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FIXPOINTS, GAMES AND THE DIFFERENCE
HIERARCHY ∗

Julian C. Bradfield
1

Abstract. Drawing on an analogy with temporal fixpoint logic, we
relate the arithmetic fixpoint definable sets to the winning positions
of certain games, namely games whose winning conditions lie in the
difference hierarchy over Σ0

2. This both provides a simple characteriza-
tion of the fixpoint hierarchy, and refines existing results on the power
of the game quantifier in descriptive set theory. We raise the problem
of transfinite fixpoint hierarchies.

Mathematics Subject Classification. 03E15, 68Q45.

1. Introduction

For several decades, games have been an essential tool for the study of logic,
both in mathematical logic and more recently in computer science. Perhaps the
most developed application in computer science logic is the use of Ehrenfeucht–
Fräıssé games for first-order logic, and the refinements such as pebble games which
correspond to finite variable fragments. However, games are also useful in temporal
logic, and in particular for the modal mu-calculus. The ability to switch one’s
point of view between logics, automata and games facilitates many results. In
particular, the semantics of the modal mu-calculus can be described by means of a
parity game, that is, a game in which the winning condition concerns the parity of
the highest index seen infinitely often in the game. This presentation is equivalent
to a presentation via alternating Rabin automata, or via tableaux. In modal
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mu-calculus, a key issue is the alternation of minimal and maximal fixpoints; in
automata, this corresponds to the Rabin index, and in normal form parity games
it corresponds to the number of indices.

Games, in the form of Gale–Stewart games, also play an important role in
descriptive set theory: they provide a tool with which many of the structure
theorems of the classical and effective Borel and Lusin hierarchies can be obtained.
The game quantifier

G

takes a game, defined by its set of winning plays, and
returns the set of winning positions; the power of this quantifier is the object of
our study. Kechris and Moschovakis showed that a Σ0

1 game has a Π1
1 set of winning

positions; and Robert Solovay showed that the set of winning positions of a Σ0
2

game is Σ1
1-inductive. Thomas John studied Σ0

3 games, and the characterization
is complex, involving higher-type recursion and certain levels of the constructible
universe.

If one looks at the previous paragraph with fixpoint glasses on, one notices that
Π1

1 is Π0
1-inductive, that is, on the first level Σµ

1 of the fixpoint alternation hierarchy
of arithmetic with fixpoints; and that Σ1

1-inductive is the second level. It is then
natural to ask whether this is coincidence, or whether there is, in arithmetic, a nice
relationship between fixpoint alternation and some hierarchy of games, mediated
by the game quantifier. One might initially speculate that Σ0

n games have Σµ
n

winning positions, but alas this cannot be true. However, the world of Rabin
automata and modal mu-calculus provides a suggestion: the complexity of the
Rabin or parity condition corresponds to the complexity of the winning plays,
and since the modal fixpoint alternation is correlated nicely to that, the next
obvious thing to do is to try to find a notion of complexity in arithmetic that
corresponds to the Rabin index, and then hope that the correlation still holds in
the rather different world of arithmetic. The result of such an exploration is that
fixpoint complexity of winning positions does indeed correspond to a natural fine
hierarchy of arithmetic, in a way that matches well with the finite automata world;
and although the result is pure descriptive set theory, the games used in its proof
are natural analogues of games developed for the automata and temporal logic
world.

2. Preliminaries

2.1. Notations and basic definitions

ω is the set of non-negative integers; variables i, j, . . . , n range over ω. The set
of finite sequences of integers is denoted ω∗; finite sequences are identified with
integers via standard codings; variables u, v range over ω∗. The set of infinite se-
quences of integers is ωω; variables α, β range over ωω. For α ∈ ωω, α(i) is the i’th
element of α, and α(<i) is the finite sequence 〈α(0), . . . , α(i− 1)〉. Concatenation
of finite and infinite sequences is written with concatenation of symbols or with ·,
and extended to sets pointwise.

We consider (only) spaces that are the product of copies of ωω and ω; they are
given the product topology, where ω carries the discrete topology and ωω itself
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carries the infinite product topology (in which the basic open sets are the sets
u · ωω for every finite sequence u). A pointset P is a subset of such a space X;
we write variously P (i, α) or (i, α) ∈ P if X is, for example, ω × ωω. A pointset
is semi-recursive or Σ0

1 iff it is a recursive union of basic opens, in other words
given by a semi-recursive set of prefixes: in particular, a pointset P ⊆ ωω is Σ0

1

iff P =
⋃

iNε(i), where Nk denotes the basic neighbourhood uk · ωω for some
recursive enumeration k 7→ uk of the finite sequences w∗, and ε is a recursive
function ω → ω, otherwise known as a recursive element of ωω. A pointclass
is a set of pointsets; if Λ and Λ′ are pointclasses, then Λ ∧ Λ′ is the pointclass
{P ∩P ′ | P ′ ∈ Λ,P ′ ∈ Λ′ } and similarly for ∨ and ¬; if Λ is a pointclass on ω×X,
then ∃ωΛ is the pointclass {Q ⊆ X | ∃P ∈ Λ. x ∈ Q ⇔ ∃i. (i, x) ∈ P }; similarly
for ∃ωω. The Kleene pointclasses (the arithmetical and analytical hierarchies) are
defined by Πi

j = ¬Σi
j ; Σ0

j+1 = ∃ωΠ0
j ; Σ1

0 = Σ0
1; Σ1

j+1 = ∃ωωΠ1
j ; ∆i

j = Σi
j ∩ Πi

j .
Pointsets in the Kleene pointclasses are definable by formulae of first- and second-
order arithmetic in the usual prenex normal form.

