
Theoretical Informatics and Applications
Theoret. Informatics Appl. 35 (2001) 277–286

DEPTH LOWER BOUNDS FOR MONOTONE
SEMI-UNBOUNDED FAN-IN CIRCUITS ∗

Jan Johannsen
1

Abstract. The depth hierarchy results for monotone circuits of Raz
and McKenzie [5] are extended to the case of monotone circuits of semi-
unbounded fan-in. It follows that the inclusions NCi ⊆ SACi ⊆ ACi

are proper in the monotone setting, for every i ≥ 1.

Mathematics Subject Classification. 68Q17, 68Q15.

1. Introduction

We consider boolean circuits over the basis {∧,∨}, with gates of arbitrary fan-in
and having negated and positive variables as inputs. A circuit is called monotone if
it has no negated inputs; clearly, a monotone circuit can only compute a monotone
boolean function.

We call the maximal fan-in of any ∨-gate (resp. ∧-gate) in a circuit C the
∨-fan-in (resp. the ∧-fan-in) of C. A circuit family has semi-unbounded fan-in
if each circuit in the family has ∧-fan-in 2, but arbitrary ∨-fan-in. This class of
circuits was introduced by Venkateswaran [6] in order to give a circuit charac-
terization of the class LOGCFL of problems logspace-reducible to context-free
languages.

Let SACi denote the class of boolean functions computable by semi-unbounded
fan-in circuit families of polynomial size and depth O(logi n), so that NCi ⊆
SACi ⊆ ACi. Since Borodin et al. [1] have shown that SACi is closed under
complementation for every i, this is equal to the class of functions computable
by polynomial size, depth O(logi n) circuit families of ∨-fan-in 2 and unbounded
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∧-fan-in. The characterization given by Venkateswaran [6] is that LOGCFL equals
logspace-uniform SAC1.

Monotone circuits of semi-unbounded fan-in were considered by Grigni and
Sipser [2], who extended the Ω(log2 n) depth lower bound for bounded fan-in
monotone circuits computing st-connectivity of Karchmer and Wigderson [3] to
monotone circuits with ∧-gates of fan-in O(2n

1−δ
) for some δ > 0.

Following Grigni and Sipser [2], for a circuit complexity class C, we write mC
for the corresponding monotone circuit complexity class. In particular, we denote
by mSACi the class of functions computable by monotone semi-unbounded fan-
in circuits of polynomial size and depth O(logi n), and by co-mSACi the dual
class, with bounded ∨-fan-in and unbounded ∧-fan-in. More generally, we call
a monotone circuit with bounded ∧-fan-in and unbounded ∨-fan-in (or ∨-fan-in
bounded by a growing function of n) an mSAC-circuit, and analogously we define
co-mSAC-circuits.

Recently, Raz and McKenzie [5] have shown a tight depth hierarchy for mono-
tone circuits up to a depth of nε, for some ε > 0. Although this is not stated ex-
plicitely, their proof actually shows that mNCi is properly contained in mSACi,
for every i ≥ 1. In this note, we extend their lower bound to monotone semi-
unbounded fan-in circuits. In particular, it follows from our result that the classes
mSACi and co-mSACi are incomparable for every i ≥ 1, and thus we get proper
inclusions between the classes in the following diagram:

mSACi

mNCi
� �

mACi�
co-mSACi

�

Our main result is the following theorem.

Theorem 1.1. There are ε, δ > 0 such that for every function d(n) ≤ O(nε), there
is a monotone boolean function f computable by mSAC-circuits of depth O(d(n))
and size nO(1), such that co-mSAC-circuits of ∧-fan-in O(2n

δ

) computing f require
depth Ω(d(n) log n).

By considering the functions g(x1, . . . , xn) = f(x̄1, . . . , x̄n) dual to the func-
tions f in the theorem, we can easily get a separation of the depth complexity of
co-mSAC from that of mSAC circuits in the opposite direction.

Corollary 1.2. For ε, δ the same as in Theorem 1.1, and every function d(n) ≤
O(nε), there is a monotone boolean function g computable by co-mSAC-circuits
of depth O(d(n)) and size nO(1), such that mSAC-circuits of ∨-fan-in O(2n

δ

)
computing g require depth Ω(d(n) log n).

