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FEEDBACK, TRACE AND FIXED-POINT SEMANTICS

P. KaTis!, NICOLETTA SABADINI! AND
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Abstract. We introduce a notion of category with feedback-with-
delay, closely related to the notion of traced monoidal category, and
show that the Circ construction of [15] is the free category with feed-
back on a symmetric monoidal category. Combining with the Int con-
struction of Joyal et al. [12] we obtain a description of the free compact
closed category on a symmetric monoidal category. We thus obtain a
categorical analogue of the classical localization of a ring with respect
to a multiplicative subset. In this context we define a notion of fixed-
point semantics of a category with feedback which is seen to include a
variety of classical semantics in computer science.

Mathematics Subject Classification. 68Q55, 68Q70, 18D10.

1. INTRODUCTION

There has recently been an increasing interest in algebras of systems (or
behaviours) in which there is a feedback or fixed-point operation. One source
of this work is Kleene’s theory of regular languages, the algebra of Conway [10],
and process algebras. Another starting point is the work of Elgot [11,12] on single-
sorted algebraic theories with a fixed point operation, developed by Bloom and
Esik, many of their results on the equational properties of fixed points being sum-
marized in the book [5]. There are also the network algebras of Stefanescu [34]
with the emphasis on feedback.

What has emerged recently are connections with other areas of algebra and
geometry. It has become clear that the basic algebra involved is that of monoidal
categories C, either symmetric or braided [16]; the principal operations are ten-
sor and composition. Our concern in this paper is with symmetric, even strict,
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monoidal categories — for this paper we shall refer to them simply as monoidal
categories. Similarly when we speak of rings or monoids we will in each case
intend commutative. Geometrically, following [27], arrows from a tensor of m
objects to a tensor of n objects in a monoidal category may be represented by
circutt components with m input wires and n output wires; then the operations
become series and parallel operations of components; the symmetry is a twist
of the wires. Fixed-point or feedback involves an operation which joins an in-
put wire to an output wire of a single component — however it is not quite clear
what operation to take as primitive. In Elgothloomesik the tensor product
was taken to be a product (or dually a sum), with associated diagonal “splitting”
(or codiagonal “merging”) operations on wires. For them fixed-point is an op-
eration fizp : C(A x B,B) — C(A, B), geometrically splitting the output line
B and joining the second of the B output wires to the B input wire. The fun-
damental paper of Joyal et al. [15] introduced an axiomatization of a different
operation on a monoidal category which they called a trace. Trace is an operation
tracey : C(A® U,B® U) — C(A, B), and geometrically joins the output wire
U to the input wire U. They show that a traced monoidal category C may be
embedded monoidally in a compact closed category Int(C). Each object A in a
compact closed category [23,24], has an adjoint A°, with unit : I — A°® A and
counit €: A® A° — I which may be represented geometrically as curved wires,
with shapes C and D respectively. (Note: wires may be oriented, the identity on
A° being a wire from right to left.) In terms of the unit and counit fiz and trace
may then be expressed as follows:

tracey(a: AU - BU)=(1pQcy)(a® lye)(la @ nue),
fil‘B(Oé :AXx B — B) = (13 X EB)(AB X 130)(04 X 1B0)(1A X 7730),

both formulae corresponding exactly to the respective geometries:

A —— B A B
—H =

e B

traceya firpa

A precise connection between the equational theory of fixed points and the notion
of trace was made by Hyland and Hasegawa, [14] who proved that a traced monoidal
category in which the tensor is a product is the same as a Conway theory. In
other language this result was already known to Bloom and Esik [3,4]. It is clear
geometrically that if the tensor is either a product or a sum that trace and fix
have the same expressivity. Further recent papers in the area include [1,8,32].
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An important algebraic connection made by the paper of Joyal et al. is revealed
by a special case of their construction Int. Notice that a monoidal category in
which the only arrows are identities is, ignoring the arrows, exactly a monoid
structure on the objects, whereas a compact closed category with only identity
arrows is an Abelian group. The notion of traced monoidal category in this special
case turns out to be cancellative monoid. Again in this special case Int(C) is the
universal Abelian group constructed from C, which in the even more special case
that C is the additive monoid of natural numbers yields Int(C) as the usual
construction of (the additive group of) the integers.