For completeness we recall that the boldface classes are given by: Σ0
1 is the

class of open sets, and then similarly to the lightface classes; however, we are here
concerned mainly with the lightface classes.

Ordinals are ranged over by variables ζ, ξ. By ω1 we mean the first non-recursive
ordinal, not the first uncountable ordinal.

An (ω-)tree is a prefix-closed subset of ω∗. If T is a tree, α is an infinite branch
of T iff ∀i. α(<i) ∈ T . The body [T ] of T is the set of its infinite branches. T is
recursive (etc.) iff it is recursive (etc.) as a subset of ω via the coding of sequences.
The following standard fact will be useful:

Lemma 1. If P ⊆ ωω is Π0
1, then there is a Π0

1 tree T such that α ∈ P ⇔ α ∈ [T ].

Proof. If P is Π0
1, by definition it is ¬⋃

j Nε(j) =
⋂

j Nε(j) for some recursive ε.
Put T = { v | ∀j. v · ωω ⊆ Nε(j) }. If α ∈ P , then ∀i. α(<i) ∈ T ; conversely, if
α /∈ P , then α ∈ Nk some k, and then there is a prefix α(<i) ∈ Nk. Finally, T is
Π0

1 since the test “v · ωω ⊆ Nε(j)” is recursive, reducing to “v does not have uε(j)

as a prefix”, where uε(j) is as above. �

2.2. Gale–Stewart games

An infinite game of perfect information, or Gale–Stewart game, on ω, is played
between two players, Abelard and Eloise. The players take turns, starting with
Eloise, to choose a number, so defining a play as an infinite sequence α ∈ ωω.
The game is defined by a winning condition P ⊆ ωω, a set of sequences; if α ∈ P
(we write also P (α)), then Eloise wins the play, otherwise Abelard. A strategy
for Eloise is a function from partial plays where she is due to move, i.e. finite
sequences of even length, to integers, telling Eloise her next move. A winning
strategy for Eloise is one such that if she follows it, she is guaranteed to win the
game no matter how Abelard plays. If u is a partial play in the game P , then P [u]
denotes the game {α | uα ∈ P }. A winning position for Eloise is a partial play
u of even length from which Eloise has a winning strategy for P [u]; thus Eloise
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has a winning strategy for the game, or wins the game, iff 〈〉 is a winning position
for her.

It is frequently convenient to relax the definition to allow games with rules
which constrain the choices of the players, and games where the players’ turns
need not strictly alternate. This is harmless provided that the rules and the turn
function are recursive in the partial plays.

For our purposes, it is also useful to permit finite plays where Eloise wins
outright at a particular point. A game with such plays can easily be modified to
a game with only infinite plays; an important point for us is that we shall always
have recursive winning conditions on finite plays.

A game is determined if one or other player wins it. By a celebrated theorem
of Martin, all games with ∆1

1 winning conditions are determined. However, Wolfe
much earlier proved determinacy for Σ0

2 games, and it is a generalization of this
proof, far easier than Martin’s theorem, that will give us our result.

It is convenient to define cogames in which Abelard moves first. Now we can
extend the definition of Eloise winning position to partial plays u of odd length by
saying that u is a winning position in the game P iff Eloise wins the cogame P [u].

If P ⊆ ωω × X, then for each x ∈ X the set {α | (α, x) ∈ P } defines a
game (we call it P (α, x)). The game quantifier is defined thus:

G

α.P (α, x) is the
set { x | Eloise wins the game P (α, x) }. Although formally defined in terms of
strategies, it is intuitively understood as an infinite string of first-order quantifiers:

∃a0. ∀a1. ∃a2. ∀a3. . . . P (a0a1 . . . , x).

Let Γ be a pointclass on ωω × X; then
G

Γ is the pointclass

{Q ⊆ X | ∃P ∈ Γ.Q =

G

α.P (α, x) }·

The following standard fact (see [10]) will be required:

Lemma 2. If Γ is a determined pointclass closed under recursive substitution,
then ¬ G

Γ =

G¬Γ .