An obvious problem left open is to separate mACi from mNCi+1. The notion
of asymmetric communication complexity introduced below probably provides the
right framework to attack this problem, but it would require a non-trivial extension
of the lower bound method of Raz and McKenzie [5] and the present note.
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2. Asymmetric communication complexity

The main tool for proving depth lower bounds for monotone circuits is the cor-
respondence between circuit depth and communication complexity of search prob-
lems, first used by Karchmer and Wigderson [3]. An excellent detailed exposition
of this correspondence can be found in the book by Kushilevitz and Nisan [4].

Let f be a monotone boolean function. If x, y are such that f(x) = 1 and
f(y) = 0, then there must be an index i such that xi = 1 and yi = 0. This fact
can be formulated as a search problem, the Karchmer–Wigderson game, named
after the paper [3] where it was first used.

Definition 2.1. For a monotone n-ary boolean function f , the Karchmer–
Wigderson game KWf is the search problem defined as follows:
• X = f−1[1] and Y = f−1[0].
• KWf ⊆ X × Y × [n] is defined by

(x, y, i) ∈ KWf iff xi = 1 ∧ yi = 0 .

The importance of the Karchmer–Wigderson game stems from the fact that its
communication complexity is exactly the minimal depth of a monotone circuit
computing f [3]. This fact can be generalized to circuits with gates of unbounded
fan-in by allowing the transmission of several bits at unit cost.

An (α, β)-protocol is a generalized communication protocol, where Alice may
send up to α bits, and Bob may send up to β bits in one step. Formally we define:

Definition 2.2. An (α, β)-protocol P over X × Y with range Z is a tree, where
each internal node ν is either labeled by a function aν : X → {0, 1}dν with 1 ≤
dν ≤ α, or by a function bν : Y → {0, 1}dν with 1 ≤ dν ≤ β. The node ν has
2dν sons, and the edges going from ν to these sons are labeled by the elements of
{0, 1}dν . Each leaf is labeled by an element z ∈ Z.

The value P (x, y) of P on input (x, y) ∈ X × Y is the label on the leaf reached
by the walk that starts at the root and
• at a node ν labeled by aν , follows the edge labeled aν(x);
• at a node ν labeled by bν , follows the edge labeled bν(y).

The cost of the protocol is the height of the tree.
A protocol P solves a search problem R ⊆ X × Y × Z, if for every input

(x, y) ∈ X × Y , we have (x, y, P (x, y)) ∈ R. The asymmetric communication
complexity cc(α,β)(R) is the minimal cost of any (α, β)-protocol that solves R.

We can now state the correspondence between the depth of semi-unbounded
fan-in circuits and asymmetric communication complexity.

Lemma 2.3. Let C be a monotone circuit of depth d, with ∨-fan-in r and ∧-fan-
in s computing f . Then there is a (dlog re, dlog se)-protocol solving KWf with cost
at most d.

Proof. Let g be a gate in C with g(x) = 1 and g(y) = 0 for some inputs x and y.
If g is an ∨, then g′(y) = 0 holds for every gate g′ entering g. Also, g′(x) = 1 holds
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for at least one of those gates, and Alice can tell Bob for which by communicating
at most dlog re bits. Symmetrically, if g is an ∧, Bob can communicate up to
dlog se bits to tell Alice for which gate g′ entering g it holds that g′(x) = 1 and
g′(y) = 0.

This way, given inputs x, y with C(x) = 1 and C(y) = 0, they can find a path
from the output to an input, such that for every gate g on the path g(x) = 1 and
g(y) = 0 holds, so in particular this holds for the input xi that was reached. The
cost of this protocol is the depth d of the circuit.

The opposite direction also holds; since we do not make use of this direction,
we omit the proof, which is an easy generalization of the fan-in 2 case.

Lemma 2.4. If there is an (α, β)-protocol with cost c solving KWf , then f can
be computed by a monotone circuit of ∨-fan-in 2α and ∧-fan-in 2β of depth c.

3. DART games and structured protocols

The main result in [5] is derived from a general theorem about the communica-
tion complexity of a certain class of search problems, the so-called DART games.
We generalize this to the case of asymmetric communication complexity, where
Bob is allowed to communicate several bits in one round.

The class of search problems DART(m, k), for m, k ∈ N, is defined as follows.
Any DNF tautology D = C1 ∨ . . . ∨Ct in variables z1, . . . , zk gives rise to a search
problem, where the input is an assignment α to the variables ~z, and the question
is to find one of the terms Ci of D that is satisfied by α.

