
Theoretical Informatics and Applications
Theoret. Informatics Appl. 35 (2001) 379–388

ON THE EXPRESSIVE POWER OF THE SHUFFLE
OPERATOR MATCHED WITH INTERSECTION

BY REGULAR SETS

Joanna Jȩdrzejowicz
1

and Andrzej Szepietowski
1

Abstract. We investigate the complexity of languages described by
some expressions containing shuffle operator and intersection. We show
that deciding whether the shuffle of two words has a nonempty intersec-
tion with a regular set (or fulfills some regular pattern) is NL-complete.
Furthermore we show that the class of languages of the form L ∩ R,
with a shuffle language L and a regular language R, contains non-
semilinear languages and does not form a family of mildly context-
sensitive languages.

Mathematics Subject Classification. 68Q15, 68Q45.

Introduction

Parallel composition of words appears to be an important issue both in the
theory of concurrency and formal languages. Usually it is modeled by the shuffle
operation. If the class of regular languages is extended by the shuffle operation �
and the iteration of the shuffle operation, ⊗, then we obtain the class of shuffle
languages SL, which is useful in describing concurrent non-communicating pro-
cesses [6]. We know [3] that for each shuffle language L there exists a one-way
nondeterministic Turing machine which decides the membership problem for L in
logarithmic space. This implies that shuffle languages are context sensitive and
that they are recognizable in polynomial time. But the shuffle operation can be
helpful to describe more complex languages. Warmuth and Haussler [8] show that
if we add the intersection operation then we can obtain an NP-complete language,
namely the language {$anbncndn | n ≥ 0}⊗ =

(
($ +abcd)⊗∩ ($a∗b∗c∗d∗)

)⊗. They

Keywords and phrases: Formal languages, shuffle, space complexity.

1 Institute of Mathematics, University of Gdańsk, ul Wita Stwosza 57, 80952 Gdańsk, Poland;
e-mail: jj@math.univ.gda.pl & matszp@math.univ.gda.pl

c© EDP Sciences 2001

380 J. JȨDRZEJOWICZ AND A. SZEPIETOWSKI

also show that the problem of deciding for any words w,w1, . . . , wn ∈ {a, b, c}∗
whether w ∈ w1 � · · · � wn is NP-complete.

In this paper we consider some languages described with the help of both the
shuffle operations and the intersection with regular sets. Firstly, we consider lan-
guages of the form {u$v | u � v ∩ R 6= ∅} or {u$v | u � v ⊂ R}, where R is a
regular language. The latter is the problem of deciding whether the shuffle of two
words fulfills the regular pattern R. We show that every such language belongs
to NL (is acceptable in nondeterministic logarithmic space) and that there exists
an NL-complete language of each of these forms. We also show that there are
NL-complete languages of the form {u | u� u ∩R 6= ∅} or {u | u� u ⊂ R}.

Furthermore we consider the class SL ∧ Reg = {L ∩ R | L ∈ SL, R ∈ Reg}
of languages represented as the intersection of a shuffle language and a regular
one. The reason for starting this investigation was, as it seemed, the connection
of SL ∧Reg with mildly context-sensitive languages considered in [4] and defined
as follows: a family L is a mildly context-sensitive family of languages if each
language in L is semilinear, and recognizable in deterministic polynomial time,
and if L contains the following three languages: L1 = {aibici | i ≥ 0} (multiple
agreements), L2 = {aibjcidj | i, j ≥ 0} (crossed agreements), and L3 = {ww |
w ∈ {a, b}∗} (duplications). The class SL ∧ Reg seemed a good candidate for a
family of mildly context-sensitive languages in view of fulfilling the condition of
polynomial complexity of membership problem [3] and neat description of multiple
agreements and crossed agreements by suitable expressions. In this paper we show
that SL ∧ Reg contains some non-semilinear languages and does not contain L3.
Hence SL ∧Reg does not form a family of mildly context-sensitive languages.