2.3. Mu-arithmetic

In [9] Lubarsky studies the logic given by adding fixpoint constructors to first-
order arithmetic. This logic is also known as LFP in finite model theory, where it
is most studied. The logic (“mu-arithmetic” for short) has as basic symbols the
following: function symbols f, g, h; predicate symbols P,Q,R; first-order variables
x, y, z; set variables X,Y, Z; and the symbols ∨,∧, ∃, ∀, µ, ν,¬,∈. As with the
modal mu-calculus, ¬ can be pushed inwards to apply only to atomic formulae,
by De Morgan duality.

The language has expressions of three kinds, individual terms, set terms, and
formulae. The individual terms comprise the usual terms of first-order logic. The
set terms comprise set variables and expressions µ(x,X). φ and ν(x,X). φ, whereX
occurs positively in φ. Here µ binds both an individual variable and a set variable;
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henceforth we shall often write just µX. φ, and assume that the individual variable
is the lower-case of the set variable. We also use µν to mean “µ or ν as appropriate”.
The formulae are built by the usual first–order construction, together with the rule
that if τ is an individual term and Ξ is a set term, then τ ∈ Ξ is a formula.

This language is interpreted over the structure ω of first-order arithmetic. The
semantics of the first-order connectives is as usual; τ ∈ Ξ is interpreted naturally;
and the set term µX. φ(x,X) is interpreted as the least fixpoint of the functional
X 7→ {m ∈ ω | φ(m,X) } (where X ⊆ ω).

Mu-arithmetic has a prenex normal form [2, 9] of the following shape:

τn ∈ µXn.τn−1 ∈ νXn−1.τn−2 ∈ µXn−2. . . . τ1 ∈ µνX1. φ

where φ is first-order–that is, a string of alternating fixpoint quantifiers, and a
first-order body. If we refer to a formula in normal form, we shall refer to its
components by this notation.

We define levels of the fixpoint alternation hierarchy similarly to the Kleene
hierarchies: first-order formulae are Σµ

0 and Πµ
0 , as are set variables. The Σµ

n+1

formulae and set terms are formed from the Σµ
n ∪ Πµ

n formulae and set terms by
closing under (i) the first-order connectives and (ii) the formation of µX. φ for
φ ∈ Σµ

n+1.
A set X ∈ ω is Σµ

n if x ∈ X ⇔ τ(x) ∈ Ξ(x) for some Σµ
n set term Ξ. Note that

this does not mean that X is a fixpoint, only that X is definable via a fixpoint.
A Σµ

1 set corresponds to a set definable by an inductive definition over an arith-
metic predicate; hence by Kleene’s theorem, Σµ

1 is equal to Π1
1. The higher levels

of the fixpoint hierarchy have been characterized by Lubarsky [9] in terms of large
admissible ordinals involving a generalized reflection principle, devised for the pur-
pose, and whose essential content is the iteration of the idea
Π1

1 = Π0
1-IND = (Σ1 on ∆1

1); however, there has not been a simple characteri-
zation in terms of existing notions.

2.4. Rabin conditions and parity games

Consider a (non-deterministic) finite automaton on which Eloise and Abelard
play a Gale–Stewart style game by alternately choosing next states. A Rabin
condition is a winning condition for the game of the following form:

∨

1≤i≤n

(∞Gi ∧ ¬∞Ri)

where Gi and Ri are subsets of states, and ∞X means that the set X is met
infinitely often during the play. n is the Rabin index.

These alternating Rabin automata are important in temporal logic, as they are
one characterization of modal mu-calculus. They are equivalent to alternating
parity automata: a parity condition has the form “for given sets Xi, 1 ≤ i ≤ n,
of states, the greatest j such that Xj occurs infinitely often in the play, is even”.
The relationship between parity automata and modal mu-calculus is direct [6], as
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the parity condition corresponds to the statement “the highest fixpoint variable
regenerated infinitely often is a maximal fixpoint”.

The Rabin index, or the number of sets in a parity condition, correspond to
the fixpoint alternation in modal mu-calculus, and it is this that inspires both
our question and its solution. (Niwiński [11] gives a survey of all the concepts
mentioned here, as part of a study of fixpoint operators on trees.)

3. Games for mu-arithmetic

The familiar Ehrenfeucht–Fräıssé games for first-order logic are used to dis-
tinguish structures; one can also define model-checking games or semantic games
where the object is to determine whether φ(x) holds for a formula φ and element
x of a given structure. For first-order logic, the game may be defined thus: given a
formula φ and a structure T , a position in the game is a subformula ψ of φ and a
valuation of the free variables of ψ by elements of T . If ψ is a conjunction, then it
is Abelard’s turn, and he chooses a conjunct; if a disjunction, then Eloise chooses
a disjunct. If ψ = ∃x. ψ′, then Eloise chooses a value for x and play moves to ψ′;
and dually for ∀x. ψ′. Play terminates at atomic formulae P (~x); Eloise wins the
play if P (~x) holds of the chosen values for ~x, Abelard otherwise. It is a standard
theorem that Eloise wins the game iff φ is true. (If φ itself has free variables, there
is one game for each valuation of them.)