From this DNF search problem, we define a communication problem as follows:
the set X of inputs to Alice is [m]k, the set of k-tuples x = (x1, . . . , xk) of elements
of [m]. The set Y of inputs to Bob is (2[m])k, i.e., each input y ∈ Y is a k-tuple
(y1, . . . , yk) of colorings yi : [m]→ {0, 1}. From two inputs x ∈ X and y ∈ Y , an
assignment α is defined by α(zi) := yi(xi). This assignment is taken as input to
the DNF search problem, i.e., given inputs x and y, Alice and Bob have to find a
term in D that is satisfied by the so defined assignment α.

A structured protocol is a communication protocol for solving a DART(m, k)
search problem, where in each round, Alice reveals the value xi for some i, and
Bob replies with yi(xi). The structured communication complexity scc(R) of R ∈
DART(m, k) is the minimal number of rounds in a structured protocol solving R.

Theorem 3.1. For every R ∈ DART(m, k), where m ≥ k14, and every β ≤ m
1
14

logm ,

cc(1,β)(R) ≥ scc(R) ·Ω(logm) .

The proof of the theorem is similar to the proof of the main theorem in [5], therefore
we do not give all the details, but only those parts that require modification. We
prove a more general statement about the complexity of DART games on restricted
domains.
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To a such a restricted DART game, one of two operations is applied to the
following effect. The first operation makes the domain smaller to reduce the
asymmetric communication complexity, the other modifies the DART game it-
self to decrease its structured complexity, while the asymmetric communication
complexity remains equal. Assuming that the asymmetric communication com-
plexity is too small, these operations can be performed alternatingly to obtain
a contradiction. Which of the two operations is to be applied is determined by
certain combinatorial properties of the domain, which are defined next.

Let A ⊆ [m]k and 1 ≤ j ≤ k. For x ∈ [m]k−1, let

degj(x,A) :=
∣∣∣{ ξ ∈ [m] ; (x1, . . . , xj−1, ξ, xj , . . . , xk−1) ∈ A }

∣∣∣·
Then we define

A[j] :=
{
x ∈ [m]k−1 ; degj(x,A) > 0

}
avdegj(A) :=

|A|
|A[j]|

Thickness(A) := min
1≤j≤k

min
x∈A[j]

degj(x,A) .

The following lemmas about these notions were proved in [5]:

Lemma 3.2. For every A′ ⊆ A and 1 ≤ j ≤ k,

avdegj(A
′) ≥ |A

′|
|A| avdegj(A) (1)

Thickness(A[j]) ≥ Thickness(A). (2)

Lemma 3.3. If there is 0 < δ < 1 such that for every 1 ≤ j ≤ k, avdegj(A) ≥ δm,
then for every α > 0 there is A′ ⊆ A with |A′| ≥ (1− α)|A| and

Thickness(A′) ≥ αδm

k
·

In particular, setting α = 1
2 and δ = 4m−

1
14 , we get:

Corollary 3.4. If m ≥ k14 and for every 1 ≤ j ≤ k, avdegj(A) ≥ 4m
13
14 , then

there is A′ ⊆ A with |A′| ≥ 1
2 |A| and Thickness(A) ≥ m 11

14 .

For R ∈ DART(m, k) and A ⊆ X , B ⊆ Y , let cc(1,β)(R,A,B) denote the
minimal cost of a (1, β)-protocol solving R restricted to the domain A×B.

Definition 3.5. Let m ∈ N be given. A triple (R,A,B) is called an (ε, δ, `)-game,
if the following hold.
• R ∈ DART(m, k) for some k ≤ m 1

14 , with scc(R) ≥ `.
• A ⊆ X = [m]k with |A| ≥ 2−ε|X | and Thickness(A) ≥ m 11

14 .
• B ⊆ Y = (2[m])k with |B| ≥ 2−δ|Y |.
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Lemma 3.6. Let (R,A,B) be an (ε, δ, `)-game, and δ < 8m
13
14 . If for all 1 ≤ j ≤

k, avdegj(A) ≥ 8m
13
14 , then there is (R′, A′, B′), which is either an (ε+2, δ, `)-game

or an (ε, δ + β, `)-game, with

cc(1,β)(R′, A′, B′) ≤ cc(1,β)(R,A,B)− 1 .

