
Theoretical Informatics and Applications
Theoret. Informatics Appl. 37 (2003) 85–104

DOI: 10.1051/ita:2003009

SOME ALGORITHMS TO COMPUTE THE CONJUGATES
OF EPISTURMIAN MORPHISMS

Gwenael Richomme1

Abstract. Episturmian morphisms generalize Sturmian morphisms.
They are defined as compositions of exchange morphisms and two par-
ticular morphisms L, and R. Epistandard morphisms are the mor-
phisms obtained without considering R. In [14], a general study of these
morphims and of conjugacy of morphisms is given. Here, given a de-
composition of an Episturmian morphism f over exchange morphisms
and {L, R}, we consider two problems: how to compute a decompo-
sition of one conjugate of f ; how to compute a list of decompositions
of all the conjugates of f when f is epistandard. For each problem,
we give several algorithms. Although the proposed methods are funda-
mently different, we show that some of these lead to the same result.
We also give other algorithms, using the same input, to compute for
instance the length of the morphism, or its number of conjugates.

Mathematics Subject Classification. 68R15.

1. Introduction

Since the works of Morse and Hedlund [12], Sturmian words have been widely
studied (see [2] for a recent survey). These infinite words, that are defined over
a two-letter alphabet, have a lot of equivalent definitions. When larger alphabets
are considered, these definitions give different generalizations of Sturmian words
(see for instance [1, 3–7, 9, 10, 13]). Episturmian words is one of these generaliza-
tions [5, 8], and it partially coincides with previous generalizations [1, 4, 7].

Sturmian (endo)morphisms are defined on two-letter alphabets. They were
initially introduced as the morphisms which preserve Sturmian words. In [15],
Séébold proved that the monoid of Sturmian morphisms is generated by the
exchange (of the two letters) morphism and two other morphisms (L and R).

Keywords and phrases. Combinatorics on words, Sturmian morphisms, conjugacy, algorithms.

1 LaRIA, Université de Picardie Jules Verne, 5 rue du Moulin Neuf, 80000 Amiens, France;
e-mail: richomme@laria.u-picardie.fr

c© EDP Sciences 2003

86 G. RICHOMME

In [5, 8, 9], working on alphabet of arbitrary size, Justin et al. called Episturmian
the (endo)morphisms generated by the permutations and a family of morphisms
(two morphisms for each letter in the alphabet) generalizing L and R. In [14],
we show that Episturmian morphisms can be defined by exchange morphisms and
two morphisms also called L and R, so directly generalizing the binary case. One
can note that all these morphisms already appear (even if not explicitly) in some
works around generalization of Sturmian words [1,4,13]. In [9], Justin and Pirillo
show that Episturmian morphisms are the morphisms that preserve Episturmian
words. The reader will find a recent survey on Sturmian morphisms in [2].

In [14], a study of intrinsic properties of Episturmian morphisms (without any
reference to Episturmian words) is given. We sum up some of these properties.
Relations between palindromes and Episturmian morphisms are studied. On bi-
nary alphabets, Sturmian morphisms are exactly the invertible morphisms; but,
when considering larger alphabets, the monoid of invertible morphisms is no more
finitely generated (this result was also proved in [17]). So Episturmian morphisms
are invertible, but the converse does not hold necessarily. Generalizing a result
from [15], a presentation of the monoid of Episturmian morphisms is stated. This
monoid is cancellative and unitary. Consequently, for an Episturmian morphism f
given by the images of the letters, as in [2] for Sturmian morphisms, an algorithm
is given to compute a decomposition of f over exchange morphisms and {L, R}.

Most part of [14] concerns conjugacy of Episturmian morphisms. A general
study is given and then conjugacy is used in particular to state a presentation of
the monoid of Episturmian morphisms. In the present paper, we come back to
the conjugacy of Episturmian morphisms. We show that theoretical results in [14]
lead to different algorithms to compute any conjugate of an Episturmian mor-
phism, or, to compute the list of conjugates of an epistandard morphism (particular
Episturmian morphism).

In Section 2, we recall notions and useful results on words, Episturmian mor-
phisms and conjugacy of morphisms. In Section 3, using Parikh matrices, we
present algorithms to compute, given a decomposition over exchanges and {L, R}
of an Episturmian morphism f , general informations on f as its length or its
number of conjugates. In Section 4, we give two algorithms to compute, from a
decomposition over exchanges and {L, R} of an Episturmian morphism f , a right
conjugate of f given by its number. Although the two methods are fundamently
different, we show that when f is epistandard, the two algorithms produce the
same decomposition in output. In Section 5, we give two other algorithms for the
same purpose. The outputs of these algorithms are different from those of the
two algorithms in Section 4. But whatever is f in input, the outputs with these
two new algorithms are identical. In Section 6, still with the same input, we give
six different algorithms to compute a complete list of conjugates of f . Four of
them are based on the algorithms of the previous sections. Once again, although
the methods used to design the algorithms are different, we get only two different
outputs from these six algorithms: three algorithms give one output, the three
others give the other output.

ALGORITHMS TO CONJUGATE EPISTURMIAN MORPHISMS 87

2. Words, Episturmian morphisms, conjugacy

In this section, we essentially recall basic notions and results from [14].

2.1. Words

Given a finite set X , we will denote by #X its cardinal, that is, the number of
its elements. An alphabet A is a set of symbols called letters. Here we consider
only finite alphabets. A word over A is a finite sequence of letters from A. The
empty word ε is the empty sequence of letters. Equipped with the concatenation
operation, the set A∗ of words over A is the free monoid with neutral element ε
and set of generators A. Given a non-empty word u = a1 . . . an with ai ∈ A, the
length |u| of u is the integer n. One has |ε| = 0. For a word u and a letter a, |u|a is
the number of occurrences of a in u. Two words u and v are said conjugate if there
exists a word w such that uw = wv. Powers of a word are defined inductively by
u0 = ε, and for any integer n ≥ 1, un = uun−1 = un−1u.

2.2. Episturmian morphisms

A (endo)morphism f on A is an application from A∗ to A∗ such that for all
words u, v over A, f(uv) = f(u)f(v). A morphism is entirely known by the images
of the letters of A. The length of f is the value ||f || = ∑

x∈A |f(x)|. Given two
morphisms f and g, we will denote fg their composition. A particular morphism
is the empty morphism ε: ∀a ∈ A, ε(a) = ε.

Given two letters x, y, the exchange morphism of x and y is the morphism
defined on A by

Exy :




x→ y,
y → x,
z → z, ∀z 6∈ {x, y}·

We observe that Exy = Eyx. Moreover, for any x ∈ A, Exx is the identity
morphism (also denoted Id). We denote by Exch(A) the set of exchange morphisms
defined on A (including the identity).

