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A FULLY EQUATIONAL PROOF
OF PARIKH’S THEOREM *
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Abstract. We show that the validity of Parikh’s theorem for context-
free languages depends only on a few equational properties of least
pre-fixed points. Moreover, we exhibit an infinite basis of u-term equa-
tions of continuous commutative idempotent semirings.
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1. INTRODUCTION

A classic result of the theory of context-free languages is Parikh’s theorem [25]
that asserts that the letter occurrence vectors (also known as Parikh vectors)
corresponding to the words of a context-free language on a k-letter alphabet form a
semilinear subset of N*, the free commutative monoid of k-dimensional vectors over
the natural numbers. The theorem is usually proved by combinatorial arguments
on the derivation trees of the context-free grammar, and is regarded as one of
the most fundamental, yet subtly difficult to prove, in the theory of context-free
languages.
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As first observed by Pilling in [27], Parikh’s theorem may be formulated as an
assertion about “rational functions” on the (free) continuous commutative idem-
potent semiring of all subsets of N¥. Subsequently, Kuich [20] generalized Parikh’s
result to all continuous commutative idempotent semirings (l-semirings). (See
also [30] for a related treatment.) In fact, by introducing rational terms that de-
note rational functions, or more generally, recursion terms or u-terms denoting
functions that arise as least solutions of systems of polynomial fixed point equa-
tions, Parikh’s theorem can be translated into a statement about the equational
theory of continuous commutative idempotent semirings:

For every p-term t there exists a rational term r such that the equation
t = r holds in all continuous commutative idempotent semirings.

Alternatively, one may just consider rational terms and prove that for each
rational term ¢(z,y1,. .. ,yn) in the variables x, y1, ... , yn, there is a rational term
7(y1,... ,Yn) containing no occurrence of  that provides least solution to the fixed
point equation x = t(z,y1,... ,Yn) over all continuous commutative idempotent
semirings. This approach has been pursued by Hopkins and Kozen in [14], in
their argument lifting Parikh’s theorem to all commutative idempotent semirings
with enough least fixed points to provide solutions to recursion equations. By
proving this more general result, Hopkins and Kozen have shown how to replace
the analytic arguments of Pilling and Kuich by arguments based only on the least
(pre-)fixed point rule (also known as the Park induction rule [26]), the fixed point
equation, and the algebraic laws of the sum and product operations. However,
since Parikh’s theorem is essentially a claim about equational theories, one would
eventually like to have a fully equational proof of it. In this paper, we derive
Parikh’s theorem from a small set of purely equational axioms involving fixed
points.

Parikh’s theorem is not the only result of automata and language theory that
can be derived by simple equational reasoning from the algebraic properties of
fixed points. Other applications of the equational logic of fixed points include
proofs of Kleene’s theorem and its generalizations [4] (see also [5,20,21], where
the presentation is not fully based on equational reasoning), and of Greibach’s
normal form theorem for context-free grammars [9]. The methods employed in the
papers [8,19] even indicate that one can embed the proof of the Krohn-Rhodes
decomposition theorem [11] for finite automata and semigroups within equational
logic. Further applications of fixed point theory include an equational proof of the
soundness and relative completeness of Hoare’s logic [2,3]. (See also [18], and [23]
for a not fully equational treatment.)

In order to view Parikh’s theorem as the aforementioned statement about the
equational theory of continuous commutative idempotent semirings, we will con-
sider terms, or p-terms, defined by the following (abstract) syntax, where x ranges
over a fixed countable set X of variables:

T = z|T+T|T-T|0|1]|pxT.
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Thus, if ¢ is a term and « is a variable, then ux.t is a term. Terms ¢ generated by
the grammar above may be interpreted as continuous functions tg : X — S over
continuous semirings S, and continuous idempotent semirings in particular. Such
a semiring S = (5,+,-,0,1) has an idempotent additive structure, and equipped
with the order < induced by the additive structure it has all suprema. Moreover,
the - operation preserves all suprema. (It is clear that the 4+ operation also pre-
serves all suprema.) A prime example of such a semiring is the semiring Ly« of
all languages in ¥*, where X is a finite or infinite alphabet, equipped with the
union and concatenation operations as sum and product, and the empty set and
the set whose unique element is the empty word as 0 and 1, respectively. More
generally, if M is any monoid, then P(M), the set of all subsets of M, equipped
with the operations of set union and complex product as sum and product is a
continuous idempotent semiring. In fact, one can easily show that the semiring
Ly is freely generated by X in the category of continuous idempotent semirings
and continuous semiring homomorphisms. In continuous semirings, terms of the
form px.t are interpreted by least (pre-)fixed points.

As the semirings Ly« are the free continuous idempotent semirings, an equa-
tion ¢ = t' between p-terms with free variables in Y = {y1,... ,y,} holds in all
continuous idempotent semirings if, and only if,

toy (ks Aynd) = 0 {uid oo {un )

i.e., when t and t/, viewed as context-free grammars, generate the same lan-
guage in Y*. Since the equivalence of context-free grammars is undecidable (see,
e.g. [13]), it follows that, for u-terms, the equational theory of continuous idem-
potent semirings is undecidable. Moreover, since the inequivalence of context-
free grammars is semidecidable, the equational theory of continuous idempotent
semirings is not recursively enumerable. Thus, the equational theory of continu-
ous idempotent semirings has no recursively enumerable basis. The same holds
for continuous semirings, since the free continuous semirings are the semirings of
power series with coefficients in the semiring of natural numbers equipped with a
top element, and since the equality of such algebraic series is not semidecidable
either.