1. Preliminaries

Let Σ be any fixed alphabet and λ the empty word. By u · v we denote the
concatenation of two words u and v. We shall also use the notation

∏
i∈I σi, to

denote the concatenation σi1σi2 · · ·σis , where I = {i1, i2 . . . is} and ik < ik+1 for
every 1 ≤ k ≤ s− 1.

The shuffle operation � is defined inductively as follows:
• u� λ = λ� u = {u}, for u ∈ Σ∗;
• au� bv = a(u� bv) ∪ b(au� v), for u, v ∈ Σ∗ and a, b ∈ Σ.

Note that u � v consists of all words z ∈ Σ∗ which can be decomposed into
z = w1 · w2 · · ·wr with wi ∈ Σ∗, u =

∏
i∈I wi and v =

∏
i6∈I wi, for some subset

I ⊂ {1, 2, . . . , r}. The shuffle operation is extended in a natural way to languages:
for any languages L1, L2 ⊂ Σ∗ the shuffle L1 � L2 is defined as

L1 � L2 =
⋃

u∈L1,v∈L2

u� v.

ON THE EXPRESSIVE POWER OF THE SHUFFLE OPERATOR 381

For any language L, the shuffle closure operator is defined by:

L⊗ =
∞⋃
i=0

L�i, where L�0 = {λ} and L�i = L�i−1 � L.

Definition 1.1. Each a ∈ Σ, as well as λ and ∅ are shuffle expressions. If S1, S2

are shuffle expressions, then (S1 ·S2), S1
∗, (S1 +S2), (S1�S2) and S1

⊗ are shuffle
expressions, and nothing else is a shuffle expression.

The shuffle language L(S) generated by a shuffle expression S is defined as
follows. L(a) = {a}, L(λ) = {λ}, L(∅) = ∅. If L(S1) = L1 and L(S2) = L2, then
L((S1 · S2)) = L1 · L2, L((S1 + S2)) = L1 ∪ L2, L(S1

∗) = L∗1, L((S1 � S2)) =
L1 � L2, and L(S1

⊗) = L⊗1 .

In what follows we shall not distinguish between the shuffle expression and the
language generated by this expression. Shuffle languages are denoted by SL and
regular languages by Reg.

Assume that Σ = {a1, . . . , an}. The Parikh mapping, denoted by Ψ, is Ψ:
Σ∗ → Nn :

Ψ(w) = (#a1w, . . . ,#anw),

where #xw denotes the number of occurrences of the letter x in the word w.
For a language L ⊂ Σ∗ its Parikh image is defined by

Ψ(L) =
⋃
w∈L

Ψ(w).

A linear set is a set A ⊆ Nn such that A = {v0 +
∑m
i=1 xivi | xi ∈ N} for some

v0, v1, . . . , vm ∈ Nn. A semilinear set is a finite union of linear sets and a language
L is semilinear if Ψ(L) is a semilinear set. Observe that for any sets A,B ⊆ Σ∗,
we have

Ψ(A�B) = Ψ(AB),

Ψ(A⊗) = Ψ(A∗),

and since regular languages are semilinear, shuffle languages are semilinear, as
well.

Example 1.2. Consider the language generated by the intersection of two shuffle
expressions S1, S2 and a regular expression R:

S1 = (((ab)⊗ �X)Y)∗,

R = (a∗Xb∗Y)∗,

382 J. JȨDRZEJOWICZ AND A. SZEPIETOWSKI

S2 = aX(((ba)⊗ � Y)aX)∗b∗Y

over the alphabet {a, b,X, Y }. It is easy to see that S1 ∩R contains words of the
form

w = an1Xbn1Y · · · ankXbnkY.

If w ∈ S2 ∩R, then

w = aXbm1Y am1+1Xbm2Y am2+1 · · · bmlY aml+1Xbml+1Y.

And if w ∈ S1 ∩ R ∩ S2 we have k = l + 1 (due to the number #Yw), besides
n1 = 1, m1 = n1 = 1, n2 = m1 + 1 = 2, m2 = n2 = 2, . . . , nk = mk−1 + 1 = k.
Thus

S1 ∩R ∩ S2 = {aXbY a2Xb2Y · · · akXbkY | k ≥ 0}

is a non-semilinear language.