The purpose of this paper is to show that there is more to this algebraic con-
nection. A fundamental construction in the theory of commutative rings is the
localization of a ring [26] relative to a multiplicative subset. Restricting to the
multiplicative monoid this construction may be called the localization of monoid
relative to a multiplicative subset. The construction may be made in two steps,
first the construction of a monoid in which elements of the multiplicative set are
cancellable (make a in the monoid equivalent to b if there is an « in the multi-
plicative set such that au = bu), followed by the Int construction, which provides
multiplicative inverses for the elements of the multiplicative set. We will describe
a categorical generalization of this process, but for simplicity restrict to the case
where the multiplicative set is the whole monoid.

The categorical analogue of localization we have in mind is the universal con-
struction of a compact closed category from a monoidal category. This construc-
tion can also be factored as a sequence of algebraic left adjoints:

MONOIDAL ¢ FEEDBACK - TRACED ™™ COMPACT.

Here MONOIDAL is the category of monoidal categories and strict monoidal
functors. FEEDBACK is the category of monoidal categories with a trace-like
feedback operation which however fails to satisfy two of the axioms of trace, one of
the naturality axioms of trace and the yanking axiom (the failure of these axioms is
due to delay in the feedback operation). Morphisms preserve tensor and feedback.
TRACED is the category of traced monoidal categories and trace preserving strict
monoidal functors. COM PACT is the category of compact closed categories and
functors preserving the compact closed structure. The first process in the sequence
is the C'irc construction of [18], the second step is a quotient @ killing delay, and
the third is the Joyal-Street—Verity Int construction. Notice that applying IIg,
the connected components functor, to a monoidal category yields a monoid, to a
category with feedback or a traced monoidal category yields a cancellative monoid,
and to a compact closed category yields an Abelian group. Under the effect of 1,
Clirc is the free cancellative monoid on a monoid, @ is trivial, and Int is the free
Abelian group on a cancellative monoid.

The Cire construction is defined as follows. From a monoidal category C form
Circ(C) the monoidal category whose objects are the same as C and whose ar-
rows from A to B (called circuits) are (isomorphism classes of) pairs (o, U) where
a: AU — B®U is an arrow of C; composition of (a,U) and (5,V): B — C
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is (m (6@ U)me(a® V), U ® V) for suitable permutations 71, 7. In [18,20] the
authors described a wide range of examples of the Circ construction, including
non-deterministic automata, Mealy automata, circuits, sequential algorithms, lin-
ear systems; an example not included there is the category of systems of recursive
equations in an algebra. Circ(C) has a “feedback” operation, which in the ex-
amples is feedback with delay, and introduces new state to a system. There are
precise delay elements 4 = (symmetry, A) : A — A.

The Circ construction has its origins in the cascade product of automata in [25],
and in the seminal paper of Elgot [11]. Variations of the construction have been
used later by several authors including Bloom and Esik [4], Stefanescu [33] and
Bartha [2]. This last paper [2] is the most closely related to the present work.
Bartha has a notion of strong feedback theory, a one-sorted algebraic theory with
an operation of feedback with delay, a notion more special than our notion of
category with feedback. A precise correspondence between the axioms is difficult
because general feedback properties are mixed in [2] with properties special to the
case that the tensor in a theory is a sum. In most of the examples of categories with
feedback, or compact closed categories, of interest to us the tensor is not a product
or a sum. To give one example, he has an axiom (S5) that feedback(lx : X —
X) =1;7:1 — I; whereas in the classical example of finite dimensional spaces the
trace of the identity function of a space V is the dimension of V. The principal
construction of his paper is the free strong feedback theory on a one-sorted theory.
As a part of this construction Bartha defines Cire(T) for a one-sorted theory T
(he calls it Autt). The free strong feedback theory on T is then Auts/ ~ where
T is a modification of T and ~ is a certain congruence. The definitions of T and
~ as given depend strongly on the fact that the theories are one-sorted.

