie RHPCA, and its local function g\ is defined as the set
of rules shown in Figure 4. We can easily verify that H± is réversible and rotation
symmetrie. But, because of the existence of the rule (4), Hi is not reflection
symmetrie. Note that only the rules (l)-(4), (8), (9), and (12) are used in the
following construction of a Fredkin gate.

In order to show that Hi is logically universal, it suffices to show that sig-
nal propagation, routing, signal delay, and a Fredkin gate are realizable in it.
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(1)

(2) <

(3)

X
X
X
X
X
X

(4) <

(5) <

(6) <

(7) <•

X
X
x:
x

X
X

(8)

(9)

(10)

( H )

(12)

(13)

(14)

M
X
X
X
X

x!
X
X
X
M
X

FIGURE 4. The set of rules of an RHPCA Hx, where 0 and 1 are
represented by a blank and •, respectively (since H\ is rotation
symmetrie, rotated rules are omitted hère).

X = C

.y = c * p + C * q

• z = c- p -\- e- q

-0 c =

-P

-1
-P

(a) (b)

FIGURE 5. (a) A Fredkin gâte, and (b) its function.

A Fredkin gate (F-gate) [3] is a réversible (i.e., its logical function is one-to-one)
and bit-conserving (ie., the number of I's is conserved between inputs and out-
puts) logic gate shown in Figure 5. It has been known that any combinational logic
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C

cx
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c
0
0
1
1

X

0
1
0
1

c
0
0

: 1
1

cx
0
0
0
1

cx
0
1
0
0

(a)

c

y

X

c
0
0
1
1

y
0
0
0
1

z
0
1
0
0

c
0
0
1
1

X

0
1
0
1

(b)

FIGURE 6. (a) An S-gate, and (b) an inverse S-gate (the logical
function of an inverse S-gate is not totally defined on {0, l } 3 as
shown in the above table).

x = c

z — cp -h cq

FIGURE 7. Construction of an F-gate by two S-gates and two
inverse S-gates.

element (especially, AND, OR, NOT, and fan-out éléments) can be realized only
wit h F-gates [3]. Thus, any sequential circuit can be constructed from F-gates and
delay éléments. Furthermore, any réversible finit e automaton, and réversible cel-
lular automaton (hence réversible Turing machine) can be constructed only from
F-gates and delays without generating garbage signais [7].

It is known that an F-gate can be composed of much simpler gat es called switch
gate (S-gate) [3]. An S-gate is also a réversible and bit-conserving gate (Fig. 6).
An F-gate is constructed from two S-gates and two inverse S-gates as shown in
Figure 7. Note that an inverse S-gate is a gate that realizes inverse logical function
of the former.

In the following, we show how to realize (i) signal propagation and routing, (ii)
a delay element, (iii) an S-gate and an inverse S-gate, and (iv) an F-gate, in the
cellular space of Hx.
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(i) Signal propagation and routing: a signal " 1 " is represented by a single dot
"•" in this model. Such a dot goes straight ahead into the cellular space by the
rule (2) as shown in Figure 8 if no obstacle exists. On the other hand, a signal
"0" is represented by no existence of a dot (hence, some clock is assumed hère).

t = 0 t = • 1 t = 2

FIGURE 8. Signal propagation in the cellular space of Hi.

FIGURE 9.

at a block.
A right turn of a signal (by 120 degrees clockwise)

A signal "1" can make a right or left turn by 120 degrees by using a special
pattern called "block". Figure 9 shows the process of right turn. A block is a
pattern consisting of six dots, and is stable due to the rule (3). If a single dot
reaches a block as in Figure 9, it is refiected by the rule (9), resulting in a right
turn. A left turn is realized similarly (in this case the rule (8) is used). Note that,
in iJi , a 60 degrees turn is'not possible. Hence, a signal can travel only in three
directions rather than six directions. But it is sufficient in order to reach any point
in the plane. In this model crossing of two signais is easy (though delay éléments
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may be needed to avoid a collision in some cases). By above, any signal routing is
possible in this cellular space.

(ii) A delay element: It is realized by combining blocks as shown in Figure 10.
By this method, delay éléments whose delays are multiple of three units of time
are available.

FIGURE 10. Delay éléments (a) of three units of time, and (b)
of six units of time.

(iii) An S-gate and an inverse S-gate: an S-gate can be simulated by a single
cell of Hi. Figure l i a shows the input-output relation, and we can easily verify
it. For example, if the input channels c and x both receive signal "l"s, then both
the output channels c and ex give signal "l"s by the rule (4). An inverse S-gate
can be also simulated by a single cell. It is shown in Figure l lb.

x.
X

X
X

(a) (b)

FIGURE 11. . A single cell of H± can simulate both of (a) an
S-gate, and (b) an inverse S-gate.

(iv) An F-gate: an F-gate can be embedded in the cellular space of H\ by
Connecting two S-gates and two inverse S-gates appropriately. In order to syn-
chronize signais at the gates, several delay éléments are needed. Figure 12 shows
the configuration of an F-gate. The size of the configuration is 28 x 17, and the
delay of the gate is 58 units of time.

By above, logical universality of H\ is concluded.