By NSPACE(logn) or NL we shall denote the class of languages accepted
by nondeterministic Turing machines within logarithmic space and by one-way-
NSPACE(logn) the class of languages accepted by one-way-nondeterministic
Turing machines within logarithmic space.

2. Finding the regular pattern in the shuffle of words

We consider the problem of deciding whether the shuffle of two words fulfills
some regular pattern or has a nonempty intersection with a regular set. In other
words the languages of the form {u$v | u� v ⊂ R}, or {u$v | u� v∩R 6= ∅} where
R ∈ Reg and $ is a special separating symbol.

Theorem 2.1. For any regular language R the sets {u$v | u� v ⊂ R} and {u$v |
u� v∩R 6= ∅} are accepted in nondeterministic logarithmic space and there exists
a NL-complete language of each of the above forms.

Proof. First we show that the language {u$v | u � v ∩ R 6= ∅} is accepted by a
nondeterministic Turing machine M in logarithmic space. The machine M guesses
one by one letters of a word r of length n = |u| + |v| and checks if r belongs to
u � v ∩ R. To check if r ∈ u � v, M uses two pointers; the first points to the
successive letters of u, the second to the letters of v, at the beginning they point
to the first letters of u and v. M guesses decomposition of r = r1 · r2 · · · · · rn into∏
i∈I ri = u and

∏
i6∈I ri = v, for some subset I ⊂ {1, 2, . . . , n} and ri ∈ Σ. In the

i-th step M guesses ri and whether i ∈ I or not. If i ∈ I then checks if the first
pointer points to ri and moves this pointer right to the next position. If i 6∈ I,
checks and moves the second pointer. In order to check if r ∈ R, M simultaneously
runs the finite automaton accepting R on the successive letters of r.

ON THE EXPRESSIVE POWER OF THE SHUFFLE OPERATOR 383

Note that

{u$v | u� v ⊂ R} = {u$v | u� v ∩Rc 6= ∅}c ∩ (Σ∗$Σ∗).

Where Ac is the complement of the language A. Using the fact that the class NL
is closed under complement and intersection with regular languages (see [5,7]) we
have that the language

{u$v | u� v ⊂ R}
belongs to NL, as well.

Now we show that there is an NL-complete language of the form

{u$v | u� v ∩R 6= ∅}·

To do this we reduce the language GAP to the language

L = {u$v | u� v ∩R 6= ∅}

with the regular language

R = d1d
(
(a+b+e+D+E+0+1)∗eE(0a+1b)∗eE(d+e+0+1)∗dD(0a+1b)∗dD

)∗
over the alphabet {0, 1, a, b, d, e,D,E}.

The language GAP consists of directed graphs G = (V,E), which have a path
from the first vertex to the last one. We shall assume that V = {1, . . . , n} for some
n and that if (i, j) ∈ E then i < j (even in this case GAP remains NL-complete,
see [5]). The graph G is coded in the following way

G = dc(1)dec
(
i11
)
e · · · ec

(
i1j1
)
e · · ·dc(k)dec

(
ik1
)
e · · · ec

(
ikjk
)
e · · ·dc(n)d,

where c(i) is the number i coded in binary (note that c(1) = 1), the symbols d and
e play the role of the separators, and ik1, . . . , i

k
jk

are the vertices which are joined
by an edge from k.