Let A be an alphabet. In [5, 8, 9], Droubay, Justin and Pirillo have introduced
for each letter α, the morphisms Ψα and Ψα

Ψα :
{

α→ α
x→ αx, ∀x ∈ A \ {α} Ψα :

{
α→ α
x→ xα, ∀x ∈ A \ {α}·

Any morphism obtained by composition of exchange morphisms and morphisms Ψα

with α ∈ A will be called (as in [14]) an epistandard morphism (standard
Episturmian in [8,9]). In other words, an epistandard morphism is a morphism in

Epistand(A) = (Exch(A) ∪ {Ψα | α ∈ A})∗.

88 G. RICHOMME

Similarly [8, 9], an Episturmian morphism is an element of

Episturm(A) = (Exch(A) ∪ {Ψα, Ψα | α ∈ A})∗.

When #A = 2, epistandard (resp. Episturmian) morphisms are exactly the stan-
dard (resp. Sturmian) morphisms (see [2]).

Following [14, 15], in the rest of the paper, we will always consider a finite
alphabet A containing at least two letters. We will also distinguish a letter a
in A. Following the original notation of Séébold [15], we denote L = Ψa (that is
L(a) = a, L(x) = ax for x 6= a) and R = Ψa (that is R(a) = a, R(x) = xa for
x 6= a). For any letter α, we have

Ψα = EaαLEaα, and Ψα = EaαREaα.

Thus Epistand(A) = (Exch(A) ∪ {L})∗ and Episturm(A) = (Exch(A) ∪ {L, R})∗.
Note that, in the particular case where #A = 2, L and R are the morphisms G

and G̃ in [2]. So all results here and in [14] can be directly considered for Sturmian
morphisms with a usual basis.

In [14], an algorithm is designed to compute a decomposition over Exch(A) ∪
{L, R} of a given Episturmian morphism. Such a decomposition is not unique. The
following theorem shows what are the basic equalities between decompositions:

Theorem 2.1 ([14], Th. 7.1) (see also [15] for the binary case). The monoid
Episturm(A) with set of generators Exch(A)∪{L, R} has the following presentation
(x, y, z, t are pairwise different letters):

ExyExy = Id,

ExyEyz = EyzEzx,

ExyEzt = EztExy,

ExyL = LExy when a 6∈ {x, y},
ExyR = RExy when a 6∈ {x, y},

LE1LE2 . . . LEkR = RE1RE2 . . . REkL

where k ≥ 1 is an integer and E1, . . . , Ek are exchange morphisms such that
E1 . . . Ek(a) = a, and for each integer i, 2 ≤ i ≤ k, Ei . . . Ek(a) 6= a.

2.3. Conjugacy

The notion of conjugation of Sturmian morphisms was introduced by Séébold
[16]. On two-letter alphabets, the definition of conjugation is a bit different from
the notion of conjugacy given in [2] but the ideas are the same, and similar results
are obtained. Conjugacy can be easierly generalized to arbitrary alphabets than
conjugation. Thus, we follow [2, 14].

A morphism g is a right conjugate of a morphism f defined on A, in symbols
f / g, if there exists a word w such that f(x)w = wg(x) for all words x in A∗.

ALGORITHMS TO CONJUGATE EPISTURMIAN MORPHISMS 89

Here, we will also say that f is a left conjugate of g, and we will sometimes write
f /w g. For instance, L /a R.

Basic properties of conjugacy are given by the following lemma:

Lemma 2.2 ([14], Lem. 3.1) (see also [2]). Let f, f ′, g, g′, h be some morphisms
and let w1, w2 be some words.

(1) If f /w1 g and g /w2 h then f /w1w2 h.
(2) If g 6= ε, f /w1 g, f ′ /w2 g and |w1| ≤ |w2|, then there exists a word w3

such that w2 = w3w1 and f ′ /w3 f .
(3) If f 6= ε, f /w1 g, f /w2 g′ and |w1| ≤ |w2|, then there exists a word w3

such that w2 = w1w3 and g /w3 g′.
(4) If f /w1 g and f ′ /w2 g′ then ff ′ /f(w2)w1 gg′.

The family of Episturmian morphisms is self conjugated:

Proposition 2.3 ([14], Cor. 5.5, Cor. 5.6). Any (right or left) conjugate of an
Episturmian morphism is Episturmian.

Moreover, we have:

Theorem 2.4 ([14], Th. 5.1). A morphism f is Episturmian if and only if it is a
right conjugate of a unique epistandard morphism. This epistandard morphism is
obtained from any decomposition of f in elements of Exch(A)∪{L, R} by replacing
all the occurrences of R by L.

Following this theorem, given an Episturmian morphism f , we denote by
Stand(f) the epistandard morphism which is a left conjugate of f . Note that
Stand(L) = Stand(R) = L, and, for an exchange morphism E, Stand(E) = E.
Moreover, if f = f1 . . . fn with for all i, 1 ≤ i ≤ n, fi ∈ Exch(A)∪{L, R}, we have
Stand(f) = Stand(f1) . . . Stand(fn).

Given an epistandard morphism f1 . . . fn with for all i, 1 ≤ i ≤ n, fi ∈
Exch(A) ∪ {R}, and given an Episturmian morphism g1 . . . gn with for all i,
1 ≤ i ≤ n, gi ∈ Exch(A) ∪ {L, R}, we will say that g1 . . . gn has property
P (f1 . . . fn) if for all i, 1 ≤ i ≤ n, Stand(gi) = fi.

We denote by NbR(f) the number of right conjugates of a morphism f . For
instance, since the right conjugates of L are L and R, and since the unique right
conjugate of R is R itself, NbR(L) = 2 and NbR(R) = 1. For any morphism f ,
we have NbR(f) ≥ 1 since f is always its own right conjugate (f /ε f). Similarly
we can define the number NbL(f) of left conjugates of f .

In [14], it is stated that (left and right) conjugates of a morphism can be ordered.
In the particular case of Episturmian morphism, we have (see [14], Lem. 3.3,
Lem. 3.4, Lem. 3.6):

Lemma 2.5. Let f, g be Episturmian morphisms.
(1) The morphism g is a right conjugate of f if and only if there exists a

unique word w such that f /w g. Moreover 0 ≤ |w| ≤ NbR(f)− 1.
(2) The morphism g is a left conjugate of f if and only if there exists a unique

word w such that g /w f . Moreover 0 ≤ |w| ≤ NbL(f)− 1.

Note that this lemma is in fact true for all non-periodic morphisms (see [14]).

90 G. RICHOMME

Using Lemma 2.2, the previous lemma shows that there exists a one-to-one
correspondance between conjugates of an Episturmian morphism and integers in
[0..NbR(f)− 1].

According to the previous lemma and following [16], for f, g Episturmian mor-
phisms, we say that g is the |w|th right conjugate of f if w is the word such that
f /w g. Of course, f is the 0th conjugate of f . If |w| = 1, g will be called the first
(right) conjugate of f , and f will be called the previous (left) conjugate of g. If
|w| = NbR(f)− 1, g will be called the last (right) conjugate of f .

