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PAC LEARNING UNDER HELPFUL DISTRIBUTIONS * **

FrANgoOIS DENIS' AND REMI GILLERON®

Abstract. A PAC teaching model — under helpful distributions — is
proposed which introduces the classical ideas of teaching models within
the PAC setting: a polynomial-sized teaching set is associated with
each target concept; the criterion of success is PAC identification; an
additional parameter, namely the inverse of the minimum probability
assigned to any example in the teaching set, is associated with each dis-
tribution; the learning algorithm running time takes this new parame-
ter into account. An Occam razor theorem and its converse are proved.
Some classical classes of boolean functions, such as Decision Lists, DNF
and CNF formulas are proved learnable in this model. Comparisons
with other teaching models are made: learnability in the Goldman and
Mathias model implies PAC learnability under helpful distributions.
Note that Decision lists and DNF are not known to be learnable in
the Goldman and Mathias model. A new simple PAC model, where
“simple” refers to Kolmogorov complexity, is introduced. We show
that most learnability results obtained within previously defined sim-
ple PAC models can be simply derived from more general results in our
model.
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INTRODUCTION

Many concept classes are not efficiently learnable in the basic PAC learning
model of [34]. We think that the main reason of this fact is due to the distribution
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free requirement, that the learning algorithm must work with respect to an arbi-
trary distribution, even if the same distribution is used to provide examples to the
learner and to evaluate the output hypothesis. An argument in support of this
claim can be found in the Shapire result [32] on equivalence of weak and strong
learning: even an efficient algorithm whose hypotheses are only sligthly better
than “random guessing” can be used to obtain an efficient PAC algorithm. The
proof of this rather surprising result relies on the existence of a weak hypothesis
whatever distribution is used to provide the examples.

In many practical learning situations, it is likely that the data are “represen-
tative” of the target concept rather than random or arbitrary. Therefore, it is
natural to investigate learning methods that assume that the source of examples
is “helpful”. There are several ways to assume that examples are not arbitrary:
the learner may ask queries (see [2] for an overview); the class of distributions used
to draw examples can be restricted, thus the learning algorithm knows something
about the underlying distribution [3,10,18,20,24]; a teaching set may be designed
in order to help the learner [13,14,33]. For instance, Goldman and Mathias as-
sume that a teacher builds a teaching set related to the target concept and that an
adversary adds to this set as many new examples as he wants. Then, the learner
must identify exactly the target from this sample.

In the present paper, a new PAC learning model with a helpful source of ex-
amples is proposed. It is supposed that the teacher knows a representation of
the function to be teached and uses this representation to define a polynomial
size teaching set (the useful examples). Then, a distribution is said to be helpful
if each useful example has a non-zero weight. The class of admissible distribu-
tions is restricted to the class of helpful distributions. So, the class of admissible
distributions both depends on the target concept and on the representation the
teacher has in mind. Then, we want to give more time to the learning algorithm
when the useful examples are badly represented by the underlying distribution.
In order to do that, we allow the learning algorithm to run in time polynomial in
1/Dmin(c) (together with the usual parameters) where Dy (c) is the least weight
of a useful example of the target concept c. If the least weight of a useful example
is quite small, then the parameter 1/Dpin(c) could be quite large. For instance,
when the uniform distribution is used, exponential time is allowed and learning
becomes trivial. Therefore, our model may at first seem too permissive. But, the
reader should note that we meet the usual time requirements when the underlying
distribution D is really helpful, i.e. when 1/Dyin(c) is polynomial in the size of
the target concept c. Hopefully, in many practical learning situations, the under-
lying distribution satisfies such a condition. Therefore, our model can be seen as
a restriction of the standard model of Valiant to a large and meaningful class of
distributions.

In PAC learning theory, the Occam’s razor theorem [4] is one of the most
important results. Let us recall that an Occam algorithm is an algorithm that must
find a short hypothesis consistent with the observed data. Compress the data in
order to learn is a classical heuristic. The Occam’s razor theorem states that any
efficient Occam algorithm is also a PAC learning algorithm. This theorem provides
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both a formal justification of the Occam principle and an empirical justification
of the PAC learning model. In the PAC model under helpful distributions, the
runtime of a learning algorithm depends on the least weight of a useful example. In
our definition of an Occam algorithm, the size condition for the output hypothesis
depends on the least frequency of a useful example in the input sample. We prove
an Occam’s razor theorem in the PAC learning model under helpful distributions.
Moreover, as in the usual PAC setting [5], we prove a converse of the Occam’s razor
theorem for many natural classes. In our opinion, the Occam’s razor theorem and
its converse provide a theoretical validation of our model.

Using our Occam'’s razor theorem, we prove that decision lists are PAC learn-
able under helpful distributions. The Occam algorithm for decision lists examines
the examples by decreasing multiplicity. This corresponds to a usual heuristic in
practical learning algorithms. Note that most usual PAC learning algorithms do
not really take the multiplicity of examples into account. We also prove that DNF
and CNF formulae are learnable under helpful distributions.

Other teaching models were previously defined in the framework of exact learn-
ing. For instance, we consider the teaching model of [14] and compare it with our
model. Learnability in the model of Goldman and Mathias implies PAC learnabil-
ity under helpful distributions. The converse is probably false as exact identifica-
tion is more difficult to achieve than approximate learning, but this is not proved.
For example, the class of decision lists is PAC learnable under helpful distributions
but is not known to be learnable in the Goldman and Mathias model.