Remark 3. Traditionally, the valuation of variables is not explicitly encoded in
the position, but read off from the history. This is a vital distinction in the finite
model theory use of games, since we do not wish to assume that we can keep
arbitrary amounts of information. The notion of pebble game was invented in
order to encode the variable assignment in the position, and then the number of
pebbles (variables) can be limited, so that we can ask “is there a winning strategy
using only the bounded history information available?”. However, we are working
in arithmetic, so we have all the coding apparatus we want, and may as well carry
the assignment with us; it is purely a matter of convenience.

Games have been extended to LFP in the world of finite model theory, by
choosing a candidate fixpoint set X when one passes through a fixpoint operator.
Uwe Bosse [1] has used such games to obtain expressivity results on fragments of
LFP. However, such a game is undesirable in arithmetic, since it has second-order
positions. A more useful game for mu-arithmetic is defined by adapting the game
for parity automata or modal mu-calculus: instead of finite plays, one now has
infinite plays, and the winning condition is given by a parity condition.

Given a formula of mu-arithmetic (or indeed FOL with fixpoints in general), the
model-checking game has moves as for first-order logic together with the following
rules for the fixpoints: if the position is τ ∈ µν(x,X). φ, then play moves to the
position φ with x valued at the current value of τ . It does not matter who moves,
but for definiteness say Eloise moves for µ and Abelard for ν. If the position is
τ ∈ X , where X is bound by µν(x,X). φ, then again play moves to φ with x valued
at the current value of τ , and we say that we have seen X . It remains to define the



FIXPOINTS, GAMES AND THE DIFFERENCE HIERARCHY 7

winning conditions: if play terminates, the play is won as for first-order logic; if the
play is infinite, then Eloise wins iff the outermost fixpoint variable seen infinitely
often is maximal. If we start with a formula in normal form, then this is exactly
a parity condition. We have

Theorem 4. A formula φ(~x) of mu-arithmetic holds for some valuation of ~x
exactly if Eloise has a winning strategy for the model-checking game for φ with the
given initial valuation.

Proof. A full proof of this theorem is quite long; however it is strategically the
same as the corresponding proof for modal mu-calculus and parity games. It is
also the essential content of Theorem 5 of [2]. Therefore we do not give the proof
again here. �

4. The power of the game quantifier

Suppose that a winning condition P (α, x) for a Gale–Stewart game has a given
descriptive complexity: what is the descriptive complexity of

G

α.P (α, x)? If the
winning conditions are in the analytical hierarchy, then this is a question intimately
related to the structure theory of the hierarchy, and a question that depends on
hypotheses outside ZFC, in particular, the hypothesis of Projective Determinacy
(that all projective games are determined). Given PD, the answer is quite simple
for analytical games:

G

Σ1
n = Π1

n+1 and dually, so

G

is a “hermaphrodite” second-
order quantifier.

If the winning conditions are below ∆1
1, then determinacy is not an issue, and

one can expect unequivocal answers. However, the game quantifier turns out to
be quite delicate. The first answer was:

Theorem 5 (Kechris–Moschovakis).

G

Σ0
1 = Π1

1

Later, Robert Solovay (unpublished, cited in [10], q.v. also for the previous
theorem) characterized Σ0

2 games, based on Wolfe’s proof of the determinacy of
Σ0

2 games.

Theorem 6 (Solovay).

G

Σ0
2 = Σ1

1-IND (that is, sets given via an inductive defi-
nition over a Σ1

1 predicate).

A decade or so later, the next step was taken by Thomas John, who studied Σ0
3

games. Unfortunately, the characterization is complex: it involves capturing the
levels of Gödel’s L at which winning strategies can be found, and is given in terms
of higher-type recursion. This appears to be inevitable: the proof of determinacy
for Σ0

3 proceeds via games in which the positions are themselves games.
There are to my knowledge no published results on Σ0

4 or beyond, until one
reaches ∆1

1.
As was remarked in the introduction, Π1

1 is also Π0
1-IND ; or in terms of the

fixpoint hierarchy, Σµ
1 . Then Σ1

1-IND is just Σµ
2 . We then naturally ask whether

Σµ
n =

G

X for some natural class X . The conjecture that immediately comes to
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mind is Σµ
n =

G

Σ0
n; unfortunately, the complexities of higher-type recursion are

not so easily banished. In fact, the game semantics of mu-arithmetic shows that

Theorem 7. For all n, Σµ
n ⊆ G∇0

2, where ∇0
2 denotes the Boolean closure of

Σ0
2 ∪Π0

2.

Proof. Consider a mu-arithmetic formula in normal form; wlog, consider the case
of odd n. The winning condition for the associated game comprises a recursive
part dealing with the finite plays, and a parity condition dealing with the infinite
plays. The parity condition says that in a play α, the highest Xi seen infinitely
often is maximal, i.e. i is even. In other words, the condition is

¬∞Xn ∧ (∞Xn−1 ∨ (¬∞Xn−2 ∧∞Xn−3 ∨ (. . .∞X2 ∨ ¬∞X1) . . .)).