Once again using Lemma 2.2, we can see:

Property 2.6. Given an integer p ≥ 0, the (p + 1)th right conjugate (if it exists)
of an Episturmian morphism f is the first right conjugate of the pth right conjugate
of f .

Now, let NbC(f) be the total number of left or right conjugates of a morphism f ,
that is, NbC(f) = #{g | g / f or f / g}. For instance NbC(ε) = 1, NbC(L) =
NbC(R) = 2. We have:

Lemma 2.7 ([14], Lem. 3.7). Let f be an Episturmian morphism.

(1) NbC(f) = NbR(f) + NbL(f)− 1.
(2) For any right conjugate g of f , NbC(f) = NbC(g).

3. Computation of the numbers of conjugates

In [14] (Prop. 3.8), it was proved that, given an Episturmian morphism f ,
the values NbC(f), NbR(f) and NbL(f) can be computed in time O(||f ||). The
underlying algorithms assumed that the morphism f was given by the images of
the letters. In this section, we prove a similar result when the morphism is given
by a decomposition f1, . . . , fn of f over Exch(A) ∪ {L, R}. These computations
are related to the computations of ||f1 . . . fn|| and of the values of |f1 . . . fi−1(a)|
for 1 ≤ i ≤ n (we take the convention f1 . . . f0 = Id). Then we have:

Proposition 3.1 ([14], Prop. 6.1). For any Episturmian morphism f ,

NbC(f) =
||f || − 1
#A− 1

.

Proposition 3.2 ([14], Prop. 6.2). If f = f1 . . . fn is an Episturmian morphism
with fi ∈ Exch(A) ∪ {L, R},

a) NbL(f) = 1 +
∑

1≤i≤n|fi=R

|f1 . . . fi−1(a)|;

b) NbR(f) = 1 +
∑

1≤i≤n|fi=L

|f1 . . . fi−1(a)|;

c) NbC(f) = 1 +
∑

1≤i≤n|fi∈{L,R}
|f1 . . . fi−1(a)|.

ALGORITHMS TO CONJUGATE EPISTURMIAN MORPHISMS 91

Here, we state:

Proposition 3.3. Let f1, . . . , fn be n ≥ 1 morphisms in Exch(A) ∪ {L, R}. Con-
sidering #A as a constant, the values ||f1 . . . fn||, NbC(f1 . . . fn), NbR(f1 . . . fn),
NbL(f1 . . . fn), |f1 . . . fi(b)| (for 0 ≤ i ≤ n and b ∈ A) can all be (simultaneously)
computed in O(n) arithmetic operations.

For the proof, we assume that A is totally ordered, and a is the least letter:
A = {a1, . . . , an}, a1 = a. We use the Parikh matrix of a morphism f , that is, the
#A×#A matrix Pf such that Pf [i, j] = |f(aj)|ai .

For instance if A = {a, b, c} (with a < b < c) then

PL = PR =


 1 1 1

0 1 0
0 0 1


 PEab

=


 0 1 0

1 0 0
0 0 1


 .

One can verify that if f, g are two morphisms, we have Pfg = PfPg. Using this
property, we can compute the matrix of an Episturmian morphism from one of its
decomposition over Exch(A) ∪ {L, R}.
Example. When A = {a, b, c}, the Parikh matrix of REacEabRREacREbcL is

PEab
=


 3 7 9

2 5 6
0 0 1


 .

Proof of Proposition 3.3. Let us consider the following sequence of instructions:

1. let M be a #A×#A matrix of integers
M ← identity matrix;

2. let NbL, NbR, NbC, k, x, Lgth be integers
NbL ← 1
NbR ← 1;

3. for k from 1 to n do

3.1. x←
#A∑
i=1

M [i, 1];

3.2. if fk = R then NbL ← NbL +x;
3.3. if fk = L then NbR ← NbR +x;
3.4. M ←MPfk

end for
4. NbC ← NbR + NbL −1;
5. Lgth← (#A− 1) NbC +1.

We verify that this algorithm allows to get all the expected values. At Step 1, we
initialize M in such a way that for all i, j, 1 ≤ i, j ≤ n, M [i, j] = |f1 . . . f0(aj)|ai

(recall f1 . . . f0 denotes the identity morphism). By induction, at the end of the
kth loop, thanks to Instruction 3.4, we have for all i, j, 1 ≤ i, j ≤ n, M [i, j]

92 G. RICHOMME

= |f1 . . . fk(aj)|ai . From this value of M , we can get in a bounded number of
arithmetic operations (since #A is a constant) for aj in A, the value |f1 . . . fk(aj)| =∑#A

i=1 |f1 . . . fk(aj)|ai =
∑#A

i=1 M [i, j]. In particular, after Instruction 3.1, we
have x = |f1 . . . fk−1(a)|. Thus by induction, we can see that after Instruc-
tion 3.2 (resp. Instruct. 3.3), NbL = 1 +

∑
1≤i≤k|fi=R |f1 . . . fi−1(a)| (resp. NbR

= 1 +
∑

1≤i≤k|fi=L |f1 . . . fi−1(a)|). So at the end of Instruction 3, with an ad-
ditional O(1) number of arithmetic operations, we have been able to compute
the values |f1 . . . fi(b)| for i, 0 ≤ i ≤ n and for b ∈ A. We also have NbL =
1+

∑
1≤i≤n|fi=R |f1 . . . fi−1(a)|, and, NbR = 1+

∑
1≤i≤k|fi=L |f1 . . . fi−1(a)|. From

Proposition 3.2, this means NbL = NbL(f1 . . . fn) and NbR = NbR(f1 . . . fn). It
follows from Lemma 2.7 that Instruction 4 computes NbC(f1 . . . fn). Finally from
Proposition 3.1, Instruction 5 computes the length of f1 . . . fn, that is, ||f1 . . . fn||.

To end, we let to the reader to verify that the given sequence of instructions
acts in O(n) arithmetic operations (recall that #A is a constant – if it is not the
case, the sequence acts in time O(n(#A)3))). �

Note that the values in Proposition 3.3 (and in the sequence of instructions
in the proof) can grow exponentially with n so that arithmetic operations can
not be considered to be made in bounded time (for instance one can see when

A = {a, b}, for n ≥ 0, NbC((LE)n) = fn+2 − 1 = O
((

1+
√

5
2

)n)
where (fn)n≥0 is

the Fibonacci sequence defined by f0 = 1, f1 = 1 and ∀n ≥ 0 fn+2 = fn+1 + fn).
Using Lemma 2.7 and Proposition 3.1, we can also see that all these values are in
O(||f1 . . . fn||).