Li and Vitanyi introduced Kolmogorov complexity in PAC learning setting in
[20]. A string is said to be simple if it has a low Kolmogorov complexity. They
showed that simple concepts can be learned from simple examples. This approach
has been carried on in several papers [7,10]. We define here a new simple PAC
learning model. A teacher is said to be simple if for each concept ¢, useful examples
are of low conditional Kolmogorov complexity relatively to c¢. A concept class is
said to be PAC learnable with simple teacher if it is PAC learnable under helpful
distributions for some simple teacher. It is easy to prove that any computable
teacher is a simple teacher. Therefore, the classes of decision lists, DNF and CNF
are PAC learnable with a simple teacher. We compare our model with previously
defined simple PAC learning models. As a corollary, we prove that log n-decision
lists are simple PAC learnable in the sense of Li and Vitanyi and our learning
algorithm is based on an Occam algorithm. This last result was first proved in [7],
where the possibility of using an Occam algorithm was discussed.

Our model is defined in Section 1. The Occam’s razor theorem and its converse
are given and proved in Section 2. Learnability of decision lists is proved in
Section 3. We compare our model with previously defined teaching models in
Section 4. The simple PAC Learning models are defined and compared in Section 5.
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1. PAC LEARNING UNDER HELPFUL DISTRIBUTIONS

1.1. NOTATIONS AND PRELIMINARY DEFINITIONS

We assume familiarity with the basic facts about PAC learning theory, see for
example [19].

Let B, be the set of boolean functions from X,, = {0,1}" into {0,1}. Let
B =Up>18, and X = U,>1X,. A class F of boolean functions is a subset of B. A
representation scheme for a class of boolean functions F is a function R : F — 2%
where ¥ is a finite alphabet and such that for each f and f’ in F, R(f) is not
empty and if f # f/, R(f) N R(f’) = (. We suppose that R is computable in
polynomial-time, that is, there exists a polynomial-time deterministic algorithm
which takes as input a pair of strings « and ¢ and outputs f(z) if ¢ € R(f) and
error otherwise. A concept class C is defined by C = UscrR(f) for a given class
of function F. We will often identify a concept ¢ in C' and the function f which
is represented by c¢. When two concepts ¢ and ¢’ represent the same function, we
note ¢ = ¢. We define the size of a concept c¢ as its length |c| and we suppose for
convenience that |c¢| > n.

Note that in the standard PAC learning model, a representation scheme being
given, a concept may have several names while in our model, each name defines one
concept. For example, if we consider the DNF representation scheme of boolean
functions, x1 and 1% + x122T3 + T122T3 are two concepts which describe the
same function. In this way, different sets of useful examples can be associated
with x1 and 21T2 + 212223 + T122T3.

An ezample of a concept ¢ is a pair (z,c(x)), where x is in the domain of c.
An example (z,c(x)) is positive if c¢(x) = 1 and negative otherwise. We denote
by EX(c) (respectively POS(c), NEG(c)) the set of all examples (respectively
positive examples, negative examples) of a concept c. A sample S of ¢ is a multiset
of examples of ¢. Let ¢ be a concept over X, and let S be a sample of c. We denote
by S(z,c(x)) the number of occurrences of (z,c(z)) in S. We let Card(S) =
Y wex, S(@,c(z)) and [|S]| = nCard(S). Let c be a target concept over X, and
let D be any fixed probability distribution over X,,. Let EX (¢, D) be a procedure
that runs in unit time and that at each call returns an example (z, ¢(z)), where
is drawn randomly and independently according to D. If ¢/ is any concept in C
over X,,, we define error(c’) (with respect to ¢ and D) to be the probability that
¢ is inconsistent with an example of ¢ which is drawn randomly according to D,
i.e.

error(c) = D({z|c(x) # ' (2)}) = D(cAd).

1.2. DEFINITION OF OUR MODEL

Let C be a concept class over X. A teaching set for ¢ € C is a subset of
EX(c). A teacher for C is a mapping 7 which associates with each concept ¢, a
teaching set 7 (¢), and such that there is a constant &k such that for every concept
¢, Card(T (c)) < |c|*.
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Let C be a concept class and let 7 be a teacher for C. Let ¢ be a target concept
over X, and let D be any fixed probability distribution over X,,. Let us define

Dusn(€) = {min{D(m) | (z,c(x) € T()} if T(c) #0), "

1 otherwise.

A distribution D is said to be helpful w.r.t. ¢ and 7T if Dyin(c) # 0, i.e. each useful
example has a non-zero probability to be drawn according to D. A distribution
D can be helpful w.r.t. ¢ and be not helpful w.r.t. ¢’. Therefore the set of helpful
distributions depends on the target concept. But the reader should also note that
a distribution which is not null on the instance space is helpful for every target
concept.

We now define PAC learnability under helpful distributions.

Definition 1.1. Let C be a concept class.

e Given a teacher 7 for C, an algorithm A is a PAC learning algorithm for
C' under helpful distributions if A takes as input € € (0,1], 6 € (0,1], an
integer [, and for all concepts ¢ in C' with |¢| < and all helpful probability
distributions D, A is given access to EX (¢, D) and A outputs some h in C,
such that with probability at least 1 — 0, error(h) <.

e (' is PAC learnable under helpful distributions if there are a teacher 7 for
C and a PAC learning algorithm A for C' under helpful distributions which
runs in time polynomial in 1/¢€, 1/6, I, and 1/Dyin(c).