For continuous commutative idempotent semirings, however, the situation is
completely different. The free continuous commutative idempotent semirings are
the semirings of commutative languages, i.e., the semirings Lys = P(X%), where
%% is the free commutative monoid of commutative words generated by 3. (When
¥ is finite and has k elements, Lye is isomorphic to P(N¥).) By Parikh’s theo-
rem [25], the context-free sets included in ¥ are the same as the rational sets,
or the semilinear sets, and equality of semilinear sets is decidable and is logspace
complete for IT5, the second level of the polynomial time hierarchy [15]. It follows
that the equivalence problem of commutative context-free grammars is decidable,
see also [10]. In fact, as shown in [16], the equivalence problem for both commu-
tative context-free grammars and commutative rational expressions are solvable
in nondeterministic exponential time. Thus, the equational theory of continuous
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idempotent commutative semirings is also decidable in nondeterministic exponen-
tial time. An infinite basis of the rational identities for commutative languages
was given by Redko [28] (see also the treatments by Salomaa [29] and Conway [6]).
The language of rational terms is a sublanguage of the language of u-terms. As a
corollary of our equational proof of Parikh’s theorem, and of Redko’s axiomatiza-
tion, we give a basis of identities of commutative languages and thus of continuous
commutative idempotent semirings for the full language of u-terms.

The paper is organized as follows. Section 2 is devoted to preliminary results on
*-semirings that will be used throughout the paper, and culminates in a well-known
normal form theorem for commutative rational expressions. We then introduce
p-semirings as a suitable class of models for the language of u-terms, and present
the collection of equations from which Parikh’s theorem will be proven (Sect. 3).
Our equational proof of Parikh’s theorem is given in Section 4, together with
other intermediate results of independent interest. Section 5 offers results on
derivatives of rational terms. Algebraically complete commutative idempotent
semirings are introduced in Section 6, where we show that these structures are
models of the equations upon which our equational proof of Parikh’s theorem is
based. There we also prove that a very weak form of the least pre-fixed point rule
suffices to prove Parikh’s theorem. The last section of the paper (Sect. 7) uses our
equational proof of Parikh’s theorem, and Redko’s axiomatization for commutative
rational languages, to give a basis of identities of commutative languages and thus
of continuous commutative idempotent semirings for the language of u-terms.

2. *-SEMIRINGS

Recall that a (unitary) semiring [12,22] is an algebra S = (S, +, -, 0, 1) such that
(S, +,0) is a commutative monoid, (S, -,1) is a monoid, and such that product dis-
tributes over all finite sums. In particular, 0 is an absorbing zero. A semiring is
commutative if the product operation - is commutative, and idempotent if the sum
operation + is idempotent. Note that any idempotent semiring S is partially or-
dered by the semilattice order < defined by a < b iff a + b = b, and the constant 0
is least with respect to this partial order. A ci-semiring is a commutative idempo-
tent semiring. A morphism of semirings is a function that preserves the operations
and constants.

A *-semiring is a semiring S equipped with a star operation * : § — S. This
operation is not required to satisfy any particular conditions. A ci-*-semiring is
a ci-semiring which is a *-semiring. A morphism of *-semirings also preserves the
star operation.

A rational term is any term built up in the usual way from variables and the
symbols 0 and 1 using the operations +, - and *. The classic equations between
rational terms that will be important in our treatment are listed in Table 1. The
following lemmas give a summary of those interrelations among the equations in
Table 1 that will be used in the sequel. Most of these facts are known, and can be
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TABLE 1. Some equations between rational terms.

(z+y)" = (27y)a" (1)
1+azz* = 2" (2)
0 = 1 (3)

1 =1 (4)
r+x = x (5)
e (6)
't = (7)
(+y)" = a7y (8)
(xy™)* = 1+zz"y". 9)

found in the references, in particular in [6,29]. We have included them in order to
make the paper self-contained.

Lemma 2.1. In *-semirings (9) implies (2), which in turn implies (3).

Proof. When z is 0, both (2) and (9) reduce to (3). Given that this holds, by
substituting 0 for y, (9) reduces to (2). O

Lemma 2.2. In *-semirings, equations (2) and (4) imply (5).

Proof. If (2) and (4) hold, then 1+1=1-1*+1=1* = 1, and the result follows
by multiplying both sides of the equation 1 4+ 1 =1 by x. O

Below, when (5) is implied by the assumptions, for any rational terms ¢, ¢’
we will write ¢ < t' as an abbreviation for the equation ¢t + ¢ = ¢'. Note that
modulo (5) and the defining equations of semirings, ¢t = ¢’ holds iff both ¢ < ¢/ and
t’ <t do. Moreover, if t < ¢’ holds, then so do the equations t +s <t/ +s, ts < t's
and st < st’. And if (1) and (2) also hold, then by 1 < (z*y)* = 1 + z*y(z*y)*,
whenever x < y we have that

*

et < (@Ty)at = (v ty)” =y

Thus, if t < s holds, then so does t* < s*. It follows that in *-semirings satisfy-
ing (1, 2) and (4) all the operations are monotonic with respect to <.

Lemma 2.3. In *-semirings, equations (1, 2) and (4) jointly imply the equa-
tions (6) and (7).
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Proof. First note that 1 < z* holds, so that x < za* < xz* + 1 = 2* and thus
a* < a™* since * is monotonic. Moreover, using (1) and (4), we have

1+2z)" = (I"z)"1*
= "
Thus,
proving (6) and (7). O

Lemma 2.4. In commutative *-semirings, equations (1, 7) and (9) imply
equation (8).

Proof. Since by Lemma 2.1 also (2) holds, we have

(x+y)" = y(zy)
= y'(1+azz"y")
= (I+az")y”

— x*y*.
O

Lemma 2.5. In commutative *-semirings, equations (7, 8) and (9) imply
equation (1).