Now, the statement “Xi is seen at position j of the play α” is a recursive pred-
icate of α; and the statement ∞Xi is just ∀j. ∃k > j. “Xi is seen at k”, which
is Π0

2. Therefore the entire condition is a Boolean combination of Π0
2 and Σ0

2

statements, Q.E.D. �
One may equally well use a Rabin condition, although this is less natural.
At this point, it seems “obvious” that the argument should also run backwards.

However, model-checking games are a very restricted format of games, and the
statement ∞Xi is apparently a rather restricted form of Π0

2 statement about a
play α; we wish to make a statement about arbitrary ∇0

2 winning conditions.
Thus the obvious statement requires some work to prove. The first step is to
choose the appropriate fine hierarchy within ∇0

2. One may here choose to follow
the pattern of Rabin conditions: by using disjunctive normal form, it is trivial that
formulae of the shape

∨
i(Σ

0
2∧Π0

2) give a normal form for ∇0
2. However, it is easier

and more elegant to follow the pattern of parity conditions, and use a hierarchy
known as the difference hierarchy (over Σ0

2). Difference hierarchies over open sets
have been studied long ago in classical descriptive set theory; more recently Victor
Selivanov has, in a series of papers, made a study of an abstract fine hierarchy
which subsumes, in a certain sense, difference hierarchies: applications include
simpler proofs and refinements of Wagner’s hierarchies of ω-regular languages [12].
However, we shall not need any of this more general theory; let us just define the
hierarchy we need.

The difference hierarchy over Σ0
2 is defined thus: Σ∂

1 = Σ0
2; Π∂

n = ¬Σ∂
n;

Σ∂
n+1 = Σ0

2 ∧ Π∂
n. To provide a simpler base case, let us also define Σ∂

0 = Σ0
1

(which fits into the induction, since Σ0
2 ∧Π0

1 = Σ0
2). The main result is now

Theorem 8.

G

Σ∂
n = Σµ

n+1 for n ≥ 0.

Proof. First consider the easier direction, that Σµ
n+1 ⊆

G

Σ∂
n. This is not trivial:

by inspection, the parity condition of rank n is in Σ∂
n, but this is not tight enough.

However, if we consider more carefully the winning condition for the game of a Σµ
1

formula τ ∈ µX.φ, it says simply “X is seen finitely often”. Since the only way
a play can be infinite is to pass infinitely often through X , this is equivalent to
saying that the play is really finite (and therefore terminates on an outright Eloise
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win). Hence the winning condition is really just ∃i. “Eloise wins outright at α(i)”,
and since the outright winning conditions are recursive, this is a Σ0

1 statement.
Hence Σµ

1 ⊆ G

Σ0
1 =

G

Σ∂
0 . Now an induction following the proof of Theorem 4

gives the rest. (Of course, we already know from Th. 5 that Σµ
1 =

G

Σ0
1; however,

the above direct argument of the base case has the advantage of being easy to fit
directly into the induction.)

The harder direction is showing that

G

Σ∂
n ⊆ Σµ

n+1. For convenience we shall
let Theorem 5 deal with the base case; it is an easy exercise to write down the
direct proof using a simplified version of the strategy here. The inductive step
is a generalization of Solovay’s result, using a generalization of Wolfe’s determi-
nacy proof. We shall follow, more or less, the presentation of Wolfe’s proof by
Moschovakis [10], extending as necessary.

The approach is to define inductively “easy winning positions”, and show that
all winning positions are easy. We then inspect the inductive definition, and see
that it has the required form.

Suppose we have a Σ∂
n winning condition P (α, ~x); for notational convenience

we omit the parameters ~x. Then it has the form

(∃i. Q(i, α)) ∧R(α)

where Q is Π0
1 and R is Π∂

n−1. In Solovay’s result, the winning condition is
Σ0

2 = Σ∂
1 , and so there is no R term; we have to show that the argument still

goes through with this additional term, so allowing us to use the proof in an
induction on n.

We start with a trivial but critical observation:

(∃i. Q(i, α)) ∧R(α) ⇔ ∃i. (Q(i, α) ∧R(α)).

The second observation is that (by Lem. 1) since, for a given i, Q(i, α) is a Π0
1

predicate of α, there is a Π0
1 tree Ti ⊆ ω∗ such that Q(i, α) ⇔ α ∈ [Ti].

We shall build the set of winning positions by a transfinite induction; to explain
the technique let us first consider the base case on its own. We can define a set of
really easy winning positions: let

W 0 = { u | ∃i. “Eloise wins the game H0
i [u] = (Q(i, α) ∧R(α))[u]” }·

Strictly, if u is an odd length sequence, we mean the cogame H0
i [u]; we will assume

henceforth that “game” means “game” for even length u and “cogame” for odd
length u. Now, it is clear that if u ∈W 0, then Eloise wins the game P [u].