Our model generalizes the PAC learning model because a concept class C' is PAC
learnable if and only if C' is PAC learnable with the empty teacher (for each concept
¢, the teaching set is empty). There are two differences between our model and the
usual PAC model. First, the model is not a fixed distribution set model because
the set of helpful distributions depends on the target concept. The learner has
only to succeed for helpful distributions. But it is easy to verify that alone, this
modification does not increase the learning ability of the model. Second, we require
that a learning algorithm runs in time polynomial in 1/Dmin(c). But, note that
if the parameter 1/Dpin(c) is polynomial in |¢|, the time requirement is the same
as in the usual PAC setting. Distributions D such that 1/Dmin(c) is polynomial
in |¢| could be described as really helpful but note that the parameter Dyin(c) is
not known from the learner.
The halting criterion of the learning algorithm may be probabilistic:

Definition 1.2. Let C' be a concept class and let 7 be a teacher. C is PAC
learnable under helpful distributions in usually polynomial time if there is a PAC
learning algorithm A for C' under helpful distributions such that, with probability
at least 1 — d, A halts in time polynomial in 1/e, 1/§, I, and 1/Dpn(c).

We have assumed that an upper bound [ of the size of the target is an input of
the learning algorithm. In the PAC’s framework, when [ is unknown, the learning
algorithm uses a hypothesis testing algorithm for the halting criterion [16]. This
technique can easily be adapted to our model. We have: if A(e,d,1) is a usually
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polynomial time PAC learning algorithm for C' under helpful distributions, there
exists a usually polynomial time PAC learning algorithm A’ which only takes as
input € and 4.

2. OCCAM’S RAZOR THEOREM

An algorithm is an Occam algorithm if it finds a short hypothesis consistent
with the observed data. The Occam’s razor theorem [4] states that any efficient
Occam algorithm is also a PAC learning algorithm.

We slightly modify the succinctness condition for an algorithm to be an Occam
algorithm adding the parameter 1/ fiin(S, ¢), where fmin(S, ¢) is the smallest fre-
quency of a useful example in the sample S. We prove an Occam’s razor theorem
in our model. Moreover, like in the usual PAC setting, we prove a converse of this
theorem for concept classes which are strongly closed under exceptions. These two
theorems confirm, from a theoretical point of view, the relevance of our model.

Let C' be a concept class and 7 be a teacher for C. Let S be a non empty
sample of some concept ¢ in C. Let us define

i M xr,clxT C 1 c
Fmin(S,¢) = mm{ Card(g) | @) €T )} £7(c) #0,

1 otherwise

where S(z, ¢(z)) denotes the number of occurrences of (x,c(x)) in S. fimin(S, ¢) is
the least frequency of a useful example in the multiset S.

Note that if D is the uniform distribution on S, we have Dpin(¢) = fmin(S, ¢).
Note also that if T(c) C S, then 1/fmin(S,¢) < Card(S). Lastly, if D is a
really helpful distribution for ¢ (i.e. Dpin(c) is polynomial in 1/|c|), with a high
confidence, a polynomial size sample S drawn according to D will be such that
fmin(S, ¢) is polynomial in 1/|¢| too.

Definition 2.1. Let C be a concept class and 7 be a teacher for C.

B is an Occam algorithm for C,7T if there exists constants ¢ > 0, b > 0 and
0 < a < 1 such that with a sample S of ¢ in X,, such that 7(¢) C S on input, B
outputs a hypothesis concept ¢’ such that:

e ¢ is consistent with S;
o '] <a(le]/ fmin(S, )’ (Card(S))*;

e B runs in polynomial time in |c|, Card(S).

Let us point out the differences between the definition of an Occam algorithm in
Valiant’s PAC learning model and the definition of an Occam algorithm in our
model. First, an Occam algorithm in our model only has to work properly if the
sample S contains the teaching set 7 (c) of the target concept c. Second, ¢’ needs
to be short only if fiin(S, ¢) is not too small. If fi,i,(S,¢) is polynomial in 1/|¢|,
we meet the usual size requirement.
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We can now give our main theorem:

Theorem 2.2. Let C' be a concept class and let T be a teacher for C. If there is
an Occam algorithm for C, T, then C is PAC learnable under helpful distributions
i usually polynomial time.

The proof can be found in Appendix A. The differences with the classical proof
are twofold:

e given an Occam algorithm for C, 7, a PAC learning algorithm A for C' under
helpful distributions iterates over larger guesses for 1/Dyin(c);

e consequently, the halting criterion of the PAC learning algorithm is proba-
bilistic. The halting criterion contains a hypothesis testing algorithm and a
consistency test. These two tests run in polynomial time.

As in the usual PAC setting, a converse of the Occam theorem holds for concept
classes which are strongly closed under exception. A concept class is closed under
exceptions if incorporating the exceptions of a finite set in a concept of the class
results in a concept also in the concept class. This property is useful when it is
efficiently computable. This leads to the notion of strong closure under exception
which we now formally define:

Definition 2.3 ([5], see also [23]). A concept class C' is strongly closed under ez-
ception if there exists an algorithm A and constants « and 3 such that

(i) A takes as input a concept ¢ € C and a finite sample S of ¢ and outputs
a concept ¢ in C such that for all (z,c(x)) € 5, ¢/(z) # c(x) and for all
(,c(z)) € 5, (z) = c(z);

(ii)

|| < a(le] +[|S]]) log(le| + [IS]]) + 55

(iii) A runs in time polynomial in the length of its input.

The class of DNF formulas is strongly closed under exception. The class of k-DNF
is not strongly closed under exception.
We are ready to give the converse of Theorem 2.2.