Proof. As in the previous argument, we can derive

* ok

yH(ey®)t = atyn
But z*y* = (x + y)*, by assumption, so that y*(zy*)* = (z + y)*. O

The following result summarizes the consequences of Lemmas 2.1-2.5.

Corollary 2.6. In commutative *-semirings, the system of equations (1, 4, 9)

and the system consisting of (4, 8, 9) are equivalent. Moreover, in commutative
*-semirings either of them implies all of the equations (1-9).

Proof. Indeed, in commutative semirings, we have by Lemma 2.1 that (9) im-
plies (2) and (3), which together with (1) and (4) imply (5, 6) and (7) (Lems. 2.2
and 2.3), and finally, equations (1, 7) and (9) jointly imply (8) (Lem. 2.4).

For the converse, note that in *-semirings, equations (8) and (5) imply (7), so
that we may apply Lemma 2.5 to derive (1). O
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We let Ax denote the system of equations consisting of (1, 4) and (9). Note
that every semiring satisfying all of the equations in Ax is idempotent.
The following corollary offers generalizations of equations (8) and (9).

Corollary 2.7. In commutative *-semirings satisfying Ax we have

(yi+...+y) = yi-..u;
(@yr--yp)” = 1+aayi.. .y,

for all k > 0.

Of course, the empty sum is 0 and the empty product is 1.

Call a rational term a monomial if it is a commutative word, i.e., a product of
variables, where we take advantage of the associativity and commutativity of the
product. A nonempty monomial is a monomial which is a nonempty product. A
star monomial is a term of the form wvy ... v}, where k > 0, and w,v1,... ,v; are
monomials such that no v; is empty.

Proposition 2.8 (Salomaa [29], Conway [6]). In commutative *-semirings satis-
fying Ax, each rational term is equivalent to a finite sum of star monomials.

Proof. This can be proven by induction on the structure of the rational term
making use of Corollary 2.7. O

Rational terms that are sums of star monomials are called terms in normal
form. Again, we take advantage of the associativity and commutativity of +.
By (5) and (7), we may also require that the summands of each normal form
term be pairwise different, and that in each star monomial wvy ...v; which is a
summand, the words v; be pairwise different. Note that the term 0, i.e., the empty
sum of star monomials, is in normal form.

Corollary 2.9. For each rational termt and variable x there exist rational termsr
and s such that s does not contain x and t = rx + s holds in all commutative *-
semirings satisfying Ax.

Proof. Either by structural induction or by Proposition 2.8. O

3. HU-SEMIRINGS

Recall the definition of p-terms from the introduction. The variable z is bound in
the term pz.t. The set of free variables in a term is defined as usual. We call a term
finite if it contains no subterm of the form px.t. Below we will sometimes write
t(z1,...,2n) or t(Z), where & = (z1,...,2,) is a vector of different variables, to
indicate that the free variables of term ¢ belong to the set {z1,... ,x,}. We identify
any two terms that only differ in the names of their bound variables. Substitu-
tion t[t' /x] and simultaneous substitution t[(t1,... ,tn)/(z1,... ,2,)] are defined
as usual. When ¢ = t(x1,... ,z,), we also write ¢(¢1,... ,t,) for t[(t1,... ,tn)/ (21,

Cy )]
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A p-semiring is a semiring A together with an interpretation of the u-terms ¢
as functions t4 : AX — A, where X denotes the set of all variables, such that the
following hold:

1. when t is a variable z, then t4 is the corresponding projection AX — A, i.e.,
ta(p) = p(x), for all p: X — A. Moreover, 04 and 14 are the corresponding
constants in the semiring, and (t 4+ s)a(p) = ta(p) + sa(p) and (¢- s)a(p) =
ta(p) - sa(p), the sum and product of t4(p) and sa(p) in the underlying
semiring of A, for all u-terms ¢ and s, and for all p: X — A;

2. for any u-terms t,t’ and variable x, the function (¢[t’/z]) 4 is the “composite”
of the functions t4 and t/;, so that

(tlt' /=) alp) = talplz — ta(p))),

where for any p: X — A and b € A, the function p[z — 1] is the same as p
except that it maps x to b;
3. if ¢,t' are p-terms with ¢4 = t/4, then for all variables z, it also holds that
(nx.t)a = (ux.t') 4.
It follows that t4 depends at most on those arguments that correspond to the
variables with at least one free occurrence in ¢. Indeed, if x has no free occurrence
in ¢t and y does not occur in ¢, then we have

(t[y/x]) alp)
= talplr = p()]),

ta(p)

forall p: X — A. Thus, for alla,b€ Aand p: X — A,

talple = al) = talplz— p(y)])

When the underlying semiring of A is commutative, or idempotent, we call A a
commutative, or idempotent, p-semiring. A ci-p-semiring is both commutative
and idempotent. Morphisms of p-semirings commute with the functions induced
by the p-terms. It is clear that any such morphism is a semiring morphism.

Suppose that ¢ = t(z1,...,2,) is a p-term and A is a p-semiring. When
p: X — Awith 2; — a;, i =1,... ,n, below we will write t4(a1,...,ay), or just
t(ay,...,ay) for ta(p). Note that for finite terms ¢, the function t4 is just the

function induced by ¢ over the underlying semiring of A.

Suppose that ¢t and t' are p-terms. We say that an equation or identity t = ¢/
holds in a p-semiring A, or is satisfied by A, if t and ¢’ induce equal functions in A,
i.e., when t4 = t/y holds. Note that if ¢ = ¢/ holds in A, then so does any equation
t(tr, ... s tn)/ (X1, yxn)] =ty tn)/ (21, ..., zp)] as does px.t = px.t’, for
all variables x.