Reduction from GAP to L = {u$v | u�v∩R 6= ∅} is performed by the function
h(G) = u$v with u = G and

v = EC(1)EDC(1)DEC(2)EDC(2)D · · ·EC(n)EDC(n)D,

where C(i) is the number i coded in binary with a standing for 0 and b standing
for 1 and the symbols D, E play the role of the separators,

First we show that if G ∈GAP then there exists r ∈ u � v ∩ R. Suppose that
there is a path 1 = s1, s2, . . . , st = n joining 1 with n. Then there is a word

r = U1U2 · · ·Ut ∈ u� v ∩R

where U1 = dc(1)d and for each i, 2 ≤ i ≤ t

Ui ∈ (a+ b+ e+D+E + 0 + 1)∗eE(0a+ 1b)∗eE(d+ e+ 0 + 1)∗dD(0a+ 1b)∗dD

384 J. JȨDRZEJOWICZ AND A. SZEPIETOWSKI

is of the form:
Ui = vieEwieExidDyidD,

where:
• the part eEwieE ∈ eE(0a+ 1b)∗eE is composed from ec(si)e and EC(si)E,

the part ec(si)e is taken from the list

ec
(
i
si−1
1

)
e . . . ec

(
i
si−1
jsi−1

)
e

and EC(si)E is taken from v;
• the part dDyidD ∈ dD(0a + 1b)∗dD comes from a shuffle of dc(si)d (taken

from u) and DC(si)D (taken from v);
• xi ∈ (d+e+0+1)∗ is the fragment of u standing between ec(si)e and dc(si)d;
• vi ∈ (a+ b+e+D+E+0+1)∗ is the concatenation (or any other shuffle) of

the fragment of u standing between dc(si−1)d and ec(si)e and the fragment
of v standing between DC(si−1)D and EC(si)E.

For every i, 2 ≤ i ≤ t the pair EC(si)EDC(si)D joins the element ec(si)e from
the list

ec
(
i
si−1
1

)
e · · · ec

(
i
si−1
jsi−1

)
e

(remember that there is an edge from si−1 to si and ec(si)e is on the list) with
the element dc(si)d which stands in front of the list of vertices joined by an edge
from si.

Now we show that if there exists r ∈ u� v ∩ R then there is a path from 1 to
n in G.

Since r ∈ R then r is of the form

r = U1U2 · · ·Ut

with U1 = d1d = dc(1)d and for each i, 2 ≤ i ≤ t

Ui ∈ (a+ b+ e+D+E + 0 + 1)∗eE(0a+ 1b)∗eE(d+ e+ 0 + 1)∗dD(0a+ 1b)∗dD

is of the form
Ui = vieEwieExidDyidD

with vi ∈ (a+ b+ e+D+E + 0 + 1)∗, wi ∈ (0a+ 1b)∗, xi ∈ (d+ e+ 0 + 1)∗, and
yi ∈ (0a+ 1b)∗.

Note that eEwieE ∈ eE(0a+ 1b)∗eE can be only composed from ec(αi)e and
EC(γi)E with ec(αi)e taken from some list

ec
(
iβi1

)
e . . . ec

(
iβijβi

)
e

and EC(γi)E taken from v. This composition is possible only if αi = γi (ensured
by wi ∈ (0a+ 1b)∗).

ON THE EXPRESSIVE POWER OF THE SHUFFLE OPERATOR 385

Similarly dDyidD ∈ dD(0a+ 1b)∗dD can be only composed from dc(δi)d taken
from u and DC(εi)D taken from v. Note that this composition is possible only if
δi = εi.

Observe that:

1. in U2 there is no symbol d in v2, hence ec(α2)e is taken from the first list in
u, β2 = 1, and there is an edge from 1 to α2;

2. in Ui there is no symbol E or D in xi, hence γi = εi, and αi = δi;
3. there is no symbol d standing between last D in Ui and the first e in Ui+1,

hence βi+1 = δi = αi, and αi+1 is taken from the list

ec(iαi1)e . . . ec(iαijαi)e

so there is an edge between αi and αi+1;
4. there is no symbol d behind dDytdD in Ut, hence δt = αt = n.

Hence, we have shown that the sequence 1 = α1, α2, . . . , αt = n forms a path from
1 to n and that the language L is NL-complete.

Because NL is closed under complement the language non-GAP is also NL-
complete. It is easy to see that the function h reduces non-GAP into

{u$v | u� v ⊂ Rc}

and thus this language is also NL-complete.