Theorem 2.4. Let C be a concept class and let T be a polynomial teacher for C.
If C is PAC learnable under helpful distributions in usually polynomial time and
if C is strongly closed under exception then there erists a randomized algorithm
B such that with § and a sample S of ¢ such that T (c) C S on input, then with
probability at least 1 — 6, B outputs a hypothesis concept ¢’ such that:

e ¢ is consistent with S;

e there exists constants a > 0,b > 0 and o < 1 which do not depend on S and
c such that || < a(|e|/ fmin(S, ¢))®(card(S))®;

e B runs in polynomial time in log(1/0), Card(S) and |c|.

The proof can be found in Appendix B.
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3. LEARNING DECISION LISTS

A decision list over x1,... ,T, is an ordered sequence
L= (ml,bl), ey (mp,bp)

of terms, in which each m; is a monomial over z1,...,x,, and each b; € {0,1}.
The last monomial is always m,, = 1. For any input a € {0,1}", the value L(a) is
defined as b;, where 7 is the smallest index satisfying m;(a) = 1.

The class of k-decision lists (each monomial contains at most k literals) is PAC
learnable [29]. Decision lists are not known to be PAC learnable, but lower bounds
on learning decision lists are given in [15]. We prove in this section that the
concept class of decision lists is PAC learnable under helpful distributions. Note
that decision lists are a superset of DNF formulas and thus DNF formulas are
learnable using decision lists. It can be proved, using a greedy heuristic, that
DNF and CNF formulas are properly learnable under helpful distributions.

First, let us define the teacher 7 [20]. Let m be a monomial over z1,... ,z,.
Let 0,, € X, be defined by m(0,,) = 1 and vector 0,, has the value 0 for vari-
ables not in m. Let 1,, € X, be defined by m(1,,) = 1 and vector 1,, has
the value 1 for variables not in m. Let ¢ be a representation of a decision list
L = (m,b1),...,(mp,by), we define

T(c) = {(Om,, c(0m,)) [ 1 <0 < ppU{(Lm;, e(Im,)) [ 1 <@ <p}-

The purpose of the teaching set for a target decision list ¢ is to allow the con-
struction of the monomials of c¢. Indeed, let x,z’ in X,,, we define z ¢ 2’ as the
monomial over x1,...,x, which contains x; if z and 2’ have “1” in position 1,
contains T; if x and 2’ have “0” in position ¢, and does not contain variable x;
otherwise (1 < i <n). Given the teaching set 7 (c) of some decision list ¢, the set
{m=zoz'| (x,c(x)), (2, c(z')) € T(c)} contains the monomials of c.

Proposition 3.1. Decision lists are PAC learnable under helpful distributions.

Proof. We denote by DL the class of decision lists. We give an Occam algorithm
for DL, T which is based on the Rivest’s algorithm for k-decision lists, and then
we use our Occam’s razor theorem. Our algorithm (see Fig. 1) uses examples in
S by decreasing number of occurrences until we are ensured that all examples in
the teaching set have been used.

It is now easy to prove that OccamDL is an Occam algorithm for DL, 7.
Let ¢ be the target decision list. Let us suppose that 7(c) C S, and let j =
[1/ fmin(S;¢)]. OccamDL halts at most at step ¢ = j because 7 (¢) C S, thus the
set M; contains all the monomials of ¢. The hypothesis concept ¢’ is consistent
with S and the length of ¢’ is bounded by Card(M;) < ([1/fmin(S,c)])?. As
1/ fmin(S,¢) < Card(S), it is easy to prove that OccamDL runs in polynomial
time in |c|, Card(S). Now, Theorem 2.2 can be applied. O
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Algorithm OccamDL
input: S
begin
Set 7 to 1; set hypothesis concept ¢’ to the empty list; set S’ to S
while S’ # ()
Set S to {(z,c(x)) € S | S(x, e(x)) > LardSly
Set M; to {m =z o x| (x,c(x)) € Sy, (¢, c(z")) € Si}
while there is a monomial m in M; satisfied by an example (y, b)
in S’ and by no example (z,b) in S’
Set ¢’ to ¢ + (m,b)
Set S" to §"\ {(y,b) € S| m(y) =1}
endwhile
Set i toi+1
endwhile
output hypothesis concept ¢’
end

FIGURE 1. An Occam algorithm for decision lists.

4. TEACHING MODELS

In the context of automaton identification from finite data, Gold has defined
a learning model based on the idea of “representative sets” [12]. We reformulate
this model with our notations and we only consider fixed-length examples.

Definition 4.1. A concept class C is learnable from given data if there exists a
teacher 7, a polynomial p and an algorithm A such that:
e for all concepts ¢ in C' and all samples S of ¢ of size m, A with input S
outputs some concept ¢’ consistent with S in time p(m);
e for all concepts ¢ in C and all samples S of ¢ such that 7(c¢) C S, A with
input S outputs some concept ¢’ such that ¢’ = c.

Recently, formal models of teaching have been defined and studied in a lot of
works [13,14,17,22,30,31,33]. For instance, Goldman and Mathias have defined a
teaching model based on a pair teacher/learner:

Definition 4.2. A concept class C is teachable if there exists a teacher 7 and a
learner L such that for all adversary Adv

e the adversary Adv selects a target concept ¢ € C and gives it to 7;

e the teacher 7 computes a teaching set 7 (c) and gives it to Adwv;

e the adversary adds properly labeled examples to 7 (¢). The sample S ob-
tained is given to the learner;

the learner outputs some concept ¢’ such that ¢’ = c.
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Note that the adversary has unlimited computing power and complete knowledge
of C'and 7. The goal of the adversary is to prevent collusion between the teacher
and the learner. When the learner is polynomial in the size of its input, the class
C is said to be semi-poly teachable. When both the learner and the teacher are
polynomial, the class C is said to be poly teachable.