We will be interested in interpretations where px.t provides solution to the fixed
point equation x = ¢. In such interpretations, fixed points usually satisfy several
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equational properties, cf. [4]. Below, in addition to the fized point identity

prt = tlpxt/x], (10)

we will need the diagonal identity
pr.pyt = pxtfr/y] (11)
and the parameter identity
(uz.xz+1l)y = pzaxz+y. (12)

Each rational term r may be identified with a u-term. When r is 0, 1, or a
variable, then r is also a u-term. Moreover, when r is the sum or product of
rational terms r1 and 73, then the u-term corresponding to r is just the sum or
product of the u-terms corresponding to the r;, ¢ = 1,2. Finally, if r is s*, then
the p-term corresponding to r is px.tx 4+ 1, where z is a fresh variable and ¢ is
the p-term corresponding to s. Below we will identify any rational term with the
corresponding p-term. Note that this identification does not conflict with term
substitution. Thus, the parameter identity (12) may be reformulated as

*

ry = pz.xrz+y.

Note also that any u-semiring A is automatically a *-semiring with star operation
a+— ta(a), where t is the term z* = pz.xz + 1. Moreover, u-semiring morphisms
preserve star.

One can also prove that any p-semiring satisfying (10) and (12) satisfies (2).

3.1. LEMMAS FOR u-TERMS

Our aim in the remainder of this paper will be to offer a purely equational proof
of Parikh’s classic theorem [25]. In our formulation, Parikh’s theorem takes the
form of a “normal form” theorem for u-terms. We now present some lemmas that
will be useful in the proof of our main result.

Lemma 3.1. Any p-semiring satisfying (11) and (12) also satisfies (1).
Proof.

(@+y)" = pz(z+y)z+1
= pzaz+yz+1
= pz1.p2e.xze +yz1 +1
= pzn.at(yz1 +1)
= pzr.(x*y)z +*
— (@),
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The next technical lemma introduces an equation (see Eq. (13) below) that, to-
gether with the diagonal and parameter identities, will allow us to eliminate every
occurrence of y in terms. This will be crucial in our promised equational proof of
Parikh’s theorem.

Lemma 3.2. Suppose that
pr(ya)yz+u = (Y +uw)z+u (13)

holds in a commutative p-semiring satisfying the diagonal identity (11) and the
parameter identity (12). Then so does the equation

pa(yz®)z+u = (ylz+uw)h) e+, (14)

for every k > 1.

Proof. We prove the claim by induction on k. The basis case K = 1 holds by
assumption. For the induction step we argue thus:

pr.(yz" ™Y 2+ u = pw.pz.(yua®)*z 4+ u
pv.(yv(z +u)¥)*z +u
= . (y(z +uw)v)*z +u
= (WeE+w'(z+u)z+u
= (ylz+ w2+ w

O

Lemma 3.3. If (13) holds in a commutative p-semiring satisfying the diagonal
identity (11) and the parameter identity (12), then so does

k—l)*

pryzt +z = (yz z,

for each k > 1.
Proof. This is clear for k = 1. Assume that k£ > 1. Then, by (11, 12) and (14),

u:v.yszrz = u:c.,uu.y:nk_lquz
= p(yr
= ("

kfl)*z

zZ.

4. NORMAL FORM

We let pAx denote the system of equations consisting of the diagonal iden-
tity (11), the parameter identity (12), equation (13), and the equations (4, 9).
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Note that in commutative p-semirings, these equations imply (1) (Lem. 3.1), so
that in such semirings, all of the equations (1-9) hold. In particular, all of the
equations in Ax hold. Moreover, any commutative p-semiring satisfying pAx is
idempotent and is thus a ci-p-semiring.

Below we will write pAx = ¢t = ¢/ to denote that the equation ¢ = t' between
the p-terms ¢ and ¢’ holds in all commutative p-semirings satisfying pAx (or,
equivalently, that ¢ = t' is provable from pAx using the rules of equational logic
for pu-terms [4]). In the same way, we write Ax = r = r/, for rational terms r
and 7', to denote that any commutative *-semiring satisfying Ax also satisfies the
equation r = r’.

Theorem 4.1 (Parikh’s theorem). In commutative p-semirings satisfying pAx,
any p-term is equivalent to a rational term in mormal form.

The remainder of this section will be devoted to the proof of this theorem. In
fact, as will be clear in what follows, Theorem 4.1 will be a corollary of a result to
the effect that any fixed point equation

r = t(‘r’yla'-' 7yn)7

where t(z,y1, . .. ,Yn) is a rational term, has a rational term r(y1, . .. , y») as canon-
ical solution (¢f. Th. 4.5 and Prop. 4.6 to follow). The following Proposition 4.2
and Lemmas 4.3 and 4.4 are stepping stones in the proof of this result.

Proposition 4.2. For every rational term r(x,y) and variables u,v, it holds that

Ax E ruv,g) - -u =r(v,g) - u’.

Proof. Below we will write just r(z) for r(x, 7).

First we establish the claim for star monomials which are of the form r(x)
= apr® (ay2*)* ... (a,2*")*, where the a; do not contain any occurrence of .
We have:

r(u ) - ut = ag(uv)* (ag(u o))" (an (ut o)k ) ut

ko( k1 k *

) .. (apv
k1

"u*)*u
k

= qaov °(a1v

= agvFout(av™ut) . ut (a0 ut)

ko k

= agvfout(a;v™)* .. u (apvt)

kl)* kn)* *

= qguv™ (a1v . (anv U

r(v) - u”.