Consider now the languages of the form

{u | u� u ∩R 6= ∅}

with some regular language R. Of course every such language belongs to NL and
also among such languages there are NL-complete ones. Let

T = X(0 + 1 + d+ e)∗Y XRZY (a+ b+D +E)∗Z

where X,Y, Z are new separating symbols. It is easy to see that if w = XuY vZ
then w � w ∩ T 6= ∅ if and only if u� v ∩R 6= ∅. Hence we have:

Corollary 2.2. For any regular language R the sets {u | u � u ⊂ R} and {u |
u�u∩R 6= ∅} are accepted in nondeterministic logarithmic space and there exists
a NL-complete language of each of the above forms.

3. Intersections with regular languages

Now we consider the class SL∧Reg = {L∩R | L ∈ SL, R ∈ Reg} of languages
represented as the intersection of a shuffle language and a regular one. The reason

386 J. JȨDRZEJOWICZ AND A. SZEPIETOWSKI

for starting this investigation was, as it seemed, the connection of SL ∧Reg with
mildly context-sensitive languages considered in [4] and defined as follows:

Definition 3.1. A family L is a mildly context-sensitive family of languages if
the following conditions are fulfilled:
• each language in L is semilinear;
• for each language in L the membership problem is solvable in deterministic

polynomial time, and
• L contains the following three non-context-free languages

– L1 = {aibici | i ≥ 0} (multiple agreements);
– L2 = {aibjcidj | i, j ≥ 0} (crossed agreements);
– L3 = {ww | w ∈ {a, b}∗} (duplications).

The class SL∧Reg seemed a good candidate for a family of mildly context-sensitive
languages in view of fulfilling the condition of polynomial complexity of member-
ship problem and neat description of multiple agreements and crossed agreements
by suitable expressions. By [3], SL ⊂ one-way-NSPACE(logn), and the class
one-way-NSPACE(logn) is closed under intersections with regular languages [7],
so SL ∧Reg ⊂ one-way-NSPACE(logn) ⊂ P .

The languages: multiple agreements L1 and crossed agreements L2 are in SL∧
Reg since

L1 = (abc)⊗ ∩ a∗b∗c∗,

L2 = (ac+ bd)⊗ ∩ a∗b∗c∗d∗.

But the language L3 does not belong to one-way-NSPACE(logn) [7], hence L3

is not in SL ∧Reg. It is interesting that SL ∧Reg contains two languages which
are similar to duplicates.

Suppose that for any letter a ∈ Σ we introduce a new symbol a′ and denote
Σ′ = {a′ | a ∈ Σ}. By a primed word we understand a word where all the symbols
of the original word are replaced by primed symbols, that is if w = a1 · · · an ∈ Σ∗,
then w′ = a′1 · · · a′n ∈ Σ′∗.

Example 3.2. The following language L ⊆ (Σ∪Σ′)∗, of non-duplicates, is in the
class SL ∧Reg:

{uv′ | vR 6= u} =

 ⋃
a,b∈Σ,a6=b

Σ∗aX⊗b′Σ′∗
 ∩ Σ∗Σ′∗,

where X = {xx′ | x ∈ Σ}. Also the language of ’almost’ duplicates is in SL∧Reg:

{wv′ | v ∈ com(w)} = EQ(Σ) ∩Σ∗Σ′∗,

where com(w) = {u ∈ Σ∗ | for each a ∈ Σ,#aw = #au} is the commutative
closure of w and EQ(Σ) = (a1a

′
1 + · · ·+ ana

′
n)⊗, for Σ = {a1, . . . , an}.