To extend this base case into an inductive step, we first reformulate this defini-
tion using the second observation:

W 0 = { u | ∃i. “Eloise wins the game H0
i [u] = (R(α) ∧ ∀k. α(<k) ∈ Ti)[u]” }·

So the “really easy” winning positions can be thought of as the places where Eloise
knows how to win R while also staying within Ti. Now the inductive step is to
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look at places where Eloise knows how to win R while staying within the winning
positions for easier games. That is, ifW ξ is defined for ξ < ζ, let W<ζ =

⋃
ξ<ζ W

ξ,
and define the game

Hζ
i (α) = R(α) ∧ ∀k. α(<k) ∈ W<ζ ∪ Ti.

Then we define

W ζ = { u | ∃i. “Eloise wins the game Hζ
i [u]” }·

We show by induction that if u ∈ W ζ , then u is a winning position in the
original game P . So, let u ∈ W ζ . Then for some i, Eloise wins Hζ

i [u]; let Eloise
play according to her winning strategy to produce a play α. Then by definition,
R(α) ∧ ∀k. α(<k) ∈ W<ζ ∪ Ti. If play ever reached a position v = α(<k) ∈W<ζ ,
then by induction Eloise could have won P [v], so by switching to her winning
strategy there, instead of continuing with α, she can win P [u]. If not, then
R(α) ∧ ∀k. α(<k) ∈ Ti; but then α ∈ [Ti], so Q(i, α) ∧ R(α), so Eloise wins
the play α in the game P .

Now, W ζ is an increasing chain, and so (by cardinality) closes at some
W = Wκ = W<κ. We now show that if u /∈ Wκ, then Abelard wins P [u].
So, let u = a0 . . . aj /∈ Wκ. By definition, for all i, Abelard wins Hκ

i [u]. (Note:
see Rem. 9.) Let Abelard continue to play according to his winning strategy for
Hκ

0 [u], generating a play α = uaj+1 . . . First suppose that ∀k. α(<k) ∈ W<κ ∪ To;
then we must have α /∈ R, so α /∈ P , and so Abelard has won P . On the other
hand, suppose at some j0 we have u0 = α(<j0) /∈ W<κ ∪T0. Then firstly u0 /∈ T0,
and since T0 is a tree, any extension of u0 is also /∈ T0. Secondly, W<κ = Wκ, so
u0 /∈ Wκ, so Abelard wins all Hκ

i [u0]. So now let Abelard switch to his strategy
for Hκ

1 . Now repeat the argument: either Abelard plays and wins with R, or there
is a u1 /∈ W<κ ∪ T1. If the process of finding u0, u1, . . . continues for ever, then
the final play α is not an infinite branch of any Ti, and so ¬∃i. Q(i, α) and again
Abelard has won the play.

We have now shown that u ∈ W iff Eloise wins the game P [u], in other words
that W =

G

α.P (u · α). All that remains is to recast the inductive definition in
terms of

G

and mu-arithmetic:

W = µ(w,W ).∃i. G

α.(R(w · α) ∧ ∀k. ((w · α)(<k) ∈ W ∨ (w · α)(<k) ∈ Ti)).

Now, Ti is a Π0
1 set, and therefore ∀k. . . . is also Π0

1; R is Π∂
n−1, and so the

body of the game quantified expression is also Π∂
n−1. Therefore by the induction

hypothesis and duality,

G

α. . . . is equal to some Πµ
n expression φ, and so W is

indeed Σµ
n+1; Q.E.D. �

Remark 9. At the point referring to this remark, we seem to be assuming the
determinacy of Hκ

i . At first sight, this seems odd, since the set Wκ occurring
in the definition is rather complex; however, the determinacy theorems involve
the boldface classes, not the lightface, and any subset of the integers is ∆0

1, so the
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determinacy theorems apply. In fact, as previously mentioned, this proof is mostly
Wolfe’s, and was devised to show determinacy. This works because at the end we
have constructed a set W such that Eloise wins P iff 〈〉 ∈W , and Abelard wins P
iff 〈〉 /∈ W . To show determinacy, we use Σ0

2 rather than Σ0
2; the only difference

this makes is that Q is Π0
1 instead of Π0

1, so the trees Ti are not necessarily Π0
1.

The argument goes through to produce the set W ; thus we have an inductive proof
of the determinacy of Σ∂

n games, and then we look at the lightface version in order
to obtain the complexity results we really want.

It is worth mentioning, as already noted in [6], that the use of fixpoint notation
makes Wolfe’s proof itself rather more transparent. The determinacy of (boldface)
∇0

2 games was studied by Büchi [4] in the context of monadic second-order logic;
again the use of fixpoint notation allows a transparent presentation, since the
formulation of Theorem 8 works also in the boldface case.