4. Computation of a right conjugate

Let f be an Episturmian morphism, and let p ≥ 0 be an integer. We want
to compute the pth right conjugate (if it exists) of f . In case f is known by the
images of the letters, the computation of the images by g of the letters can be
easily made. Indeed, first we have to compute the word w of length p such that
f /w g: for instance, this word is the prefix of length p of f(ap). Then for each x
in A, we can compute g(x) since f(x)w = wg(x) (note that if w is not a prefix of
f(x)w, then the pth right conjugate of f does not exist).

From now on, we consider that the input morphism is given by one of its
decomposition over Exch(A) ∪ {L, R}. We study the following:

Problem 1. Let p ≥ 0 and let f be an Episturmian morphism given by a decom-
position f1, . . . , fn over Exch(A) ∪ {L, R} (n ≥ 1). How to compute the empty
sequence if f has not a pth right conjugate, and to compute otherwise a decom-
position g1, . . . , gn of the pth right conjugate of f such that g1 . . . gn has Property
P (Stand(f1) . . . Stand(fn)).

Let us recall that the 0th right conjugate of a morphism f is f itself.

ALGORITHMS TO CONJUGATE EPISTURMIAN MORPHISMS 93

When p = 1, Problem 1 has already been solved in [14] by the following propo-
sition:

Proposition 4.1 ([14], Prop 5.2). Let f be an Episturmian morphism on A. Let
f1, . . . , fn be some elements of Exch(A) ∪ {L, R} such that f = f1 . . . fn.

The morphism f has a right conjugate different from f if and only if there exists
an integer k between 1 and n such that fk = L.

When it is the case, let k be the least integer between 1 and n such that fk = L.
For each i between 1 and k − 1, let gi be the morphism defined by:

– gi = L if fi = R and the first letter of fi+1 . . . fk(a) is different from a;
– gi = fi otherwise.

Then the first right conjugate of f is the morphism g1g2 . . . gk−1Rfk+1 . . . fn

(Rf2 . . . fn when k = 1).

This proposition can be (quite verbosing) rewritten into Algorithm 1 that will
be used for comparison. We use a function named first that, when applied on
a non-empty word w, gives the first letter of w. Note that, since morphisms
in Exch(A) ∪ {L, R} are not erasing, for i ≤ k − 2, first(fi+1 . . . fk(a)) =
first(fi+1(first(fi+2 . . . fk(a))).

Algorithm 1 solves Problem 1 when p = 1.
local: i, k integer

x letter
Step 1. Compute the least integer k such that 1 ≤ k ≤ n and fk = L.

If k does not exist, then quit with an empty sequence as output.
Step 2. x← a

for i from k − 1 downto 1 do
x← first(fi+1(x))
if fi = R and x 6= a then gi ← L

else gi ← fi

Step 3. gk ← R
gk+1, . . . , gn ← fk+1, . . . , fn.

As said in [14], an implementation can be done in time O(n). Indeed function
first, comparisons of morphisms with L, affectations of morphisms, and, list
constructions can all be implemented in bounded time.

Now, let us take back the example of the previous section to illustrate
Algorithm 1.

Example (continued). We work on alphabet {a, b, c}, with n = 9 and

f1, . . . , fn = R, Eac, Eab, R, R, Eac, R, Ebc, L.

At Step 1, we get k = 9. During Step 2, we get successively g8 = Ebc, g7 = R,
g6 = Eac, g5 = L, g4 = L, g3 = Eab, g2 = Eac, g1 = R. At Step 3, we state

94 G. RICHOMME

g9 = R. Thus,

g1, . . . , gn = R, Eac, Eab, L, L, Eac, R, Ebc, R.

By computing the images of letters, it can be verified that the morphism g =
g1 . . . gn is the first conjugate of f = f1 . . . f9:

f1 . . . f9(a) = a(ba)2, g1 . . . g9(a) = (ba)2a,
f1 . . . f9(b) = a(ba)3a(ba)2, g1 . . . g9(b) = (ba)3a(ba)2a,
f1 . . . f9(c) = a(ba)2ca(ba)2a(ba)2, g1 . . . g9(c) = (ba)2ca(ba)2a(ba)2a.

And so f(a)a = ag(a), f(b)a = ag(b), f(c)a = ag(a). It follows f /a g.

From Property 2.6, using Algorithm 1, we can design naturally Algorithm 2
which is an answer for Problem 1 (for arbitrary value of p).

Algorithm 2 solves Problem 1.
g1, . . . , gn ← f1, . . . , fn

Apply p times Algorithm 1 with input and output g1, . . . , gn:
if g1, . . . , gn becomes the empty sequence, quit with the empty sequence
as output.

Example (continued). If we apply Algorithm 2 with p = 3, n = 9 and f1, . . . , fn

as previously, then g1, . . . , gn take successively the values:

R, Eac, Eab, R, R, Eac, R, Ebc, L;
R, Eac, Eab, L, L, Eac, R, Ebc, R;
L, Eac, Eab, R, L, Eac, R, Ebc, R;
R, Eac, Eab, R, L, Eac, R, Ebc, R.

Time complexity of Algorithm 2 is in O(n×min(p, NbC(f))) and so in O(n||f ||).
We now consider Algorithm 3 based on Proposition 3.2 that acts in O(n) arithmetic
operations.
Example (continued). Let us illustrate Algorithm 3 with the same input as we
take with Algorithm 2: p = 3, n = 9 and f1, . . . , fn = R, Eac, Eab, R, R, Eac, R,
Ebc, L. The initial values of NL, NC and the |f1 . . . fi−1(a)| for i from 1 to n can
be computed using Section 3. By Proposition 3.2, we know that

NbL(f1 . . . f9) = 1 + |Id(a)|+ |REacEab|+ |REacEabR|+ |REacEabRREac(a)|
= 1 + 1 + 2 + 2 + 5 = 11.

NbC(f1 . . . f9) = NbL(f1 . . . f9) + |REacEabRREac(a)REbc(a)|
= NbL(f1 . . . f9) + 5 = 16.

Thus t is initialized to the value 2.
When fi is an exchange, that is when i ∈ {8, 6, 3, 2}, we get gi = fi and the

value of t does not change.
For i = 9 and i = 7, |f1 . . . fi−1(a)| = 5 > t, thus g9 ← R and g7 ← R.

For i = 5, |f1 . . . fi−1(a)| = 2, thus g5 ← L and t ← 0. For i = 4 and i = 1,
|f1 . . . fi−1(a)| > 0, thus g4 ← R and g1 ← R. Observe that we get the same result
as with Algorithm 2. We will see in Theorem 4.2 that it is not by chance.