Circuits have a variety of semantics. For example linear systems [20, 28] have
both discrete (unit-delay) and continuous (infinitesimal-delay) semantics, and in
fact such delay semantics provide an important justification for the introduction of
categories with delayed feedback as a separate concept. However in this paper we
will discuss fixed point (zero-delay) semantics. We define a fixed point semantics
for a category with feedback D to be a strong monoidal functor from D to a
(not-necessarily-strict monoidal) compact closed category which takes feedback
to trace. In the case that D is Circ(C) for some monoidal C this amounts to
a strong monoidal functor from C to a compact closed category. A fixed point
semantics kills the delay elements. Examples of fixed point semantics are (i) the
(matrix of ) languages recognized by a non-deterministic automaton, (ii) the partial
function semantics of sequential programs (in the compact closed environment
of Cospan(Sets)), (iii) the equilibrium behaviour of circuits (in compact closed
Rel), and (iv) the set of fixed points of equations in an algebra (in compact closed
Rel or Span).

Notice that we do not address the difficult question of the existence of fixed-
points which has been one of the central concerns of semantics, addressed for
example in the work of Tarski and of Scott, though clearly there are connections
between the trace semantics and the Lefschetz fixed point theorem.
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This paper is an extension of the first part of a talk [22] given by the third
author at FICS 2001 (Firenze). The second part of that talk, which regarded
the existence of solutions of fixed point equations in the cospan-span model of
concurrency [13,21] will be written up as a separate paper. Various results in
this paper were announced in [20]. There categories with feedback were defined
as algebras for a particular monad, while in this paper they are given a finite
equational presentation.

2. CATEGORIES WITH FEEDBACK

As mentioned earlier, in this section of the paper monoidal category will
mean strict symmetric monoidal category, and monoidal functor will mean strict
monoidal functor. To simplify notation we will use the symbol 7 as a generic sym-
bol for a permutation in a monoidal category, where the particular permutation is
clear from the context.

Remark 2.1. The definition of category with feedback is similar to part of the
definition of trace monoidal category [15]; the yanking axiom is lacking, and one
of the naturality axioms holds only in a weak form.

Definition 2.2. A category with feedback is a monoidal category C with for each
triple of objects A, B, U an operation

ok C(A® U,B®U) — C(A, B)
satisfying the following axioms:
(i) (naturality)
foku(B:BU - C@U)- ((a: A— B)®1y)) = fbku(B) - «
(i) (naturality)

fokuy((y: C = D)@ 1y)-(B: BOU — C@U)) =v- fbku(B)

(iii) (weak naturality) If v : U — V is an isomorphism in C then

foku(B®7)-(a: AU - BaU)- (A®~~1) = fbky(a),

(iv) (vanishing)
fokr(a: A— B) =q,
(v) (vanishing)

fokugv(a: AQU®V - BU V) = fbky(fbky(a))
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(vi) (superposing)
foky(m- ((a: AU - BU)® (6:C — D)) ) = foky(a) ® .

Clearly any traced monoidal category, and hence any compact closed category, is
a category with feedback.

Remark 2.3. The axioms also bear a close relation with axioms of Bloom and
Esik [5]. Axioms (i) and (ii) are analogues of the parameter identity. Axiom (iii)
is the feedback permutation identity. Axiom (iv) is an analogue of a zero identity.
Axiom (v) is an analogue of the pairing identity.