The following result has been proved in [17]:

Claim 4.3. A concept class C' is semi-poly teachable if and only if it is learnable
from given data.

Angluin has defined in [2] a learning model from example-based queries (such
as equivalence queries, membership queries and others). Next result shows the
connection between these two last models.

Theorem 4.4. [14}] If a concept class C is exactly learnable in deterministic
polynomial-time using example-based queries then it is semi-poly teachable.

Monotone DNF formulae, decision trees are exactly learnable from membership
and equivalence queries [2, 6]; consequently these concept classes are semi-poly
teachable. In order to compare the PAC model under helpful distributions and
the teaching model of Goldman and Mathias, we prove the following result:

Theorem 4.5. If a concept class C' is semi-poly teachable, then it is PAC learn-
able under helpful distributions.

Proof. Let us consider a concept class C' which is teachable with learner L and
teacher T'. We consider the same teacher 7 = T in the helpful learning model.
A PAC learning algorithm A for C' under helpful distributions iterates over larger
guesses for 1/Dpin(c). At each guess a sample S is drawn: enough examples are
drawn so that if the guess is correct, then we have: Pr(7(c) C S) > 1—4. At
each guess, a hypothesis testing algorithm is applied to L(S) as halting criterion.
The reader should note that, due to the halting condition, learning is not probably
exact. O

As an immediate consequence of Theorems 4.4 and 4.5, we obtain:

Corollary 4.6. If a concept class C' is exactly learnable in deterministic polynom-
ial-time using example-based queries, then it is PAC learnable under helpful dis-
tributions.

The converse of this result is false because singletons are PAC learnable but are
not learnable in several models of example-based queries [2].

Monotone DNF formulae and decision trees are exactly learnable in deter-
ministic polynomial-time using example-based queries. Due to Corollary 4.6,
they are also PAC learnable under helpful distributions. We have proved in
Section 3 that DNF formulae and decision lists are PAC learnable under helpful
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distributions. These classes are not known to be semi-poly teachable. These results
are summarized in the following table:

class queries teaching model | helpful distributions
monotone DNF | yes (Ang 88) | yes (GM 96) yes (Cor. 4.6)
decision trees | yes (Bsh 95) | yes (GM 96) yes (Cor. 4.6)
singletons no (Ang 88) yes yes
DNF ? ? yes (Sect. 3)
decision lists ? ? yes (Sect. 3)

5. SIMPLE PAC LEARNING MYODELS

5.1. KOLMOGOROV COMPLEXITY AND UNIVERSAL DISTRIBUTION

The reader may refer to [21] for complete definitions, proofs and guide lines
in the literature. We consider the prefix variant K of Kolmogorov complexity.
It is defined for = € {0,1}* as follows. We consider prefix Turing machines, i.e.
machine for which the set of programs that make them halt is a prefix code. It
is also convenient to allow a Turing machine 7' to have some extra information
y. We write T(p,y) = = to mean that Turing machine 7" with input p and y
terminates with output z. Let us define Kp(z|y) = min{|p| | T(p,y) = z} or
oo if such p does not exist, and Kp(z) = Kp(x|e). Prefix Turing machines can
be effectively enumerated and there exists a universal prefix Turing machine U.
The Invariance theorem states that, for any prefix Turing machine T', there is a
constant ¢y such that for all strings z, y, Ky(zly) < Kr(z|y) + cr. Moreover,
for each pair of universal prefix Turing machines U and U’, there is a constant
cu,u’, such that for all strings z, vy, |Kv(z|ly) — Kv/(z|ly)| < cu,ur. Therefore,
the Kolmogorov complexity of a string s provides an absolute measure of the
information content of s, up to an additive constant. We fix a universal machine,
say U, and call it the reference prefix Turing machine, and define K (x) = Ky(x),
and K (r|y) = Ky(z|y). It can be proved that ) . 2-K(@lY) < 1. Let r € ¥,
we define m,(x) = A2~ Kv(@I") where ), is a normalization parameter such that
> wex» Mp(x) = 1. Let m(x) = mc(z). The function m is called the Solomonoff-
Levin distribution.

5.2. SIMPLE PAC LEARNING MODELS

Definition 5.1. [20] The definition of a simple PAC learning algorithm is the
same as the definition of a PAC learning algorithm except that the class of proba-
bility distributions is restricted to the universal Solomonoff-Levin distribution m.

Note that any PAC learnable class is simple PAC learnable.

Some classes, which we do not know whether they are PAC learnable, have been
shown simple PAC learnable in [20]. For instance, consider the class log n-DNF
of DNF formulas over n variables, where each monomial term is of Kolmogorov
complexity O(log n). This is a superset of the class of k-DNF formulas and this
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class is simple PAC learnable. Castro and Balcazar have proved that log n decision
lists are simple PAC learnable in [7].

In [10], we have defined another simple PAC learning model. The underlying
idea is to suppose that the teacher has a representation of the target concept in
mind and draws simple examples relatively to this representation.