ALGORITHMS TO CONJUGATE EPISTURMIAN MORPHISMS 95

Algorithm 3 solves Problem 1.
local: i, t, NL, NC integer
NL← NbL(f1 . . . fn)
NC ← NbC(f1 . . . fn)
t← NC − p−NL
if (t < 0) then exit with the empty sequence as output
for i from n downto 1 do

if fi ∈ {L, R} then
if |f1 . . . fi−1(a)| ≤ t then

gi ← L
t← t− |f1 . . . fi−1(a)|

else
gi ← R

else
gi ← fi

Proof of validity of Algorithm 3. Let f = f1 . . . fn and let g be its pth right con-
jugate. Let also g1, . . . , gn be the result of Algorithm 3. We have to verify that
g = g1 . . . gn. Note that the morphism g has NbL(f) + p left conjugates. Indeed,
using Lemma 2.2, we can verify that the left conjugates of g are the left conjugates
of f , together with the ith right conjugate of f for each i such that 1 ≤ i ≤ p.

Let t0 be the value of t after initialization. From Lemma 2.7, the number of
right conjugates of g is NbC(f)− (NbL(f)+p)+1 = t0 +1. So t0 is the number of
right conjugates of g different from g. To continue, we must have t0 ≥ 0. Assume
that it is the case: t0 = NbR(g)− 1.

Following Theorem 2.4, the morphism f is a conjugate of a unique epistandard
morphism s1 . . . sn with (for 1 ≤ i ≤ n) si = Stand(fi): f1 . . . fn has Prop-
erty P (s1 . . . sn).

The morphism g can have several decompositions verifying Property P (s1 . . . sn).
Let us consider the unique one h1, . . . , hn such that, for any other different decom-
position (if it exists) h′1, . . . , h

′
n verifying Property P (s1 . . . sn), if k is the greatest

integer such that hk 6= h′k, then hk = L and h′k = R. In the rest of the proof, we
show that the output of Algorithm 3 is h1, . . . , hn.

Before let us observe (by induction) that for any decomposition h′1, . . . , h
′
n

verifying Property P (s1 . . . sn), we have for all i, 1 ≤ i ≤ n, |h′1 . . . h′i−1(a)| =
|f1 . . . fi−1(a)|.

From what preceeds and Proposition 3.2, we have t0 =
∑

1≤i≤n|hi=L

|h1 . . . hi−1(a)|.

Let m be an integer between 1 and n. Assume that, ∀j, m+1 ≤ j ≤ n, gj = hj ,
and, assume that, before the execution of the block of the instruction “for” with
i = m, t =

∑
1≤i≤m|hi=L |h1 . . . hi−1(a)|. We prove gm = hm, and, the following:

96 G. RICHOMME

Fact F: after the execution of the block of the instruction “for” with i = m,

t =
∑

1≤i≤m−1|hi=L

|h1 . . . hi−1(a)|.

The proof of validity follows by induction.
If fm 6∈ {L, R}, by definition, fm = Stand(fm) = Stand(hm). It follows fm =

hm. Moreover by algorithm, gm = fm. Thus gm = hm. Fact F follows from
hm 6= L.

If fm ∈ {L, R}, then by definition, hm ∈ {L, R}.
If fm ∈ {L, R} and |f1 . . . fm−1(a)| > t, then, from the value of t, and since

|f1 . . . fm−1(a)| = |h1 . . . hm−1(a)|, we deduce that hm 6= L, that is, since
Stand(hm) = Stand(fm), hm = R. By the algorithm, it follows gm = hm. Once
again, Fact F follows from hm 6= L.

If fm ∈ {L, R} and |f1 . . . fm−1(a)| ≤ t, then we get gm = L. Assume hm = R.
The number of right conjugates of h1 . . . hm−1 is 1+

∑
1≤i≤m−1|hi=L |h1 . . . hi−1(a)|

= 1 + t > |f1 . . . fm−1(a)|. Let h′ be the |f1 . . . fm−1(a)|th right conjugate of
h1 . . . hm−1. The number of right conjugates of h′ is 1 + t− |f1 . . . fm−1(a)|. Let
h′1, . . . , h

′
m−1 be a decomposition of h′ verifying Property P (s1 . . . sm−1). The

morphism h′1 . . . h′m−1gmhm+1 . . . hn verifies Property P (s1 . . . sn) and, by Propo-
sition 3.2(b), has exactly the same number of right conjugates as h1 . . . hn. So
h′1 . . . h′m−1gmhm+1 . . . hn is a decomposition of the pth conjugate of f . From
gm = L and hm = R, we get a contradiction with the last part of the definition
of h1, . . . , hm. Thus hm = L = gm. Fact F follows from the diminution of t that
occurs. �

From Proposition 3.3, considering #A as a constant, the initial values of NL,
NC and the |f1 . . . fi−1(a)| for i from 1 to n can be computed in O(n) arithmetic
operations. It follows that Algorithm 3 can be implemented in O(n) arithmetic
operations. By the remark at the end of Section 3, Algorithm 3 has complexity in
time in O(n||f ||) as Algorithm 2. Now, we compare the decompositions obtains
with Algorithms 2 and 3.

Theorem 4.2. Let f1, . . . , fn be morphisms in Exch(A)∪{L}. With input f1, . . . ,
fn, whatever is p in input, Algorithms 2 and 3 give the same output.

Example (continued). The decomposition g1, . . . , gn = R, Eac, Eab, R, R, Eac, R,
Ebc, L is the decomposition obtained by Algorithm 2 from input n = 9, p = 11,
and

f1, . . . , fn = L, Eac, Eab, L, L, Eac, L, Ebc, L.

Consequently the decomposition of the third conjugate of g1, . . . , gn obtained pre-
viously with Algorithm 2 is the same as the decomposition of the 14th conjugate
of f1, . . . , fn obtained with Algorithm 3.

Theorem 4.2 shows that it is not a matter of chance to have obtained the same
decomposition of the third conjugate of g1, . . . , gn with Algorithm 3. Indeed, we
can see that the initializations of Algorithm 3 when input is g1, . . . , gn and p = 3,
or, when input is f1, . . . , fn and p = 14, lead to the same initial value of t.

ALGORITHMS TO CONJUGATE EPISTURMIAN MORPHISMS 97

Observe that REbcL = LEbcR. Thus REacEabRREacREbcL = REacEab

RREac LEbcR.
Consequently, when the input is n = 9, p = 0 and f1, . . . , fn = R, Eac, Eab,

R, R, Eac, L, Ebc, R, then Algorithms 2 and 3 do not give the same output.
Theorem 4.2 cannot be stated with arbitrary input in Exch(A) ∪ {L, R}.

Proof of Theorem 4.2. We act by induction on p. Let f1, . . . , fn be morphisms in
Exch(A) ∪ {L}.

Assume first p = 0. The outputs of Algorithms 2 and 3 are both a decomposition
g1, . . . , gn that verifies Property P (f1 . . . fn). By Theorem 2.1, since g1 . . . gn =
f1 . . . fn, we have, for all i, 1 ≤ i ≤ n, fi = L if and only if gi = L. Thus the
outputs of Algorithms 2 and 3 are the same.