2.1. THE CIRC CONSTRUCTION

Definition 2.4. Let C be a monoidal category. Then Circ(C) is the monoidal
category defined as follows: objects of Circ(C) are those of C; arrows from A to
B are isomorphism classes of pairs (a, U) where « is an arrow in C from A ® U
to B ® U, and where an isomorphism from (a,U) : A — B to (8,V): A — B is
an isomorphism v : U — V in C such that (B ® v)a = 3(A ® v). For simplicity,
we will usually work in terms of representatives rather than equivalence classes of
pairs. Tensor of objects is as in C. Identity, composition and tensor of arrows is
as follows:

lg= (1Aa1)a

(B,V) - (e, U) = (w(B@U)n(a® V), U V),

(Ot,U)@(ﬂ,V):(W'(Oé®ﬂ)'7r,U®V).

Proposition 2.5. Circ(C) is a category with feedback where the feedback opera-
tion is defined as follows:

foky((a, V) : AU - BU) = (a,U® V).
Proof. Axiom(i)

foku((B,W):BoU - CoU)-(((a,V): A— B)®1p))
=(r-BRV) 1 (aUW) 1, URVW): A—C
~ fbky (B, W) - (a, V).
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Axiom(ii)

foku((((7,V): C = D)@ 1y) - ((8,W): BeU — C®U))
=(my@UOW -m-V,UOW®V):B— D
= (v, V) - foku((B, W)).

Axiom(iii)

Suppose (v, P) : U — V is an isomorphism in Circ(C) with inverse (J, Q). Then
(7, P)(6,Q) = (n(v@Q)m (0@ P,Q®P) = (1y,I). Hence in C the arrow - (y®Q) :
U — V is the inverse of 7- (§ @ P) : V — U.

foku(B® (7, P)) - ((a,W): AU — BaU) - (A® (6,Q)))
=1(Bey0QaW)rla®Q @ P)r(A®6 P W)r
~ fbky(a).

Axiom(iv)

fok((a,U) : A®I - B®I)=(0,IQU)=(o,U): A— B.

Axiom(v)

Jokuev (o, W) : AU ®V - BU®V)=(a, UV W)
= fbk’U(Oé, Ve W) = fbk’U(fbk’v(Oé, W))

Axiom(vi)

foku(m- (@, V) : A0 U = BoU) @ ((8,W) : C — D)) - )
=7-(a®pf)- 7= fbky(a)® B.

2.2. UNIVERSALITY OF THE CIRC CONSTRUCTION

Notice that C is contained in Circ(C) via the functor A — A, a +— (o, I).

Proposition 2.6. Given any strict monoidal functor from F : C — D from a
monoidal category to a category with feedback, there is a unique strict monoidal
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feedback-preserving functor

G: Cire(C) — D

extending F.

Proof. On objects G is defined by G(A) = F(A). On arrows G((o,U) : A —
B) = fbkpy(Fa : FA® FU — FB ® FU). Noting that (a,U) : A — B =
foky(a: AQU — B®U,I) in Circ(C), these definitions are clearly forced by the
requirement that G is feedback preserving and extends F'.

First note that G is well-defined on arrows. If (a,U) ~ (6,V) : A — B then
there is an isomorphism v : U — V such that (B® ) -a = - (A®~) or
(Bey)-a- Ay 1)=3:A0V - B®V in C, so

G(B,V) = fbkpyv (F3)
= fokpy((FB® F)-Fa - (FA® Fy™h))
= fbkry(Fa) = G(a,U). (weak naturality)

We need only to check that G is a feedback-preserving strict monoidal functor.

(i) G is a functor: consider « : AU — BU, §: BV — C ® V. Then
B, V) (,U) = (7n(BU)r(a@V),U ®V), and hence

G((8,V)(a, U))

=G((r(BU)r(a@V),UV)) (definition)
= fokpygrv(m(FB & FU)n(Fa ® FV)) (definition)
= fbkpy(fokpy (n(FB @ FU)n(Fa® FV))) (vanishing)
= fbkry (fkpy (n(FB @ FU)m)(Fa ® FV)) (naturality)
= fbkpu((fOokpy (FB)® FU)(Fa® FV)) (superposing)
= fokpy (FB)fokpy(Fa) (naturality)
=GB, V)G, 1)). (definition)