Since any rational term is equivalent to a finite sum of star monomials and
the claim clearly holds if r(x) is 0, the proof of the proposition can be com-
pleted by showing that if our claim holds for r(z) and r2(x), then it holds for
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r(x) = r1(x) 4+ ro(z). But this is immediate, since in this case,

r(uv)-u* = (r(uv)+ro(uv)) - u*
= r(uv)u* + re(uv)u”
= r(v)u" +r2(v)u’

= (rn(v) +r2(v)) -’
= r(v)-u".

Suppose that r(z,¥) and s(y) are rational terms. With respect to our axiom
system pAx, the equations

pr(z,g) -z +s(y) = r(s(@),y)" - s(y) (15)
and
pr(z, g)" - s(y) = r(s(@),y)" - s(y) (16)
are equivalent. Indeed, by the diagonal identity (11), we have

pr.r(x, ) -x+s(y) = pz.pzr(z,y)-z+ s(y)
= (e, 5)* - 5().

Below we will prove that (15) and (16) always hold under pAx.

Lemma 4.3. Suppose that p(x,y) and q(x,y) are rational terms such that for all
rational terms a(y) and c(g) it holds that

pAx = pra(y) - p(r, g) -
pAx = pra(y) - q(e,g) -

— —

Then, for the product r(x,y) = p(x,¥) - ¢(x,¥) and for all rational terms a(y) and
c(y), we have

pAx = pra(g) (e, g) - e+ oy) = (ay) - r(c(y),9))" - c(@)-
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Proof. Below we write r(x) in lieu of r(z,¥), and abbreviate a(y) and c¢(%) to a
and c, respectively. We argue thus:

pr.a-r(z)-c4+c = pra-ple)-ql)-xz+c

= pzx.pza-plx)-q(z)-z+c
pz.(a-p(x) - q(c))" - c
px.pz.a-qc) plx)-z+c
px.a-q(c) -plx)-z+c
= (a-g(0) pO) e
= (a-r(e)* - c

O

Lemma 4.4. For all star monomials r(x,¥) and rational terms a(y) and ¢(y), it
holds that

pAx b pwa(g) - (@ g) - o + (@) = (@) - r(e@). 7)) - e@.
Proof. Below we will write just r(x) for r(z,%), a for a(y), etc. We argue by
induction on the “length” of r.

When r(z) is 1, then pz.ax 4+ ¢ = a*c holds by the parameter identity. In the
induction step, we have that r(x) = p(z)q(x) where ¢(z) is a star monomial and
p(x) = ba* or p(z) = (ba*)*. The result follows by the induction assumption
applied to ¢(x) and Lemmas 4.3, 3.2 and 3.3. Consider, for example, the case in
which p(x) = (bx*)*. We can then prove our claim as follows (below, for a rational
term ¢, we use ¢* to stand for ¢ - t*):

pr.a-r(z)-z+c = pxa- (b)) -qlz) -z +ec
= pzpur.a- (b2F) - qlz) -z +c
(by the diagonal identity, z fresh)
— e (029 qle)" e
(by the inductive hypothesis)
= pz(a-q(c)- (b2F)")* ¢
= pz(l+(a-q(e) T (02)") ¢
(by (9))
= pz [0z - (a-q(e)* e+
= [b-(agle)* e+ - (a-gle)* -cte
(by Lem. 3.2)
= [(a-g(@)t (- ((a-g(e)-ct+o)f) +1]-c
= [(a-q(e)™ - (b-((a-q(e)" - )) +1]-c
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= [la-gl@)t (bt (arq(e)) +1] ¢
by ()

O

We are now ready to prove the promised result to the effect that, over pu-semirings
satisfying pAx, rational fixed point equations have canonical rational solutions
(cf. Prop. 4.6 to follow). Apart from its intrinsic interest, this theorem will also
have application in our proof of Parikh’s theorem.

Theorem 4.5. For every rational terms r(z,y) and s(¥), we have that
pAx = prr(z,g) - x4 s(y) = r(s(@),9)" - s(y).
Proof. We prove this equation in the equivalent form
pr(z, §)” - s(y) = r(s(@),9)" - s(y),
i.e., writing just r(z) for r(z,¥) and ¢ for s(%),
puror(z) ¢ = r(e)-c

We have already shown in Lemma 4.4 that this holds when r(x) is a star monomial.
Since every rational term is equivalent to a sum of star monomials, and since the
claim is obvious for the term 0, to complete the proof it is sufficient to show that if

pAx = opzori(z)-e=ri(c)t e, i=1,2,
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then

wAx E pzo(@)*-ec=r(e)* ¢
for r(z) = r1(z) + ro(x). Using Proposition 4.2, this is shown as follows:

pr.r(x)* ¢ = pr.(ri(z) +ra(x))* - c
= pxri(z)*-re(x)” - c
= px.pyri(x)’ -re(y)*-c
= pxre(ri(z)te)” -rm(x)" -c

px.ra(e)* - ri(x)* e
= ri(r2(c)*e)" -r2(e)* - c
= ri(e)" -re(e)" ¢
= () 4 rafe)) e
= r(e)"-c

Proof of Theorem 4.1, completed. Recall that we need to show that, in commu-
tative p-semirings satisfying pAx, each p-term ¢ = ¢(%) is equivalent to a rational
term in normal form. Actually, since by Proposition 2.8, with respect to the equa-
tions in Ax every rational term is equivalent to a rational term in normal form, it
suffices to prove that in commutative p-semirings satisfying pAx, each p-term is
equivalent to a rational term. We prove this claim by induction on the structure
of . When ¢ is a variable or a constant, our claim is obvious. In the induction step,
there are three cases to deal with. The cases that t is the sum or product of two
terms are obvious, since rational terms are closed with respect to these operations.
The nontrivial case is when t is px.t'(x, 7), for some u-term ¢'(x, ) and variable x.
But, by the induction assumption, there is a rational term equivalent to ¢/, and,
by Corollary 2.9, we can assume that this term is of the form r(z,¥) - = + s(%).
But then, by Theorem 4.5, ¢ is equivalent modulo pAx to 7(s(%),¥)* - s(¢), which
is a rational term. O

Proposition 4.6. With respect to the axiom system pAx, the fized point
identity (10) holds for all p-terms.