ON THE EXPRESSIVE POWER OF THE SHUFFLE OPERATOR 387

Now we show that SL ∧ Reg contains non-semilinear languages. Araki and
Tokura proved the following:

Theorem 3.3. [1] For any alphabet Σ and each recursively enumerable lan-
guage K over Σ there exist two alphabets Γ = {[1, [2, . . . , [c,1],2], . . . ,c]}, ∆ =
{σ1, ω1, . . . , σd, ωd} and a shuffle expression S over Σ ∪ Γ ∪∆ such that

K = {x1 · · ·xk ∈ Σ∗ | there exist y1, . . . , yk ∈ (Γ ∪∆)∗,
such that x1y1 · · ·xkyk ∈ S, and y1 · · · yk ∈ Slock � Ssignal},

where Slock = ([1 1])∗ � · · · � ([c c])
∗, Ssignal = (σ1 + σ1ω1)∗ � · · · � (σd + σdωd)∗.

Note that K can be expressed in the form

K = erΣ(S ∩R),

where erΣ is a weak identity or erasing homomorphism defined by

erΣ(x) =
{
x if x ∈ Σ
λ otherwise

and R = Slock � Ssignal �Σ∗ is regular, because the shuffle of regular languages is
regular.

Take now any non-semilinear recursively enumerable language K, by the above
theorem it can be represented by

K = erΣ(L)

for some L ∈ SL ∧Reg. Since the erasing homomorphism preserves semilinearity
the language L is also non-semilinear. Hence we have:

Corollary 3.4. There exists a non-semilinear language in the class SL ∧Reg.

Corollary 3.5. The class SL ∧ Reg does not form a family of mildly context-
sensitive languages.

Remark. We think that Theorem 3.3 can be strengthened in the following way.
For any alphabet Σ there exists an alphabet Γ ⊃ Σ and a shuffle language S over
Γ which is a “very special language” ([2]), that is for each recursively enumerable
languageK over Σ there exists a regular language over Γ such that K = erΣ(S∩R).

4. Open problems

1. Is there an NL-complete language in the class SL?

By [3] SL ⊂ NL. This problem is equivalent to the problem whether there is an
NL-complete language in SL ∧Reg. Indeed suppose that there exists a reduction
h from GAP to L∩R ⊂ Σ∗ with some L ∈ SL and R ∈ Reg, and let $ be an arbi-
trary symbol not in Σ. Now, there exists the reduction g from GAP to the shuffle

388 J. JȨDRZEJOWICZ AND A. SZEPIETOWSKI

language L ⊂ (Σ∪{$})∗: on the input x, g computes h(x), checks simultaneously
if it belongs to R, and sets g(x) = h(x) if h(x) ∈ R, and g(x) = h(x)$ otherwise.

2. Is there an NL-complete language of the form

L = {u$v1$ · · · $vk | u ∈ v1 � · · · � vk, and u, v1, . . . vk ∈ Σ∗}

for some constant k and some alphabet Σ?
Similarly as in the proof of Theorem 2.1 one can show that L ∈ NL. By [8], L

is NP -complete, if k is not a constant and Σ = {a, b, c}.

References

[1] T. Araki and N. Tokura, Flow languages equal recursively enumerable languages. Acta In-
form. 15 (1981) 209-217.

[2] D. Haussler and P. Zeiger, Very special languages and representations of recursively enumer-
able languages via computation stories. Inform. and Control 47 (1980) 201-212.

[3] J. Jȩdrzejowicz and A. Szepietowski, Shuffle languages are in P. Theoret. Comput. Sci. 250
(2001) 31-53.

[4] C. Martin-Vide and A. Mateescu, Special families of sewing languages, in Workshop – De-
scriptional complexity of automata, grammars and related structures. Magdeburg (1999)
137-143.

[5] C.H. Papadimitriou, Computational Complexity. Addison-Wesley Publ. Co (1994).
[6] A.C. Shaw, Software descriptions with flow expressions. IEEE Trans. Software Engrg. 3

(1978) 242–254.
[7] K. Wagner and G. Wechsung, Computational Complexity. Reidel, Dordrecht, The Nether-

lands (1986).
[8] M.K. Warmuth and D. Haussler, On the complexity of iterated shuffle. J. Comput. Syst. Sci.

28 (1984) 345-358.

Communicated by Ch. Choffrut.
Received December, 2000. Accepted October, 2001.

to access this journal online:
www.edpsciences.org