(ii) G is strict monoidal. Consider & : AQU — BQU, :C®V — D®V. Then

(,U) @ (B,V) = m(a® B)m,



FEEDBACK, TRACE AND FIXED-POINT SEMANTICS 189

and hence

G((a,U) @ (B, V)

=G(r(a® B)r) (definition)
= fokrygrv(m(Fa® FB)m) (definition)
= fokpy(fokry (n(Fa ® F@)r)) (vanishing)
= fokpy(rfokpy (Fa ® FQ)r) (naturality)
= fokpy(r(Fa ® fbkpy (FB))rT) (superposing)
= fbkru(Fa)® fokpyv(FD) (superposing)
=Gla,U)® G, V). (definition)

(iii) G is feedback-preserving. Consider o : AQU @ V — B® U ® V. Then

Foku((@,V): AoU - BaU) = (a,U® V),

and hence
G(fbku((a,V)) = fbkpugrv(Fa) (definition)
= fbkru(fbkpy(Fa)) (vanishing)
= fbkru(G(a)). (definition)
O

2.3. TRACED MONOIDAL CATEGORIES FROM CATEGORIES WITH FEEDBACK

Proposition 2.7. The free traced monoidal category on a category with feedback
D is the category-with-feedback quotient Q(D) of D obtained by adding the follow-
mng ariom
(yanking)

foka(symmetry : AQ A— A® A) = 14.

Proof. The only axiom of traced monoidal categories missing when yanking is
added to categories with feedback is
(naturality)

foky((lp @ (B:V = U))-(a: AU — BeV)) = foky(a(la @ f)).

But Lemma 2.1 of [15] shows that naturality follows from weak naturality in the
presence of the other axioms together with yanking. O

It follows that the free compact closed category on a monoidal category C is

Int(Q(Circe(C)).
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2.4. FIXED-POINT SEMANTICS

Definition 2.8. A fized-point semantics of a category with feedback D is a monoidal
functor to a compact closed category, which takes feedback to trace.

Notice that if D is Circ(C) then a fixed point semantics of D is the same as a
monoidal functor from C to a compact closed category.

3. EXAMPLES

All of the examples except the last are discussed in [20], though not explicitly
their fixed point semantics in the sense of this paper. We sketch briefly the exam-
ples adding details not discussed in that paper. Throughout this section we relax
our restriction that monoidal categories and functors are strict; clearly although we
have only proved results in the strict case the results may be suitably generalized
to non-necessarily-strict monoidal categories and strong monoidal functors.

We will use two compact closed categories as codomains for semantics. One is
the category Rel [9], with objects sets, and arrows binary relations, tensor product
being product of sets, and product of relations. The adjoint of A is A; the unit
n: I — Ax A is the relation {(*,a,a);a € A}; the counit ¢ : Ax A — I is
{(a,a,*);a € A}. The other compact closed category is Cospan(Sets) [19], the

category with objects sets, and arrows from A to B cospans A SR B
of functions, with composition computed using pushouts. The tensor is binary

coproduct +, and the unit n : 0 — A 4+ A is the cospan 0 oA Ay A; the
counit € : A+ A — 0 is the copspan A+ A VoA,

3.1. DETERMINISTIC MEALY AUTOMATA

Consider the monoidal category (Sets, x). A circuit from A to B in Sets,
with product, is a pair («,U) where « is a function A x U — B x U. But
this is the same thing as a deterministic Mealy automaton [31] with input alpha-
bet A, output alphabet B, and state space U (though lacking a specified initial
state). Composition is essentially cascade product. One fixed point semantics is
the functor Equilibrium : Circ(Sets, x) — Rel defined by Fquilibrium(a,U) =
{(a,b) : Jusuch that a(a,u) = (b,u)}. That is, Equilibrium(c, U) consists of those
input/output pairs for which the system has an equilibrium state.