4. COMPARISON WITH OTHER R P C A MODELS

In this section, we compare the RHPGA model H\ with other models of
réversible PCAs having logical universality. There are two models on square grid
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z = cp + cq y = cp + cq x = c

FIGURE 12. An F-gate embedded in the cellular space of H\.
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proposed in [8] (we call them Si and S2 here), and a model (call it T\) on triangu-
lar grid proposed in [4]. We discuss their features, especially how the realization
methods of basic fonctions (ie., signal propagation, primitive logical opération,
etc.) vary depending on the symrnetry of the local fonction, and the shape of the
tessellation.

The models Si and £2 a re 16-state RPCAs on a square grid. Both these models
can simulate the Billiard Bail Model (BBM). The BBM is a kind of computation
model in which a signal "1" is represented by an idéal bail, and logical opérations
can be performed by their elastic collisions and reflections by mirrors. For example,
an S-gate can be realized in the BBM as shown in Figure 13 [3].

ex

x

FIGURE 13. A switch gâte in the BBM.

The model Si is a rotation and reflection symmetrie RPCA having the set of
transition rules as shown in Figure 14. (Note that this set of raies is essentially
the same as the two-state "block cellular automaton" of Margolus [5], in which
the BBM can be simulated, though the frameworks of these automata are very
different.) In Si, a bail of BBM is represented by two dots, and a collision of balls,
which has finite non-zero radius, can be simulated by this (Fig. 15). Figure 16
shows a reflection of a bail by a mirror. In Si, an F-gate configuration of size
34 x 58 has been obtained.

The model S2 is a rotation symmetrie but not reflection symmetrie RPCA
having the set of transition rules as shown in Figure 17. In 82, the shape of a
mirror and reflection by it are different from those of Si, but the other features
are similar. Figure 18 shows a configuration of an S-gate. In S2, there is an F-gate
configuration of size 30 x 62.

The model Ti is an 8-state RPCAs on a triangular grid. It is a rotation
symmetrie but not reflection symmetrie RPCA. Its local fonction is extremely
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\y

X
FIGURE 14. The local function of the rotation and reflection
symmetrie 16-state RPCA S\.
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FIGURE 15. Collision of two balls in the 16-state RPCA model
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XXXM

X
X

t=3
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X
Xxxx

Xx
Xx
X

Xx
X

M

X
X

'f\

X
X

X

XXX
XXX
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FIGURE 16. Reflection of a signal by a mirror in the 16-state
RPCA model Si.
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X
y ->

> -
X

X <X
•> -
y -

X

X <•X
•> -
•> -

FIGURE 17. The local function of the rotation symmetrie
16-state RPCA 52 . c

T

XXEXXXXXXX
XxxxXKXKxx
XRKXxlKXXXXXXxlK
XxxxxxxxxXExXX
XXXXXXXXXXzSXXX

xXExxxxxxxxxxxxxxxxxxxxxxxxx

XXX ex

FIGURE 18.

model S2.

T
x

ex

Realization of an S-gate in the 16-state RPCA

simple as shown in Figure 19. As in Hi, a single cell of 7\ can directly simulate
an S-gate and an inverse S-gate as in Figure 20. Therefore, there is no need to
simulate BBM, hence a signal "1" can be represented by a single dot. But signal
routing, crossing, and delay are very complex to realize, because a kind of "wall" is
necessary to make a signal go straight. So the size of an F-gate configuration is
very large (26 x 220).

These features of the four models are summarized in Table 1. If we use the
framework of PCA, and assume rotation symmetry, then 64, 16, and 8 are the
minimum number of states for each grid type, except the trivial 1-state PCAs.
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FIGURE 19. The local function of a rotation symmetrie 8-state
3-neighbor triangular RPCA T\.

(a) (b)

FIGURE 20. Realization of (a) an S-gate, and (b) an inverse
S-gate by a single cell of T±.

TABLE 1. Features of four universal RPCA models. (* means
that the answer seems "no", but no formai proof has been
obtained.)

Grid type
Number of states
Rotation symmetrie?
Reflection symmetrie?
Can embed the BBM?
Can simulate an S-gate by one cell?

H±

hexagonal
64
yes
no
*

yes

Si

square
16

yes
yes
yes
no

s2
square

16
yes
no
yes
no

Ti

trianguîar
8

yes
no
*

yes

Therefore, under the above assumption, these four are minimum state models hav-
ing logical universality. But it is unknown whether there is a rotation-asymmetrie
universal RPCA having a smaller number of states for each grid type.

5. CONCLUDING REMARKS

In this paper, we proposed a new 64-state model of réversible HPCA H\ having
logical universality. There still remain various open problems as listed below.
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1. Is there another model of 64-state réversible HPCA having logical universal-
ity? Especially, is there a rotation and reflection symmetrie 64-state model?

2. Is there a model of 64-state réversible HPCA that can simulate the BBM?
(Of course, the BBM on hexagonal grid is a little different from the usual
one.)

3. Is there another model of logically universal 16-state réversible PCA on
square grid? Especially, is there a model such that a signal "1" is repre-
sented by a single dot (rather than two dots)?

4. Is there a rotation-asymmetrie (and simple) model having logical universality
for each grid type?
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