Proof. Suppose that t(z,¥) is a p-term. By Theorem 4.1 and Corollary 2.9, we

know that there exist rational terms r(z, ¢) and s(%) such that, modulo our axioms,
t(z,y) =r(z,¥) - = + s(¥). By Theorem 4.5, we have that, with respect to uAx,

ux.t(x,gj’) = T(S(:{j),:lj)*s(:lj)
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Thus, using Proposition 4.2,

Hpat, g) = r(r(s@),9)" - s(@),9) - r(s(),9)" - 5(4) + 5(4)
= 1(s(9),9) - r(s(5),9)" - s(§) + s()
= (r(s(5),9) - r(s(F), )" + 1) - 5(7)
= 1(s(9),9)" - s(¥)
= pxt(z,7)

5. DERIVATIVES

The derivative t, of a rational term ¢ with respect to a variable is defined as
follows (cf. [14], Sect. 3.2).

e If t is 0, 1, or a variable other than x, then ¢, = 0. If ¢ is the variable =z,
then ¢, = 1.

e If ¢t is r + s, for rational terms r, s, then t, = r, + s,.

e If t is rs, for rational terms r, s, then t, = r,s + rs,.

e If t = s*, for a rational term s, then ¢, = s*s,.

Intuitively, if we interpret ¢ as a commutative rational language, then ¢, denotes
the rational language consisting of all the commutative words that can be obtained
from those in ¢ that contain the letter x by deleting one of its occurrences. We refer
the interested reader to [6] (Chap. 5) and [14] for more information on derivatives
of rational expressions and further applications. Below, we shall use derivatives
to offer another characterization of the rational solutions of rational fixed point
equations (c¢f. Th. 5.5 to follow).
We omit the simple proof of the following fact:

Lemma 5.1. If r does not contain any occurrence of x, then Ax = ry, = 0.

Proposition 5.2. If Ax = r = s, for rational terms r, s, then Ax =1y = s, for
all variables x, i.e., derivation is stable with respect to Ax.

Proof. By the above definition, we have that for all rational terms r,s,¢ with
Ax =1y = 8z, also Ax = (r+t)y = (s + 1)z, Ax | (rt)s = (st)z, and Ax =
(r*)e = (8*)z. Thus, to complete the proof, we only need to show that if r = s
is a substitution instance of one of the axioms in Ax, then Ax | r, = s,, for all
variables z. This is clear for (4), since the derivatives with respect to any variable
of both sides of this equation are 0. As for (9), we have, for any rational terms s, ¢
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and any variable x,

((st™) ) = (st™)*(szt™ + st™ts)

(1 + s8™t") (84" + st™ty)

= s,t* + stpt* + 5,58t + sst,s*t*
= 5,8t" + st s*t*

SpS t* + 55,8 " + 557t t*

= (1+ss"t"),.

Since with respect to the other axioms, (1) is equivalent to (8), the proof can be
completed by showing that Ax |= ((s +t)*)s = (s*t*)4, for all rational terms s, t.
But

((s+1))z = (s+1)"(se +1z)
St (8z + to)

= s¥s,t" + 5Tt
= (5"t")s.

Lemma 5.3. For all rational terms r and variables x,
Ax E rgz<r

Proof. We prove this by induction on the structure of ». When r is 0,1, or a
variable other than z, we have by Ax that r,z = 0. When r is s + ¢, then
To® = Sz + tpx < s+t =1, by the induction assumption. Suppose now that r is
of the form st. Then, it holds that

2T = Sgtx + styx < st + st = st,

by (5) and the induction assumption. Finally, if r is s*, for some rational term s,
then r, = s*s,, so that by using the fixed point equation (2), we have that

TeX =8 5,7 <s's<ss*+1=s5"=r.
O

Thinking of a rational term t(z, %) as denoting a commutative regular language
over letters x, ¢, we expect that this language contains all the words that can be
obtained by adding one occurrence of x to those in the language denoted by t,,
and of those in ¢ in which x does not occur. The following proposition shows that
the axiom system Ax is strong enough to prove this result.
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Proposition 5.4. For all rational terms t(x,¥), it holds that
Ax | t(x,9) = te(x,¥) - v +t(0,7).
Proof. We know that for some rational terms r(z, %) and s(¥), it holds that
Ax | i, ) =r(z,7)  z + (7).
Thus, by substituting 0 for z,
Ax E H0,7) = s(@).
By Proposition 5.2, also
Ax = ta(2,9) = (r(z, D)z + 5(7))e = ro(, §)z + r(z, ),
since $4(¥) = 0 (Lem. 5.1). Since by Lemma 5.3 it holds that
Ax | re(z, )z < r(z,7),

we have that

completing the proof. O
Theorem 5.5. For each rational term r(z,y) it holds that

pAx | pzr(@,g) =re(r(0,4), )" - r(0, 7). (17)

Proof. From Proposition 5.4 and Theorem 4.5. O

Hopkins and Kozen in [14] derive Proposition 5.4 and (17) from the axioms of

Kozen’s semirings [17].