Definition 5.2. The definition of a PAC learning algorithm with simple exam-
ples is the same as the definition of a PAC learning algorithm except that the
class of probability distributions is restricted to the universal Solomonoff—-Levin
distribution m., where c is the target concept.

In this simple PAC learning model, the examples are drawn according to m,
instead of m. The reader should note that the model is not a fixed distribution
model. In the simple PAC learning model, not only classes of simple concepts are
proved learnable. For instance, it can be shown that the class of DNF formulas is
learnable in this model.

We will say simple PAC learnable for the simple PAC learning model of Li and
Vitanyi, PACS learnable for the simple PAC learning model of Denis et al. [8]
have studied connections between the exact query model and these two models.
We define in the next Section a new simple PAC Learning model.

5.3. PAC LEARNING WITH SIMPLE TEACHER

Definition 5.3. Let C be a concept class. 7 is a simple teacher if there exists a
constant k > 0 satisfying:

Ve € CV(z,c(x)) € T(c) K(z|c) < klog(|e|).

Recall that K(z|c) is the conditional complexity of x w.r.t. ¢, i.e. the length
of a least self delimited program which computes = from ¢. We note that the
simplicity of a teacher does not depend on the reference prefix Turing machine U.
Note also that the polynomial size condition on teaching sets is satisfied because
the cardinality of the set of strings of length lower than klog(|c|) is bounded
by | C|k+1.

Proposition 5.4. Let C be a concept class. Any computable teacher T is a simple
teacher.

Proof. Let ¢ be a concept in C. Let (z,c(z)) be an example in 7(c). We
have: K(x|c) < K(z|T(c)) + K(7(c)|c) + O(1). Since Card(7T (c)) < |c|*, we
get K(z|7T (c)) < klog(|c|) + O(1). Moreover, since 7 is computable, K(7 (¢)|c)
<0(1). O

For instance, the teacher we have defined for the class of decision lists is com-

putable; therefore it is a simple teacher. We now define the PAC learning model
with simple teacher:

Definition 5.5. Let C' be a concept class. C'is PAC learnable with simple teacher
if C is PAC learnable under helpful distributions for some simple teacher.
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Note that the definition of PAC learnability with simple teacher does not depend
on the reference prefix Turing machine U. As a corollary of Proposition 5.4, we
get:

Corollary 5.6. Let C be a concept class. If C is PAC learnable under helpful dis-
tributions for a computable teacher, then C' is PAC learnable with simple teacher.

Therefore decision lists are PAC learnable with simple teacher.

5.4. COMPARISON

We show below that learnability with simple teacher implies PACS learnability.

Proposition 5.7. Let C be a concept class. If C is PAC learnable with simple
teacher then C is PACS learnable.

Proof. Let T be a simple teacher such that C' is PAC learnable with 7. Thus,
there exists a constant k£ such that

Ve € CV(x,c(z)) € T(c) K(z|c) < klog(|e).
Now, by definition of m,., we get
Ve e CV(x, c(x)) € T(c) my(x) = A2 K@ > X (|¢)7*

therefore,

me,,, () > Ac(le]) ™"
where m._, (c) is defined in equation (1). Therefore m, is (really) helpful for ¢, 7.
Consider now the PAC learning algorithm A for C' under helpful distributions; .4
runs in polynomial time in 1/¢, 1/6, [, and 1/m,_, (¢) where [ > |¢|. Consequently,
A runs in polynomial time in 1/¢, 1/4, and . O

Consequently, the classes of decision lists and DNF formulas are PACS learn-
able.

In order to prove that simple classes of concepts are simple PAC learnable in
the sense of [20], we can often show that a more general class is learnable with
simple teacher and then use the next proposition.

Proposition 5.8. Let C be a concept class. Suppose C' is PAC learnable with a
simple teacher T. Let k be an integer and let us define the concept class

Cr ={ceC|V(x,c(x)) € T(c) K(z) < klog(|e])}-

For each k, the concept class Cy is simple PAC learnable.

The proof is omitted because it is similar to the proof of Proposition 5.7. Deci-
sion lists are PAC learnable with simple teacher (Sect. 3). Using Proposition 5.8,
we obtain a new proof of the the following result:

Proposition 5.9. [7] The class of logn-decision lists is simple PAC learnable.
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The reader should note that our proof is based on an Occam algorithm. In
their proof [7] directly design a simple learning algorithm which is derived from
a learning algorithm from equivalence queries. Also, we give another proof of the
following result:

Theorem 5.10. [8] If a concept class C is exactly learnable in deterministic
polynomial-time using example-based queries then it is PACS learnable.

Proof. First, using Corollary 4.6, concept classes using example-based queries
are PAC learnable under helpful distributions. It is easy to see in the proof of
Theorem 4.4 by [14] that the teacher is computable and that the teaching set has
polynomial size. The reader should note that the teacher could be computationaly
unbounded. Now, from Proposition 5.4, the teacher is also simple. We obtain the
result using Proposition 5.7. O

Reference [8] also proved that PACS learnability results could be derived from
simple PAC learnability results if the learning algorithm is independent of the
reference prefix turing machine.

6. CONCLUSION

The PAC learning model under helpful distributions gives a proper account of
what is intended by PAC learning from characteristic examples. It extends previ-
ously defined teaching models to the PAC setting. This model is to the standard
PAC model of Valiant roughly as the teaching model of Goldman and Mathias is
to the identification in the limit model of Gold. The Occam’s razor theorem and
its converse contribute to give to our model a theoretical validation. The notion
of Occam algorithm that we use, for which the length of the output hypothesis
depends on the frequencies of the useful examples in the learning sample, seems of
particular interest. Boolean classes, as large as the class of decision lists, are learn-
able in this model whereas they seem to be unreachable in the standard model.
Moreover, our model allows to define a new simple PAC learning model avoiding
some drawbacks of the previously defined simple PAC learning models like non
computability of the Solomonoff-Levin distribution and independence w.r.t. the
reference prefix Turing machine.