Assume now 1 ≤ p ≤ NbC(f1 . . . fn) − 1. Let g1, . . . , gn be the morphisms
obtained by Algorithm 3 applied with the integer p − 1. Let h1, . . . , hn be the
morphisms obtained by Algorithm 3 applied with the integer p. By inductive hy-
pothesis, g1 . . . gn is also the decomposition obtained from f1 . . . fn by Algorithm 2.
We have to prove that when we apply Algorithm 1 on g1 . . . gn, we obtain h1 . . . hn.

We have h1 . . . hn 6= g1 . . . gn by Lemma 2.5. Let k be the greatest integer such
that hk 6= gk.

Let ti (resp. t′i) be the value of t just before the test “fi ∈ {L, R}” in Algorithm 3
applied with the integer (p− 1) (resp. p). We have tn = t′n + 1. Let also t0 (resp.
t′0) be the value of t at the end of Algorithm 3 applied with the integer (p − 1)
(resp. p). By definition of k, we get for each integer i, k ≤ i ≤ n, ti = t′i + 1. In
particular tk = t′k + 1. Since gk 6= hk, this implies |f1 . . . fk−1(a)| = tk, gk = L,
hk = R. Moreover for each i, 0 ≤ i ≤ k − 1, ti = 0, and thus gi ∈ Exch(A) ∪ {R}.
It follows that k is the same as the one which is computed in Algorithm 1.

For 1 ≤ i ≤ k, let xi be the first letter of gi . . . gk(a). Note that xk = gk(a) =
L(a) = a, and for 1 ≤ i < k, xi is the first letter of gi(xi+1). To end the
proof, we show by induction on i from k − 1 to 1, that t′i = |g1 . . . gi(xi+1)| − 1
and, if gi = R then hi = L if and only if xi 6= a. We already know that t′k =
tk − 1 = |f1 . . . fk−1(a)| − 1. Note that since g1 . . . gi is a right conjugate of
f1 . . . fi for all i (0 ≤ i ≤ n), |g1 . . . gi(x)| = |f1 . . . fi(x)|. For instance, t′k =
|g1 . . . gk−1(a)| − 1. Since hk = R, we also have t′k−1 = t′k. From xk = a, we get
t′k−1 = |g1 . . . gk−1(xk)| − 1.

Let i be an integer, 1 ≤ i ≤ k − 1, such that t′i = |g1 . . . gi(xi+1)| − 1.
If gi is an exchange, we have xi = gi(xi+1). It follows by Algorithm 3 that

t′i−1 = t′i = |g1 . . . gi(xi+1)| − 1 = |g1 . . . gi−1(xi)| − 1.
Assume gi = R (thus fi = L). We have xi = xi+1.
If xi = a, then xi = gi(xi+1) and so |f1 . . . fi−1(a)| = |f1 . . . fi−1(xi)| =

|g1 . . . gi−1(xi)| = |g1 . . . gi(xi+1)| > t′i. It follows hi = R, and t′i−1 = t′i =
|g1 . . . gi−1(xi)| − 1.

If xi 6= a, t′i = |g1 . . . gi−1R(xi+1)|−1 = |g1 . . . gi−1(xia)|−1 = |g1 . . . gi−1(xi)|+
|g1 . . . gi−1(a)| − 1 = |g1 . . . gi−1(xi)| + |f1 . . . fi−1(a)| − 1. It follows hi = L, and
t′i−1 = t′i − |f1 . . . fi−1(a)| = |g1 . . . gi−1(xi)| − 1. �

98 G. RICHOMME

5. Computation of a right conjugate
using left conjugacy

In the previous section, we have recalled a proposition (Prop. 4.1) that allows
to compute a decomposition of the first conjugate (when exists) of an Episturmian
morphism. The following proposition allows to compute the previous conjugate of
an Episturmian morphism.

Proposition 5.1 ([14], Prop. 5.4). Let f be an Episturmian morphism on A. Let
f1, . . . , fn be some elements of Exch(A) ∪ {L, R} such that f = f1 . . . fn.

The morphism f is a right conjugate of another morphism if and only if there
exists an integer k between 1 and n such that fk = R.

When it is the case, let k be the least integer between 1 and n such that fk = R.
For each i between 1 and k − 1, let gi be the morphism defined by:

– gi = R if fi = L and the last letter of fi+1 . . . fk(a) is different from a;
– gi = fi otherwise.

Then the previous right conjugate of f is the morphism g1g2 . . . gk−1Lfk+1 . . . fn

(Lf2 . . . fn when k = 1).

We let to the reader to design a corresponding algorithm that we will call
Algorithm 4.

Now let us come back to Problem 1. Let f = f1 . . . fn be an Episturmian
morphism, let g be its pth right conjugate (if it exists), and let h be its last right
conjugate. Let NR be the number of right conjugates of f . The number of left
conjugates of g is NR − p (we must have NR − p ≥ 1). In other words, g is
the (NR − p − 1)th left conjugate of its last conjugate. By Proposition 4.1 and
Lemma 2.2, we can see that the last conjugate of g is also the last conjugate
of f , and one of its decomposition verifying Property P (Stand(f1) . . .Stand(fn))
is obtained by replacing each fi ∈ {L, R} by R. Thus we obtain Algorithm 5.

Algorithm 5 solves Problem 1.
local: NR integer
NR← NbR(f1 . . . fn)
if NR− p < 1 then quit with the empty sequence as output.
g1 . . . gn ← last conjugate of f1 . . . fn

Apply NR− p− 1 times Algorithm 4 with input and output g1, . . . , gn.

Example (continued). Once again, we take as input n = 9, f1, . . . , fn = R, Eac,
Eab, R, R, Eac, R, Ebc, L and p = 3.

We have NR = 6. The decomposition of the last conjugate of f1, . . . , fn which
has to be computed is

R, Eac, Eab, R, R, Eac, R, Ebc, R.

ALGORITHMS TO CONJUGATE EPISTURMIAN MORPHISMS 99

We iterate twice Algorithm 4. We obtain successively:

L, Eac, Eab, R, R, Eac, R, Ebc, R.

R, Eac, Eab, L, R, Eac, R, Ebc, R.

Observe that we do not get the same output as with Algorithm 2.

As for Algorithm 2, the time complexity of Algorithm 5 is in O(n||f ||). As in the
previous section, we consider Algorithm 6 which is a greedy algorithm to compute
in O(n) arithmetic operations the pth conjugate of an Episturmian morphism.