6. LEAST PRE-FIXED POINTS

Suppose that A is a ci-p-semiring. Thus, A is equipped with the semilattice

order a < b iff a+b = b. We call A algebraically complete [9] if A satisfies the fixed

point and parameter equations (10, 12), and if for all u-terms ¢ and p : X — A,
z € X and a € A,

talple —a)) <a = (uxt)alp) <a,
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i.e., when A satisfies the least pre-fized point rule (also known as Park induction
rule [26])

ty/z] <y = pzit<y.

Morphisms of algebraically complete ci-semirings are p-semiring morphisms. Note
that any morphism preserves the partial order.

The most important examples of algebraically complete ci-semirings are the
continuous ci-semirings. Such a semiring is a ci-semiring such that the supremum
of every set B C A exists, with respect to the semilattice order <. Moreover,
the - operation is continuous, i.e., it preserves the supremum of any directed
set in each of its arguments. It then follows that the product operation is in
fact completely additive, i.e., it preserves all suprema. Morphisms of continuous
ci-semirings are continuous semiring morphisms. We may turn any continuous
ci-semiring into an algebraically complete ci-semiring by defining (ux.t)4(p), for
each p-term ¢ and function p : X — A, as the least pre-fixed point of the map
a— ta(plz — a]), a € A. It follows that any morphism of continuous ci-semirings
commutes with the functions induced by the p-terms and is thus a morphism
of algebraically complete semirings. We will return to continuous ci-semirings in
Section 7.

The following facts are well-known and in fact do not require that product is
commutative. (See, e.g. [4,24].)

Proposition 6.1. When A is an algebraically complete ci-semiring, each func-

tion ta, induced by a p-term t, is monotonic with respect to the pointwise order
on AX.

Lemma 6.2. Every algebraically complete ci-semiring satisfies the diagonal
identity (11).

Our order of business will now be to show that:

Proposition 6.3. Every algebraically complete ci-semiring satisfies all of the equa-
tions in pAx.

For ease of presentation, and for further reference, we break the proof of the
above proposition in several intermediate results. These we now proceed to present.

Lemma 6.4. Every algebraically complete ci-semiring satisfies (1) and (2).

Proof. Tt is clear that in p-semirings, equation (2) is a particular instance of the
fixed point identity (10). The fact that (1) holds in all algebraically complete
ci-semirings follows from Lemmas 6.2 and 3.1. O

For a y-term t(z, i), define the sequence of p-terms t*(z, ), k > 0, by induction
on k:



148 L. ACETO, Z. ESIK AND A. INGOLFSDOTTIR

Below we will make use of the following simple property of algebraically complete
ci-semirings A, which is easily proved by using the monotonicity of the term func-
tions (Prop. 6.1): For all p-terms t(x, y1,... ,yn) and all by,... ,b, € Aand k > 0,
if

t5(0,b1,. .., by) = t5FH0,by,. .. by),
then
(prt)a(br, ... ,by) = t5(0,b1,...,b,).
Thus, any algebraically complete ci-semiring satisfies
t7(0,9) = "1 0,9) = pxt=1t"(0,9), (18)

for all u-terms t, variables  and for all k > 0.
Lemma 6.5. Every algebraically complete ci-semiring satisfies (4).

Proof. Suppose that A is an algebraically complete ci-semiring. Let ¢(x) denote
the term z+1. Then t4(0) = 1 = 1+1=t%4(0), so that 1* = (uz.t)4 = t4(0) = 1,
proving that (4) holds in A. O

Corollary 6.6. Each of the equations (1-7) holds in all algebraically complete
C1-SemMATings.

Proof. First note that (5) holds by assumption in all ci-semirings. Moreover, we
already know that (1, 2) and (4) hold in all algebraically complete ci-semirings.
But it was shown in Section 2 that in *-semirings, these equations imply (3, 6)
and (7), ¢f. Lemmas 2.1, 2.2 and 2.3. O

Lemma 6.7. Every algebraically complete ci-semiring satisfies (9).

Proof. By Corollary 6.6 we have that

(zy™)"

zy*(zy*)" +1
> xytrt+1
1+ zz*y”

holds in all algebraically complete semirings. As for the converse, suppose that A
is an algebraically complete ci-semiring and a,b € A. We have

ab*(1 +aa*v*) = ab* +a’a*b*
= aa"b*

< 1+ aa*db*.

Thus, (ab*)* < 1+ aa*b* holds, by the least pre-fixed point rule. O
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In light of Corollary 2.6 and of the previous results, we have that:

Corollary 6.8. Fvery algebraically complete ci-semiring satisfies all of the equa-
tions (1-9).

The following result gives the missing ingredient in the proof of Proposition 6.3:
Lemma 6.9. Every algebraically complete ci-semiring satisfies (13).

Proof. Let a,b,c be elements of an algebraically complete ci-semiring A, and let
f denote the function A — A, z — (az)*b+ ¢. By Corollary 6.8, we have that:

f(0) = b+ec
(b+e)b+ec
b)*(ac)*b+ ¢
) = f%0).

(a
(a

Indeed,

[
L 2
S o
—~
L 2
> O
= = =
* *
—~ o~
=
)
¥ ~— ~— —
*
=
@)
*
S
_|_
o

(
= |
= |
=

It follows that f2(0) = (a(b+ ¢))*b + c is the least pre-fixed point of f, and thus
equals px.(az)*b+ c. O

By Proposition 6.3 and Theorem 4.1, we can derive the following corollary,
which was obtained, in the setting of Kozen’s semirings, in [14].

Corollary 6.10 (Hopkins and Kozen [14]). For each u-term t there is a rational
term s in normal form such that t = s holds in all algebraically complete ci-
semirings, and hence in all continuous ci-semirings.

In fact, if r is any rational term such that uAx = ¢t = r, then we have that
t = r holds in all algebraically complete ci-semirings.