Proof. As in [5], we first prove that cc(1,β)(R,A,B) > 0. Assume otherwise,
then there is a term in the DNF tautology defining R which is satisfied for every
input (x, y) ∈ A × B. Therefore yj(xj) is constant for at least one j ≤ k. If γ
denotes the number of possible values of xj in elements of A, then this implies that
|B| ≤ 2mk−γ . On the other hand, |B| ≥ 2mk−δ, hence it follows that δ ≥ γ, but
from avdegj(A) ≥ 8m

13
14 we have γ ≥ 8m

13
14 , so this contradicts the assumption.

Now let an optimal (1, β)-protocol P solving R over A×B be given. The case
where Alice sends the first bit can be treated as in [5]: we partition A = A0 ∪A1

according to the value of this bit, then R restricted to Ai×B for i = 0, 1 is solved
by the sub-protocol of P following this transmission.

W.l.o.g. we assume |A0| ≥ 1
2 |A|, hence by Lemma 3.2, avdegj(A0) ≥ 4m

13
14 for

every j, and therefore Corollary 3.4 yields a subset A′ ⊆ A0 with |A′| ≥ 1
4 |A| with

Thickness(A′) ≥ m 11
14 . Thus (R,A′, B) is an (ε+ 2, δ, `)-game.

Otherwise, Bob sends the first message of d ≤ β bits, and we can partition B
according to this message as B = B0 ∪ . . . ∪B2d−1. Now for some i ≤ 2d − 1, we
have |Bi| ≥ 2−d|B| ≥ 2−δ−d|Y | ≥ 2−δ−β|Y |, and the sub-protocol of P following
Bob’s transmission solves R restricted to A×Bi, thus (R,A,Bi) is an (ε, δ+β, `)-
game.

Lemma 3.7. Let (R,A,B) be an (ε, δ, `)-game with ` ≥ 1. If for some 1 ≤ j ≤ k,
avdegj(A) < 8m

13
14 , then there is an (ε + 3− logm

14 , δ + 1, `− 1)-game (R′, A′, B′)
with

cc(1,β)(R′, A′, B′) ≤ cc(1,β)(R,A,B) .

The proof of this lemma can be taken without changes from [5], only the numbers
have to be adjusted to give a slightly better bound. We therefore omit the proof.
Now we can finish the proof of Theorem 3.1.

Proof of Theorem 3.1. We show that for every (ε, δ, `)-game (R,A,B), with δ ≤
m

1
7 , and every β ≤ m

1
14

logm ,

cc(1,β)(R,A,B) ≥ ` ·
[

logm
28

− 3
2
− 1
β

]
− ε

2
− δ

β
· (3)

The theorem follows since R itself is an (ε, δ, `) game (R,X, Y ) with ε = δ = 0 and
` = scc(R).

We prove (3) by induction. Assume inductively that (3) holds for all (ε′, δ′, `′)-
games where either `′ < `, or `′ = ` and δ′ > δ, or `′ = `, δ′ = δ and ε′ > ε.
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Let (R,A,B) be an (ε, δ, `)-game with

cc(1,β)(R,A,B) < ` ·
[

logm
28

− 3
2
− 1
β

]
− ε

2
− δ

β
·

Now if avdegj(A) ≥ 8m
13
14 for every 1 ≤ j ≤ k, then by Lemma 3.6 there is either

an (ε+ 2, δ, `)-game (R′, A′, B′) with

cc(1,β)(R′, A′, B′) ≤ cc(1,β)(R,A,B)− 1

< ` ·
[

logm
28

− 3
2
− 1
β

]
− ε+ 2

2
− δ

β

or there is an (ε, δ + β, `)-game (R′, A′, B′) with

cc(1,β)(R′, A′, B′) ≤ cc(1,β)(R,A,B)− 1

< ` ·
[

logm
28

− 3
2
− 1
β

]
− ε

2
− δ + β

β

both contradicting the inductive assumption.
Otherwise there is 1 ≤ j ≤ k with avdegj(A) < 8m

13
14 , and by Lemma 3.7 there

is an (ε+ 3− logm
14 , δ + 1, `− 1)-game (R′, A′, B′) with

cc(1,β)(R′, A′, B′) ≤ cc(1,β)(R,A,B) < ` ·
[

logm
28

− 3
2
− 1
β

]
− ε

2
− δ

β

= (`− 1) ·
[

logm
28

− 3
2
− 1
β

]
−
ε+ 3− logm

14

2
− δ + 1

β

in contradiction to the inductive assumption.
The induction base is trivial for ` = 0, and for δ = m