Algorithm 6 solves Problem 1.
local: i, t, NL, NC integer
NL← NbL(f1 . . . fn)
NC ← NbC(f1 . . . fn)
t← p + NL− 1
if (t > NC) then exit with the empty sequence as output
for i from n downto 1 do

if fi ∈ {L, R} then
if |f1 . . . fi−1(a)| ≤ t then

gi ← R
t← t− |f1 . . . fi−1(a)|

else
gi ← L

else
gi ← fi

We let to the reader to verify as in the previous section the validity of
Algorithm 6.

Example (continued). Once again with the same input, we have NL = 11, NC =
16, and t is initialize to the value 3 + 11 − 1 = 13. Since |f1 . . . f3(a)| = 2 =
|f1 . . . f4(a)|, |f1 . . . f6(a)| = 5, and |f1 . . . f8(a)| = 5, we get g9 = R, g8 = Ebc,
g7 = R, g6 = Eac, g5 = R, g4 = L, g3 = Eab, g2 = Eac and g1 = R. We obtain the
same decomposition as with Algorithm 5.

We also let to the reader to prove:

Theorem 5.2. When used with the same input, Algorithms 5 and 6 give the same
output.

100 G. RICHOMME

In Theorem 5.2, there is no restriction on the input (it is the case in Th. 4.2)
since the computation in Algorithm 5 is, whatever is the value of p, done from the
same decomposition: that of the last conjugate of the input.

To end this section, let us mention that all we have done in this section and in
the previous one can be adapted to get algorithms to compute a left conjugate of
an Episturmian morphism.

6. Computation of all the conjugates

In this section, we want to compute, not only one particular conjugate of an
Episturmian morphisms, but all the conjugates.

Any left or right conjugate of f is also a right conjugate of Stand(f). Thus we
treat the

Problem 2. Let f be an epistandard morphism given by a decomposition f1, . . . ,
fn over Exch(A) ∪ {L} (n ≥ 1). How to compute an ordered list L = (h0, . . . ,
hNbC(f1...fn)−1) of the conjugates of f such that for each 1 ≤ i ≤ NbC(f1 . . . fn)−
1, hi is a decomposition of the ith right conjugate of f1 . . . fn verifying Prop-
erty P (f1 . . . fn).

Solutions to Problem 1 give naturally solutions to Problem 2. Algorithm 2 (resp.
Algorithm 5) can be transformed to give an O(nNbC(f)) (and so O(n||f ||)) time
algorithm to solve Problem 2: we call Algorithm 7 (resp. Algorithm 8) these
transformations. Moreover, applying Algorithm 3 (resp. Algorithm 6), for each
value of p, 0 ≤ p ≤ NbC(f)− 1, we get Algorithm 9 (resp. Algorithm 10) that
solves Problem 2 in O(nNbC(f)) arithmetic operations (and so in time O(n||f ||2)).
By Theorem 4.2, Algorithms 7 and 9 (resp. Algorithms 8 and 10) give the same
output.

All these algorithms show that, for any conjugate g of an epistandard morphism
f1 . . . fn (with fi ∈ Exch(A) ∪ {L}), g has at least one decomposition g1 . . . gn

(with gi ∈ Exch(A) ∪ {L, R}) that verifies Property P (f1 . . . fn). Conversely by
Theorem 2.4, for any decomposition g1 . . . gn with Property P (f1 . . . fn), g1 . . . gn is
a right conjugate of f1 . . . fn. Thus one idea to solve Problem 2 can be to make out
the list of decompositions we can obtain from f1 . . . fn replacing some occurrences
of L by R. The problem is that we can obtain several decompositions of the
same conjugate. For instance, from LL, the two decompositions LR and RL are
obtained for the first conjugate. Thus we have to eliminate some decompositions
to keep only one for each conjugate (this can be done using Th. 2.1) and we have to
order the list. A simpler way to obtain the list is to compute it inductively. Here
again, we propose two algorithms for this purpose. The first one is Algorithm 11.

ALGORITHMS TO CONJUGATE EPISTURMIAN MORPHISMS 101

Algorithm 11 solves Problem 2
if n = 1

if f1 ∈ Exch(A) then L ← (f1)
else L ← (L, R)

else
apply recursively Algorithm 11 to compute the list

(h0, . . . , hk−1) of conjugates of f1 . . . fn−1

if fn ∈ Exch(A) then
L ← (h0fn, . . . , hk−1fn)

else
j ← |f1 . . . fn−1(a)|

(*) L ← (h0L, . . . , hk−1L, hk−jR, . . . , hk−1R)

Let us observe that Algorithm 11 was already presented by Levé and Séébold [11]
in case of standard morphisms, that is in the binary case.

Algorithm 12 is a variant of Algorithm 11 obtained (by of course applying re-
cursively Algorithm 12 and) by replacing Instruction (*) by

L ← (h0L, . . . , hj−1L, h0R, . . . , hk−1R).

Example (continued). The list of conjugates we obtain

if input is with Algorithm 11 with Algorithm 12
L (L, R) as with Algorithm 11
LEacEab (LEacEab, REacEab) as with Algorithm 11
LEacEabL (LEacEabL, REacEabL, as with Algorithm 11

LEacEabR, REacEabR)
LEacEabLL (LEacEabLL, REacEabLL, (LEacEabLL, REacEabLL,

LEacEabRL, REacEabRL, LEacEabLR, REacEabLR,
LEacEabRR, REacEabRR) LEacEabRR, REacEabRR).

We can observe that the output with Algorithm 11 (resp Algorithm 12) is the
same as with Algorithm 7 (resp. with Algorithm 8). Again, it is not by chance as
we will see in Theorem 6.2.

To prove the validity of Algorithms 11 and 12, we need the following lemma:

Lemma 6.1. For all Episturmian morphisms f ,

(1) NbC(fE) = NbC(f) for all exchange morphisms E;
(2) NbC(fL) = NbC(fR) = NbC(f) + |f(a)|;
(3) NbC(f) ≥ |f(x)|, for all letters x.

Proof. The first and the second part are direct consequences of Proposition 3.2(c).
They are already mentioned in [14] (Lem. 4.2).

102 G. RICHOMME

To prove the third part, let f be an Episturmian morphism, and let E be an
exchange morphism. We have for all x in A:

• NbC(E) = 1 = |E(x)|;
• NbC(L) = NbC(R) = 2 ≥ |L(x)| = |R(x)|;
• NbC(fE) = NbC(f) and thus, since E(x) is a letter, NbC(fE) ≥ |fE(x)|;
• NbC(fL) = NbC(fR) = NbC(f) + |f(a)| ≥ |f(x)| + |f(a)| = |fL(x)| =
|fR(x)|.

The proof of the third part follows by induction on the number of morphisms in
the decomposition of f over Exch(A) ∪ {L, R}. �

Proof of validity of Algorithms 11 and 12. Let f1, . . . , fn be morphisms in
Exch(A) ∪ {L}.