As was mentioned above, we could as well use the Rabin style hierarchy as the
difference hierarchy; indeed, Σ∂

2n is equal to the Rabin class
∨

1≤i≤n(Σ0
2∧Π0

2), and
the odd levels of the difference hierarchy correspond to Rabin conditions with one
disjunct being simply Σ0

2.
Since the above proof is also defining a winning strategy, it follows from

Lubarsky’s characterization that:

Corollary 10. A Σ∂
n game has a winning strategy in the ω+(n+1)’th level of

Gödel’s L, where ω+n is the first n-reflecting admissible [9] after ω.

A result that is already known, but which is much more easily seen from this
approach, is:

Corollary 11. The fixpoint definable sets of integers are strictly contained in ∆1
2.

Proof. Because the game quantifier is self-dual for reasonable point classes (Lem. 2)
and because if U(i, α, x) ⊆ ω × ωω × X is universal for Γ on ωω × X then

G

α.U(i, α, x) ⊆ ω × X is universal for

G

Γ on X, the game quantifier preserves
the strictness of reasonable hierarchies. In particular, it preserves the arithmetic
and hyperarithmetic hierarchies. By the main theorem, the fixpoint definable sets
are contained in

G∇0
2; but ∆1

2 contains

G

∆1
1, a much larger set. �

The fact that fixpoint definable sets are contained in ∆1
2 follows from the clas-

sical closure of ∆1
2 under inductive definitions; the strictness of the containment

is already established by classical ([8], V.5) results to the effect that ∆1
2 cannot

be approximated “from below”, and in some sense more strongly by Lubarsky’s
analysis, as the ordinals ω+n are all less (and in some sense much less) than the
first non-∆1

2 ordinal. However, the game characterization is technically far sim-
pler, and gives a more transparent meaning to “much less”: ∇0

2 is “much smaller”
than ∆1

1 in a well understood sense.
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5. Reprise

The characterization we have established here is interesting in both directions.
The fact that

G

Σ∂
n is characterized by a natural and useful pointclass extends a

little the point at which games become inherently difficult. Perhaps the other
direction is more interesting: fixpoint alternation is notoriously incomprehensible,
so characterizing it in terms of a simple hierarchy of games is helpful–and arguably
more useful than the admissible-recursion-theoretic characterization. It also rein-
forces a slightly different view on the traditional world of automata with Rabin and
parity conditions: “infinitely often” is a fundamental concept in temporal logics,
but really it is a fundamental concept because it is Π0

2. Indeed, within the frame-
work of recursion theory, any Π0

2 statement about α is of the form “infinitely often
something happens at α(i)”, where in general “something” includes statements
about the previous and future elements of α.

6. The question of transfinite extension

One can ask whether our characterization here extends at all. A possibly inter-
esting issue here is that there is something of a mis-match between the hierarchies:
the first natural stopping point for a transfinite extension of the difference hierar-
chy is ω1, whereas any transfinite fixpoint hierarchy will have no natural stopping
point before an otherwise unknown and extremely large ordinal.

Attempting to analyse the possible extension into the transfinite of Theorem 8
leads quickly into rather delicate recursion theory, and further investigation is
required to address the problem. In this section, we shall just outline the direction
such an investigation will take, and point out some of the difficulties.

In order to extend Theorem 8 into the transfinite, one must first formulate
it. This is itself not without difficulties; however, the difference hierarchy has a
classical extension.

6.1. The transfinite difference hierarchy

Transfinite difference hierarchies over the open sets were studied almost a cen-
tury ago by Hausdorff; in the 60s an abstract study of difference hierarchies and
“alternating chains” was undertaken by Addison, although regrettably most of the
results on transfinite hierarchies were in a planned paper that never appeared (to
my knowledge). Hinman and Burgess also used difference hierarchies to analyse
Kolmogorov’s R-sets, giving results intimately connected to our aim here. Part of
the purpose of extending Theorem 8 is to find the parts of that work that have
somewhat simpler formulations analogous to those in the theory of automata,
where transfinite hierarchies have been studied by Büchi, Landweber, Barua, Se-
livanov, and others.

There are several ways to formulate the definitions. One is: given a class S
of sets, and a sequence S0, S1, . . . of sets in S , the difference kernel ∂(S0, . . .) is
the set of x such that the least i such that x /∈ Si is odd (extending the sequence
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by an empty set if necessary). For example, ∂(X,Y, Z) = X ∧ (¬Y ∨ Z). This
extends to transfinite sequences, where limit ordinals are even. Then ∂ζ(S ) is the
class of sets representable as a difference kernel over S of length ζ. This definition
coincides at finite levels with the earlier definition, for reasonable S .

The following is the analogue of the relationship between parity (Mostowski)
acceptance conditions for automata, and Rabin chain conditions: Let S0, . . . be a
sequence. Define Rζ =

⋂
ξ≤ζ Sξ. Then ∂(S0, . . .) =

⋃
ζ(R2ζ −R2ζ+1).