1
7 we get

` ·
[

logm
28

− 3
2
− 1
β

]
− ε

2
− δ

β
≤ m

1
14

[
logm− 42

28
− logm

m
1
14

]
− m

1
7 logm
m

1
14

≤ m
1
14 (logm− 42)

28
− logm−m 1

14 logm

which is ≤ 0 for large m, hence (3) holds trivially. Also, the right hand side of (3)
is ≤ 0 for ε ≥ 1

14m
1
14 logm − 2 logm− 3, hence the induction base also holds for

large ε.2

4. Application

For d ∈ N, let Pyrd := { (i, j) ; 1 ≤ j ≤ i ≤ d } be the pyramid of depth d.
In [5], the search problem PyrGen(m, d) ∈ DART(m,

(
d+1

2

)
) is defined as follows:

2Note that this last case was omitted from the proof in [5].
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The indices 1, . . . ,
(
d+1

2

)
are interpreted as elements of Pyrd, and we picture

them as laid out in a pyramidal form with (1, 1) at the top and (d, j), 1 ≤ j ≤ d
at the bottom. The goal is to find one of the following situations:
• y1,1(x1,1) = 0.
• yi,j(xi,j) = 1 and yi+1,j(xi+1,j) = yi+1,j+1(xi+1,j+1) = 0 for some (i, j) ∈
Pyrd−1.
• yd,j(xd,j) = 1 for some j ≤ d.
The following lower bound on the structured communication complexity of

PyrGen(m, d) was proved in [5].

Lemma 4.1. scc(PyrGen(m, d)) ≥ d.

By Theorem 3.1, we thus obtain a lower bound on the asymmetric communica-
tion complexity of PyrGen(m, d).

Corollary 4.2. For m ≥ d28 and β ≤ m 1
14 / logm,

cc(1,β)(PyrGen(m, d)) ≥ Ω(d logm) .

Next we define a property of monotone boolean functions of n3 inputs ta,b,c for
a, b, c ∈ [n]. The input ~t is viewed as the definition of a formal system T , where the
formulas are the elements of [n], the only axiom is 1 and each input bit ta,b,c = 1
defines an inference rule a, b ` c.

We say that an input ~t allows a depth d pyramidal derivation if there is a
derivation of n in T of a special form, where the formulas can be arranged in
a pyramid of depth d such that each formula is inferred from the two formulas
below it. Formally, ~t allows a depth d pyramidal derivation if and only if there is
a mapping µ : Pyrd → [n] such that the following conditions hold:
• 1, 1 ` µ(d, j) for every 1 ≤ j ≤ d.
• µ(i+ 1, j), µ(i+ 1, j + 1) ` µ(i, j) for every (i, j) ∈ Pyrd−1.
• µ(1, 1), µ(1, 1) ` n.

We say that an input ~t is separable if there is a coloring χ : [n] → {0, 1} such
that χ(1) = 0, χ(n) = 1 and all inference rules in T preserve the color 0, i.e., if
χ(a) = χ(b) = 0 and a, b ` c, then χ(c) = 0.

Finally, a function f is called d-pyramidal, if f(~t) = 1 for all inputs t that allow
a depth d pyramidal derivation, and f(~t) = 0 for all ~t that are separable.

Proposition 4.3. There is a d-pyramidal function that can be computed by an
mSAC circuit of polynomial size, ∨-fan-in n2 and depth 3d+ 3.

Proof. The function f decides whether n has a tree-like derivation of depth d in
the formal system T defined by the input ~t. For each i ∈ [d] and c ∈ [n], we define
a circuit D(i, c) that decides whether c has a derivation of depth i. These circuits
are defined inductively by
• D(1, c) = 1 if c can be derived immediately from the axiom 1, thus D(1, c)

is (1, 1 ` c), i.e., the variable t1,1,c.
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• for i ≥ 2, D(i, c) = 1 if c can be inferred from some a and b that have
derivations of depth i− 1, i.e., D(i, c) is∨

a,b∈[n]

(a, b ` c) ∧D(i− 1, a) ∧D(i− 1, b) .