3.2. ELGOT AUTOMATA

Consider the monoidal category (Sets, +). A circuit from A to B in Sets, with
direct sum, is a pair (a,U) where « is a function A + U — B + U Such were
called Elgot automata in [17,35] and model sequential algorithms. (Notice that
Rutten in [29] has used the name Elgot automaton for the different notion of a
partial function A — A + B.) The set A may be thought of as initial states, the
set B as terminal states, and U as internal states of an algorithm; then « is the
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next-state function. The usual semantics for such an automaton is the partial
function ¢ : A — B computed by « in the following sense: ¢(a) is defined and
equal to b if there exists an n such that for 0 < i < n, a‘(a) is defined and belongs
to U while a"(a) = b € B. (In [30] it was shown that the recursive functions are
precisely the semantics of Elgot automata constructible from the predecessor and
successor functions using the operations of a distributive category.)

This usual semantics is not however an example of the fixed point semantics
of this paper since the category of partial functions is not compact closed. A
slight modification however does work. We take the compact closed domain of the
semantics to be Cospan(Sets) and then a fixed point sematics for Elgot automata
is:

1/0: ((0,U) : A — B) — tracey.cospan (A + U~ B+ U 2 B+ U).
I/O(a, U) may be seen, by a simple calculation, to be A ““%* (B4 U)/ ~ &2
where u; ~ ug if a(u1) = ug, and u ~ b if a(u) = b. That is, all the steps of the
calculation are equated, but it is not the case that all non-terminating computa-
tions are equated. The usual partial function semantics is just the pullback of this
pair of functions.

3.3. NON-DETERMINISTIC AUTOMATA

Consider the monoidal category Matr(p(X*)) with objects natural numbers,
and arrows matrices of subsets of the free monoid ¥* . Composition is matrix
composition using the fact that p(X*) is a semiring, with union as addition and
complex concatenation of sets of words as multiplication. Tensor product is +.
In [7] non-deterministic automata on the alphabet 3 with several initial and several
terminal states were identified with certain arrows in Circ(Matr(p(X*))). The
category Matr(p(X*)) is itself traced monoidal and hence the identity functor
induces a semantics

Circ(Matr(p(X*))) — Matr(p(X*)) — Int(Matr(p(X*))).

A calculation shows that the semantics of an automaton is the matrix of languages
recognized by the automaton.

3.4. SYSTEMS OF RECURSIVE EQUATIONS IN AN ALGEBRAIC THEORY

Consider an equational theory 7. For concreteness let us take the theory T gings
of commutative rings, though any theory, including an algebraic theory of compu-
tational processes would do. Objects are powers R™ of a symbol R; arrows from
R™ to R™ are n tuples of polynomials in the m variables x1, xs,... ,z,,. The ten-
sor product is x. Arrows of Circ(Trings) are pairs (o, RP) : R™ x RP — R™ x RP.
Such an arrow consists of n + p polynomials in m + p; denote the polynomials
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fisfas-oo s fny91,- -, gp- There is a corresponding system of recursive polynomial
equations, which has the same content, namely,

y1= i@, Ty U, Up)
Y2 :fQ(mla'-' s Ty ULy - - 7up)
Yn = fn(@1, o s Ty U, -, Up) *)
Ul = g1(T1, .o, Tom, Uty e e 5 Up)
Up = Gp(T1y vy Ty Uty oo, Up)-

From this point of view Circ(Trings) is an algebra of systems of equations, com-
position being substitution, feedback being the operation of equating a variable
on the left with one on the right.

We will give, not one semantics, but one corresponding to each model of the
theory, that is, to each ring R.. Following Lawvere, a ring R is a product-preserving
functor from Trings to Sets. The compact closed category we take is (Rel, x ).
To give a semantics is to give a monoidal functor from (T'gings, X) to (Rel, x ).
We take that functor to be

R inclusion
TRings — Sets LT Rel

A calculation shows that the semantics of system (%) is the subset of R™ x R"
consisting of m + n tuples y1,... ,Yn,T1,--. ,Tm of elements of the ring R such
that there exist wi,...,u, € R satisfying the system of equations (). Note
that an alternative semantics in Span(Sets) instead of Rel would contain all the
information of the solutions of the system, not just their existence.
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