Example. Let S0, S1, . . . , Sω be a sequence of length ω+1. The difference kernel
of the sequence is

( ⋃

i

(
⋂

j≤iS2j −
⋂

j≤iS2j+1

) ∨ (
⋂

i<ωSi ∧ Sω).

The following “well-known” result on the transfinite difference hierarchy over
Kleene pointclasses is the motivation for extending Theorem 8:

Fact 12. ∂<ω1(Σ
0
n) = ∆0

n+1

and in particular, Σ∂
<ω1

= ∆0
3. So if Theorem 8 extended neatly into the transfinite,

we would have a characterization of

G

∆0
3 in terms of transfinite fixpoint iteration,

as close to

G

Σ0
3 as we could hope.

6.2. Transfinite fixpoint alternation

It is well known that the arithmetical hierarchy can be extended to form the
transfinite arithmetical hierarchy, by letting Σ0

ζ comprise recursive unions of sets
each in

⋃
ξ<ζ Π0

ξ, and as a syntactic manipulation this has the advantage that the
syntax of formulae remains recursive. One could naively do the same with Lµ:
for example, to go one step beyond the finite, we allow would recursive unions
(or intersections) of fixpoint formulae: let R : ω → Lµ be a recursive enumeration
of formulae of Lµ, and say that for any recursive f : ω → ω,

∨
i<ω R(f(i)) is a

formula. An enumeration of these formulae is then given via an enumeration of
the f . If we now close under positive first-order operators and least fixpoint, we
have an apparently plausible definition of Σµ

ω, which is clearly more expressive
than Lµ.

There are standard reasons why this approach is too naive, which we describe
shortly; however, it is interesting to run with it and see another problem emerge.

Consider such a formula τ ∈ µ(x,X).
∧

i φi, where, say, each φi = R(f(i)) is Πµ
i ,

of the form τ0
i ∈ νZ0

i .τ
1
i ∈ µZ1

i . . . . The satisfaction game for this formula has the
usual rules, with the extension that at the infinite conjunction, Abelard chooses
some i and play moves to a position with φi as the formula. By extension of the
usual arguments, the formula is true if Eloise can win the game where on every play
the outermost (least j) variable seen infinitely often is a maximal fixpoint variable;
that is, is a Zj0

i for some even j0. In particular, X must be seen finitely often,
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and therefore play must get stuck in one conjunct, and thus there is some partic-
ular i0 and outermost even j0 for which Zj0

i0
appears infinitely often. Hence the

winning condition boils down to “X fin. often” ∧ “least j seen inf. often is even”.
Considering X as Z−1, this is an infinite parity condition.

Now take Sj+1 to be the set of game plays in which Zj occurs finitely often,
and S0 to be plays where X occurs finitely often; the infinite parity condition is
the difference kernel of the ω-sequence S0, S1, . . .

This is somewhat disturbing, because now consider a formula

σ ∈ ν(y, Y ).τ ∈ µ(x,X).
∧

i

φi,

with φi as before, which is in what we would naturally call Πµ
ω+1. The satisfaction

game for this formula is just as before, except that now Y may occur infinitely
often on a winning run; taking S−1 to be plays where Y occurs finitely often, this
is also the difference kernel of an ω-sequence S−1, S0, . . . Hence there is no obvious
difference between the complexity of the winning conditions for the satisfaction
games for these two formulae.

The standard reason why the above candidate for transfinite fixpoint alternation
is not natural is the following: the restriction to recursive unions of Lµ formulae
is unreasonable, because already in Lµ we can define far more complex sets, and
(unlike the case of the hyperarithmetical hierarchy) we can define well-orderings
much longer than ω1. Thus the more natural extension to level ω would be to
allow the function f to be Lµ definable rather than just recursive. This now has a
dramatic effect on the satisfaction game, for at the infinite con-/disjunction, play
moves to a new position which is not just a recursive function of the previous
position, but any Lµ definable function of the previous position. Hence the rules
of the game are no longer just recursive, and the winning conditions (into which
the rules are incorporated) are prima facie themselves now arbitrary Lµ, so the
strategies are prima facie vastly more complex.

This rather curious situation invites continued investigation, which will depend
heavily on recursion theory from the 1970s and 1980s. In [8], Hinman studied the
finite levels of an effective version of the so-called hierarchy of R-sets (R being
Kolmogorov’s operator). He showed, indeed, that each level is equal to the sets
inductively definable over the previous level, which implies that the levels coincide
with the levels of the fixpoint hierarchy, and therefore that the associated ordinals
(which he called νn) are the same as Lubarsky’s n-reflecting admissibles. On the
other hand, Burgess [5] studied the classical R-hierarchy, and establishes a relation
between the difference hierarchy over Σ0

2 and the classical hierarchy. However, I
am not aware of such results on the transfinite part of the effective R-hierarchy. It
is also possible that finer hierarchies such as the Wadge hierarchy and Selivanov’s
fine hierarchies [12] play a part in the solution, but this is not yet clear.
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