In the proof of Lemma 6.9, in addition to some equations, we only used a weak
property of least pre-fixed points, namely (18) for k = 2. We thus have:

Proposition 6.11. For every u-term t there is a rational term r in normal form
such that t = r holds in all commutative u-semirings satisfying the diagonal and
parameter equations (11, 12), the equations (4, 9), and the implication (18) for
k=2.
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As a consequence of the above result, we have that a very weak form of the
least pre-fixed point rule suffices to establish Parikh’s theorem.

7. COMPLETENESS

Redko [28] supplied a (necessarily infinite) basis of the rational equations of
commutative languages, and hence of ci-*-semirings derived from continuous ci-
semirings. However, as pointed out in Conway [6], the proof given in [28] (and
the one included in [29]) is incomplete, so that Pilling’s proof, reported in [6],
completes Redko’s argument.

We use Redko’s theorem to prove:

Theorem 7.1. The commutative semiring equations together with those in pAx
and the equations

eyt = (2y) (@ +y) (19)
= (@) (L+z+...+2Ph), (20)

for all prime numbers p, form an equational basis of the class of (u-semirings
derived from) continuous ci-semirings.

Proof. Let E denote the system of equations given in the statement of the the-
orem. Suppose that t1,fs are p-terms such that the equation ¢; = ¢ holds in
all continuous ci-semirings. We know that there exist rational terms rq,ry with
uAx = t; = r;, i = 1,2. By Redko’s theorem, the rational equations in E are
complete for the rational equations that hold in continuous ci-semirings. Hence,
FE proves r; = r9 and thus t; = t2. The proof is completed by noting that all of
the equations in F hold in all continuous ci-semirings. O

In fact, the system given in the preceding theorem is redundant. As shown
in [6], one may omit equation (9).

Corollary 7.2. An equation between p-terms holds in all continuous ci-semirings
iff it holds in all algebraically complete ci-semirings.

Proof. This follows if we can derive the equations (19) and (20) in all algebraically
complete ci-semirings. But this was done in [17]. O

As mentioned in the introduction, for each set 3, the semiring Ly of all subsets
of X% the free commutative monoid generated by 3, is freely generated by ¥ (more
precisely, by the singleton sets corresponding to the elements of X) in the class of
all continuous ci-semirings. This means that if S is any continuous ci-semiring and
h is a function ¥ — S, then h extends to a unique continuous semiring morphism
Lys — S. It is well-known that each commutative context-free language over X,
viz. the image of a context-free language in ¥* under the canonical morphism
¥* — 29 is the first component of the least solution of a system of “polynomial
fixed point equations” over Lso. Moreover, one can solve systems of fixed point
equations by the method of successive elimination of the variables (also known
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as Gaussian elimination, ¢f. [1,7]). It follows that the commutative context-free
languages over ¥ are exactly those of the form L = t;_. ({o1},...,{on}), where
t(z1,...,2n) is any p-term and each o; is a letter in X. But by Corollary 6.10,
any such L can be constructed from the singletons and the constants 0,1 by the
rational operations of +, - and *. We thus have that every commutative context-
free language is rational, a statement that is very close to Parikh’s [25] original
formulation of this result.

Remark 7.3. By Corollary 7.2, algebraically complete ci-semirings and continu-
ous ci-semirings satisfy the same equations between p-terms. Thus, the fact that
Parikh’s theorem holds in all algebraically complete ci-semirings is no stronger than
the result that Parikh’s theorem holds in all continuous ci-semirings
(cf. Cor. 6.10).

Let CRxe denote the collection of all commutative context-free, ¢.e., rational
languages in ¥®. Then CRyxe is closed under the functions induced by the p-terms.
It follows that CRxe is itself a ci-p-semiring, in fact an algebraically complete ci-
semiring, and thus a ci-*-semiring. As a ci-*-semiring, CRyxe is freely generated
by X in the class of all ci-*-semirings satisfying Redko’s axioms. A wariety of u-
semirings is any class of p-semirings containing all pu-semirings that satisfy all of
the equations that hold in every member of the variety.

By our previous results we have:

Corollary 7.4. CRxe, as a ci-u-semiring, is freely generated by % in each of the
following classes of p-semirings:

1. the class of all ci-p-semirings satisfying the equations pAx and (19) and
(20);

2. the class of all ci-pu-semirings that satisfy every equation that holds in all
continuous ci-semirings;

3. the class of all algebraically complete ci-semirings.

Proof. By Theorem 7.1, the first two classes are actually the same, and by
Corollary 7.2, this class contains the third. Thus, since CRxo is an algebraically
complete ci-semiring, we only need to prove that given any p-semiring S that
satisfies all of the equations of continuous ci-semirings, and given any function
h : % — S, there is a unique p-semiring morphism h* : CRye — S extending
h. But since a version of Birkhoff’s variety theorem holds for u-semirings (and
actually for all preiteration algebras), S is a “morphic image of a sub-u-semiring
of a direct product” [4] of continuous ci-semirings, viewed as ci-u-semirings. In
fact, since equipped with the pointwise order, any direct product of continuous
ci-semirings is itself continuous, S is a morphic image of a sub-pu-semiring S” of
a continuous ci-semiring S’. Let f denote a surjective morphism S” — S, and
let g be any function ¥ — S’ such that f(g(c)) = h(o), for all o € £. Now g
extends to a continuous semiring morphism g : Lye — S’, which is also a pu-
semiring morphism. Thus, the restriction of ¢gf to CRyxe is a p-semiring morphism
g : CRse — S’. Moreover, the image of CRxe under g is a subset of S”, so that
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we may view g as a morphism CRxe — S”. It follows that the composite of g with
f is a morphism hf : CRye — S which extends h. It is clear that Af is unique. [J
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