However, our model is maybe too weak. It may be seen as providing a necessary
condition of learnability (as the standard PAC model would provide a sufficient
condition of learnability).

A general difficulty when designing teaching models is to prevent collusion, i.e.
the possibility both for the teacher to encode the target concept within the useful
examples and for the learner to use this encoding. Note that there does not exist
yet any more precise definition of collusion. Therefore, it is impossible to verify
formally if our model prevent collusion. The only thing we can do is to check
whether some class can be learned using a trivial algorithm or whether a given
learning algorithm uses directly some encoding information of the target concept.
It is easy to verify that representation classes of boolean functions such as DNF
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or decision lists are numerous enough to prevent the encoding of target concepts
by a bounded number of examples. Our learning algorithm of decision lists uses a
polynomial set of examples from which it is possible to construct a superset of the
monomials that compose the target concept. Is this the beginning of an encoding
of the target concept? Can a helpful example bear no information on the target
concept? We think that collusion in learning framework remains a challenging
problem.

We think that most of problems of collusion occur when trying to learn lan-
guages from useful examples, as for languages the length of an example is not
bounded. In the case of variable-length examples, any computable encoding of
the target is a (very) useful example. And, for all teaching models, it is possible
to render trivial any learning algorithm. For instance, DFA are learnable from
membership and equivalence queries [1], therefore DFA are semi-poly teachable.
A teaching set can be defined using the algorithm RPNI (see [25]). Adding the
encoding of the target automaton to this teaching set, a learning algorithm may
be designed as follows: decode each example, make a consistency test. The case
of variable-length examples is also problematic for simple PAC models since arbi-
trarily long examples are simple and a learning algorithm can use long examples
to increase its computational time. A discussion on collusion and on simple PAC
learning model can be found in [9, 26-28].

APPENDIX A. PROOF OF THE OCCAM’S RAZOR THEOREM

Let C be a concept class and let 7 be a polynomial teacher for C. Let k be a
constant such that for every concept ¢, Card(7 (c)) < (|¢|)¥. Let B be an Occam
algorithm for C, 7 with constants (a, b, «). Let ¢ denote the polynomial such that
B has time complexity ¢(|c|, Card(S)). Let ¢ be a concept. Whenever we consider
the oracle EX(c, D), we suppose that the probability distribution D is helpful
w.r.t. cand 7. Let | be an integer such that |¢| < I. We first prove some technical
lemmas.

The first lemma states that, for a large enough sample, we can estimate the
parameter Dy (c).

Lemma A.1. Let p be an integer such that p > 1/Dmyin(c). Make N1(d,1,p) =
[8plog(1¥/5)] calls to EX(c, D). This defines a sample S. Then the probability
that fmin(S,¢) > Dmin(c)/2 is at least 1 — 0.

Proof. The proof is based on the classical Chernoff bounds (see for instance [19],
pp. 190-192). O

The following classical lemma shows that an Occam algorithm applied to a large
enough sample outputs a good approximation of the target with high probability.

Lemma A.2. Make Ny(e,d,1,p) = [((log(1/d) + a(2pl)® + 1)/6)1—1@ calls to
EX(c,D). This defines a sample S. Suppose that fumin(S,c) > 1/(2p). Let
be the output of the Occam algorithm B on input S. Then the probability that
error(c’) > € is at most d.
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Proof. This proof is based on the original proof in [4]. Let S be a sample of
cardinality N and let us consider the set

H.={d € C|error(c) > eand |¢| < a(2pl)’ N}

Let ¢’ € H.. The probability that a call to EX (¢, D) returns an example consistent
with ¢ is less than 1—e. Therefore the probability that IV calls to EX (¢, D) return
a sample S consistent with ¢’ is less than (1 — €). Moreover, the cardinality of
H, is less than 2a(2pl)" N +1, Consequently the probability that the sample S of

cardinality N is consistent with a concept ¢’ in H, is less than 2a(2PD"N*+1 (1—e)N.

Verify that Q“Na(Qpl)b“(l —¢)N < 6 whenever N > Na(e, 4,1, p).

Now let us suppose that N > Na(e, 6,1, p) and fmin(S,¢) > 1/(2p). fmin(S,c) >
0, thus 7(¢) € S. On input S the algorithm B outputs a hypothesis concept ¢/
consistent with S such that

|| < allel/ fumin(S, )" (Card($)™ < a(2pl)"N°.

Finally if error(c’) > €, ¢ € H,. O

In the usual PAC setting, there exists an algorithm T'EST which tests whether
an hypothesis is a good approximation of the target concept. The hypothesis
testing algorithm TEST with parameters ¢, 6, 4, and ¢/ [16] makes [(32/€)(iIn2 +
In2/6)] calls to EX(c, D) to test hypothesis ¢’. It accepts the hypothesis if the
hypothesis is wrong on no more than a fraction of %e of the examples returned by
the oracle, and rejects it otherwise. TEST (¢, 6, i, ¢’) is polynomial in 1 /¢, 1/6, 1, |c/|.
And we have:

Lemma A.3. [16] The test TEST (e, 9,1, c) has the property that: when error(c’)
> ¢, the probability is at most §/2°+! that the test will accept ¢/, when error(c)
< €/2, the probability is at most §/2+1 that the test will reject c'.