Finally, the circuit computing f(~t) is
∨
c∈[n](c, c ` n)∧D(d, c). Obviously, the size,

depth and fan-in of this circuit are as claimed, and the function f it computes is
d-pyramidal.

Lemma 4.4. For every m, d, β and n := m
(
d+1

2

)
+ 2, any monotone d-pyramidal

function f of n3 inputs satisfies

cc(1,β)(PyrGen(m, d)) ≤ cc(1,β)(KWf ) .

Proof. We reduce the search problem PyrGen(m, d) to the Karchmer–Wigderson
game for the function f , in fact, this is exactly the reduction to KWGen used in [5].

From their inputs x and y to PyrGen(m, d), Alice and Bob compute inputs
~t and ~u, respectively, to KWf without any communication, such that from a
solution of KWf for these inputs one can immediately read off a solution of
PyrGen(m, d).

We interpret the elements between 2 and n− 1 as triples (i, j, k), where (i, j) ∈
Pyrd and k ∈ [m]. Alice computes from her input x : Pyrd → [m] an input
~t that allows a depth d pyramidal derivation by setting the following, where ai,j :=
(i, j, xi,j).

1, 1 ` ad,j for 1 ≤ j ≤ d
a1,1, a1,1 ` n
ai+1,j , ai+1,j+1 ` ai,j for (i, j) ∈ Pyrd−1.

Since f is d-pyramidal, f(~t) = 1.
Similarly, Bob computes from his input y : Pyrd → 2[m] a coloring χ of [n]

by setting χ(1) = 0, χ(n) = 1 and χ((i, j, k)) = yi,j(k). From this coloring, he
computes a separable input ~u with f(~u) = 0 by setting a, b ` c for all triples
a, b, c ∈ [n] except for those with χ(c) = 1 and χ(a) = χ(b) = 0.

A solution of the Karchmer–Wigderson game for f is a triple (a, b, c) such that
a, b ` c in ~t and a, b 6` c in ~u. This means that χ(a) = χ(b) = 0 and χ(c) = 1, and
by therefore one of the following cases holds:
• a = b = 1 and c = ad,j for some j ≤ d, and hence yd,j(xd,j) = 1.
• c = n and a = b = a1,1, and therefore y1,1(x1,1) = 0.
• a = ai+1,j , b = ai+1,j+1 and c = ai,j , in which case we have yi,j(xi,j) = 1,

and yi+1,j(xi+1,j) = yi+1,j+1(xi+1,j+1) = 0.
In either case, the players have found a solution to PyrGen(m, d) without any
additional communication.
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With this information, we get a lower bound for co-mSAC circuits computing
a d-pyramidal function.

Proposition 4.5. Let m ≥ d28 and n :=
(
d+1

2

)
m + 2. Any co-mSAC circuit

of ∧-fan-in 2m
1
14 / logm computing a d-pyramidal function f of n3 inputs requires

depth Ω(d logm).

Proof. Let β := m
1
14

logm . By Lemma 4.4 and Corollary 4.2, we get

cc(1,β)(KWf ) ≥ Ω(d logm) ,

and hence by Lemma 2.3, a co-mSAC circuit of ∧-fan-in 2β computing f requires
depth Ω(d logm).

Finally, this lower bound together with the upper bound of Proposition 4.3
proves Theorem 1.1.

References

[1] A. Borodin, S.A. Cook, P.W. Dymond, W.L. Ruzzo and M. Tompa, Two applications of
inductive counting for complementation problems. SIAM J. Comput. 18 (1989) 559-578.

[2] M. Grigni and M. Sipser, Monotone complexity, in Boolean Function Complexity, edited by
M.S. Paterson. Cambridge University Press (1992) 57-75.

[3] M. Karchmer and A. Wigderson, Monotone circuits for connectivity require super-logarithmic
depth. SIAM J. Discrete Math. 3 (1990) 255-265.

[4] E. Kushilevitz and N. Nisan, Communication Complexity. Cambridge University Press
(1997).

[5] R. Raz and P. McKenzie, Separation of the monotone NC hierarchy. Combinatorica 19
(1999) 403-435.

[6] H. Venkateswaran, Properties that characterize LOGCFL. J. Comput. System Sci. 43 (1991)
380-404.

Communicated by I. Wegener.
Received January, 2001. Accepted August 8, 2001.

To access this journal online:
www.edpsciences.org