If n = 1, the algorithms act correctly.
Assume that n ≥ 2. We denote f = f1 . . . fn−1 and k = NbC(f). Let

(h0, . . . , hk−1) be the output of one of the two algorithms applied on f1, . . . , fn−1.
By construction, for any integer i, 1 ≤ i ≤ k − 1, hi is the first right conjugate

of hi−1. Thus for any morphism φ, hiφ is the first right conjugate of hi−1φ (see
Lem. 2.2(4)). It follows that (h0φ, . . . , hk−1φ) is a list of k consecutive conjugates
of f1 . . . fnφ.

If fn is an exchange morphism, since NbC(ffn) = k, by Lemma 6.1, the list of
conjugates of f1 . . . fn is (h0fn, . . . , hk−1fn).

Assume now fn = L. Since h0L has no left conjugates (it is epistandard),
(h0L, . . . , hk−1L) is the list of the first k conjugates of f1 . . . fn. In a similar way
(h0R, . . . , hk−1R) is the list of the last k conjugates. The number of conjugates
of f1 . . . fn is NbC(f) + |f(a)|. We denote as in Algorithm 11 and 12, j = |f(a)|.
By Lemma 6.1, j < k. It follows that (h0L, . . . , hk−1L, hk−jR, . . . , hk−1R) and
(h0L, . . . , hj−1L, h0R, . . . , hk−1R) are both the list of the k + j conjugates of ffn.

The proof of validity ends by induction. �

As announced in the example, we have:

Theorem 6.2. From a given input,
(1) Algorithm 11 computes the same output as Algorithms 7 and 9;
(2) Algorithm 12 computes the same output as Algorithms 8 and 10.

Proof. We prove only Part 1 of this proposition. The second part is similar. We
already know that Algorithms 7 and 9 give the same output. Let us compare this
output with the one of Algorithm 11. We act by induction on n.

If n = 1, the result is true: the output is (f1) where f1 is the input.
If n ≥ 2, we denote f = f1 . . . fn−1 and k = NbC(f). Let (h0, . . . , hk−1) be

the output of Algorithm 11 applied on f1, . . . , fn−1. By inductive hypothesis,
(h0, . . . , hk−1) is also the list of decompositions of the k conjugates of f1 . . . fn−1

obtained with Algorithm 7 or 9.
Note that, whatever is a morphism fn in Exch(A) ∪ {L, R} when we apply

successively k times Algorithm 1 to obtain successive conjugates of f1 . . . fn, we
obtain the list (h0fn, . . . , hk−1fn).

ALGORITHMS TO CONJUGATE EPISTURMIAN MORPHISMS 103

Thus if fn is an exchange morphism, we obtain the same output with
Algorithms 7 and 11.

Now assume fn = L. The first conjugates of f1 . . . fn are h0L, . . . , hk−1L. The
last conjugates of f1 . . . fn are hk−jR, . . . , hk−1R where j = |f1 . . . fn−1(a)| as in
Algorithm 11. To end the proof we have to show that when we apply Algorithm 3
with input f1, . . . , fn, and p = k, we get the decomposition hk−jR. When we do
this application, we initialize NL at 1 and NC at NbC(f1 . . . fn). By Lemma 6.1,
NbC(f1 . . . fn) = NbC(f1 . . . fn−1) + |f1 . . . fn−1(a)| = k + j. It follows that the
initial value of t is j − 1. When executing the “for” block in Algorithm 3 with
i = n, we get gn = R and t is unchanged. Moreover, after that, the algorithm
continues as if the input is f1, . . . , fn−1 and p = k− j. Indeed NbC(f1 . . . fn−1) =
NbC(f1 . . . fn)− j and, by Proposition 3.2 NbL(f1 . . . fn−1) = NbL(f1 . . . fn)− j.
So by inductive hypothesis, the obtained decomposition is hk−jR. �

Acknowledgements. This paper solves questions initially asked by P. Séébold. I thank
him for his remarks and his encouragements. Thanks also to an anonymous referee for
his interesting remarks.

References

[1] P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexités 2n+1. Bull.
Soc. Math. France 119 (1991) 199-215.

[2] J. Berstel and P. Séébold, Sturmian words, Chap. 2, edited by M. Lothaire. Cambridge
Mathematical Library, Algebraic Combinatorics on Words 90 (2002).

[3] V. Berthé and L. Vuillon, Tilings and rotations on the torus: A two dimensional general-
ization of Sturmian sequences. Discrete Math. 223 (2000) 27-53.

[4] M.G. Castelli, F. Mignosi and A. Restivo, Fine and Wilf’s theorem for three periods and a
generalization of Sturmian words. Theoret. Comput. Sci. 218 (1999) 83-94.

[5] X. Droubay, J. Justin and G. Pirillo, Episturmian words and some constructions of de Luca
and Rauzy. Theoret. Comput. Sci. 255 (2001) 539-553.

[6] P. Hubert, Suites équilibrées. Theoret. Comput. Sci. 242 (2000) 91-108.
[7] J. Justin, On a paper by Castelli, Mignosi, Restivo. RAIRO: Theoret. Informatics Appl. 34

(2000) 373-377.
[8] J. Justin, Episturmian words and morphisms (results and conjectures), edited by H. Crapo

and D. Senato. Springer-Verlag, Algebraic Combinatorics and Comput. Sci. (2001) 533-539.
[9] J. Justin and G. Pirillo, Episturmian words and Episturmian morphisms. Theoret. Comput.

Sci. 276 (2002) 281-313.
[10] J. Justin and L. Vuillon, Return words in Sturmian and Episturmian words. RAIRO:

Theoret. Informatics Appl. 34 (2000) 343-356.
[11] F. Levé and P. Séébold, Conjugation of standard morphisms and a generalization of singular

words, in Proc. of the 9th international conference Journées Montoises d’Informatique
Théorique. Montpellier, France (2002).

[12] M. Morse and G.A. Hedlund, Symbolic Dynamics II: Sturmian trajectories. Amer. J. Math.
61 (1940) 1-42.

[13] G. Rauzy, Suites à termes dans un alphabet fini, in Séminaire de théorie des Nombres de
Bordeaux. Exposé 25 (1983).

[14] G. Richomme, Conjugacy and Episturmian morphisms, Technical Report 2001-03. LaRIA,
Theoret. Comput. Sci. (to appear).

104 G. RICHOMME

[15] P. Séébold, Fibonacci morphisms and Sturmian words. Theoret. Comput. Sci. 88 (1991)
365-384.

[16] P. Séébold, On the conjugation of standard morphisms. Theoret. Comput. Sci. 195 (1998)
91-109.

[17] Z.X. Wen and Y. Zhang, Some remarks on invertible substitutions on three letter alphabet.
Chin. Sci. Bulletin 44 (1999) 1755-1760.

Communicated by J. Berstel.
Received October, 2002. Accepted January, 2003.

To access this journal online:
www.edpsciences.org