We now give the PAC learning algorithm under helpful distributions:

PAC Learning Algorithm A for C, 7
input: ¢, 4, [
begin
Set S to () - - S is the current sample
Set p to 1 - - p is the current guess for 1/Dyin(c)
loop
Set N to sup{N1(6/3,1,p), Na(€/2,6/3,1,p)}
Call EX (¢, D) until Card(S) = N
Run at most ¢(I, N) steps of B on input S
if B outputs some ¢’ and ¢’ consistent with S
and || < a(pl)’N® and TEST(¢,6/3,p,c)
then output ¢’ and halt
endif
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Set p to p+1
endloop
end

If A halts at some step p, the hypothesis testing condition TEST is satisfied.
When error(c’) > ¢, the probability is at most /(3 x 2P1) that the test accepts ¢’
(Lem. A.3). If, at some step p, B outputs some wrong hypothesis ¢/, the probability
that A halts is less than the probability that T EST is satisfied, and therefore is
less than §/(3 x 2P*1). The probability that A halts with a wrong hypothesis is
less than the probability that there exists some p such that B outputs some wrong
hypothesis ¢’ satisfying TEST. Consequently, the probability that A halts with a
wrong hypothesis is less than §/6.

It remains to prove that, with probability at least 1 — ¢, A halts in polynomial
time in 1/¢, 1/, I, and 1/Dmin(c). Let p = [1/Dpin(c)] and N > N1(6/3,1,p).
Then, the probability that fmin(S,¢) > Dmin(c)/2 is at least 1 — 6/3 (Lem. A.1).
Suppose fmin(S,¢) > Dmin(c)/2 and N > Na(e/2,6/3,1,p). Then, the probability
that error(c’) > €/2is at most §/3 (Lem. A.2); the probability that error(c’) < e/2
is at least 1 — 0/3 (Lem. A.2). Let us suppose that B outputs some ¢ with
error(c’) < €/2, the probability that TEST will reject ¢’ is at most §/(3 x 2P+1)
(Lemma A.3). Therefore, the probability that the algorithm A does not halt at
step p = [1/Dmin(c)] is at most ¢ and the probability that the learning algorithm
A does not halt before p = [1/Din(c)] is at most §. It is now easy to verify that
if the algorithm A halts before p = [1/Dyin(c)], then the running time is bounded
by a polynomial in 1/¢, 1/, I, and 1/Dyin(c). This ends the proof.

APPENDIX B. PROOF OF THE CONVERSE OF THE OCCAM’S
RAZOR THEOREM

In the PAC framework, the proof may be found in [5]. Let S be a sample
of ¢ such that 7(c¢) € S. Let D be the uniform distribution on S. Recall that
Dpin(¢) = fmin(S,¢). Let A be the algorithm which computes the closure un-
der exceptions in concept class C. Let A be a usually polynomial time PAC
learning algorithm under helpful distributions which only takes as input € and 4.

There exists k such that A halts in time (dD‘i‘%)k with probability at least 1—4.

We now give the randomized algorithm B:

Randomized Occam Algorithm B for C, T
input: §, S
begin

Set € to ||S||” 7T
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Dovetail [log(1/d)] executions of A(e,1/4)
Pick the first h such that [{z | (z,c(x)) € S c(z) # h(x)}| < eCard(S)
Output A(h,{z | (z,c(x)) € S c(z) # h(z)}) and halt

end

When A takes as input € and 1/4, A halts in time lower than ¢ = (eDilicnl(C))k
with probability at least 3/4 because A is a usually polynomial time PAC learning
algorithm under helpful distributions. D is the uniform distribution on S, thus

when A takes as input € and 1/4, A outputs a concept h such that
fexceptions(h) = {z | (z,c(x)) € S c(x) # h(x)}]| < eCard(S)

with probability at least 3/4. One execution of A(e,1/4) halts in time lower than ¢
and outputs a concept h such that fexceptions(h) < eCard(S) with probability at
least 1/2. The probability such that none of the [log(1/d)] executions of A(e, 1/4)
halts in time lower than ¢ and outputs a concept h such that fexceptions(h) <
eCard(S) is lower than (1/2)M°8(1/9)1 < §. Consequently, the algorithm outputs
some concept h such that fexceptions(h) < eCard(S) with probability at least
1-94.

Now incorporate the exceptions to concept h, i.e. compute ¢ = A(h,{z |
(x,c(x)) € S c(z) # h(x)}). Using the strong closure under exceptions property,
we get:

€] < af|h] + €l|S]]) log(|h] + €l|S1]) + 6.
There exists a such that

1| < a(|h| + €]|S||) 1 2w).

The size of h is bounded by the computation time of A and € = (||S||)_%+1,

therefore
el \* T
¢ < ((D—()) +(||S||k+1)>
k 1 4|C| ¥ —k (1+25)
(€] < a(]|s|]FE X (1+<D7()) <||S||>m>
K\ (1F35)
4
= aseen (1 (GG )

Lastly, let us note that o = (k/k+ 1) x (1 + 55) = % < 1. Therefore,

e\ A+2%)
asmeme (v () )
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Thus, as |¢] > n, we obtain the expected bound on |¢/|. Since the run of our
algorithm is clearly polynomial in the various parameters, we have shown that B
is a randomized Occam algorithm for C', 7.
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