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SOLVING ALGEBRAIC EQUATIONS USING COALGEBRA

FEDERICO DE MARCHI', NEIL GHANI AND CHRISTOPH LUTH?

Abstract. Algebraic systems of equations define functions using re-
cursion where parameter passing is permitted. This generalizes the
notion of a rational system of equations where parameter passing is
prohibited. It has been known for some time that algebraic systems in
Greibach Normal Form have unique solutions. This paper presents a
categorical approach to algebraic systems of equations which general-
izes the traditional approach in two ways i) we define algebraic equa-
tions for locally finitely presentable categories rather than just Set; and
ii) we define algebraic equations to allow right-hand sides which need
not consist of finite terms. We show these generalized algebraic sys-
tems of equations have unique solutions by replacing the traditional
metric-theoretic arguments with coalgebraic arguments.

Mathematics Subject Classification. 18C10, 18C35, 18C50.

1. INTRODUCTION

Recursion is a fundamental concept in the theory of computation, e.g. in func-
tional programming languages like Haskell etc., programs are written as recursive
equations. In this paper, we will consider recursion in an algebraic setting. More
precisely, given a signature, how can we define unknowns by a system of recursive
equations, what kind of solution will these recursive equations have, and under
what conditions?
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If ¥ is a signature, a Y-algebraic system of equations is of the form

d1(x1, .y Tny) =t1(x1, ..., Tny)
G2(T1y .oy Tpy) = t2(T1, .oy Tny) (1)
G (X1, Tn,,) = tm(T1, ..oy Zn,,)
where the unknowns ¢1, ..., ¢, form a signature 2 and the terms t¢1,...,t,, are

finite terms built from the signature ¥ U Q over a countable set of variables X to
which all the z;; belong. Note that nested recursion is permitted, that is to say,
parameters to a recursive call are allowed to contain another recursive call, as in
the equation ¢ (z) = Az, v(B(y(x)))).

The name algebraic system is taken from Courcelle [8]. These equations are
also called recursive program schemes by Guessarian [12] and are also referred
to as second order substitution since they equate term constructors with terms
rather than simply variables with terms. In these works, it is proved that algebraic
systems in Greibach Normal Form, i.e. where the right-hand sides of the equations
all start with a Y-constructor, have unique solutions in the complete metric space
of infinite trees over X. The proof uses a least fixed point construction on this
space with the distance between two trees being 27" where n is the lowest depth
of a difference between the trees. An algebraic system defines a map, sending an
m-tuple of terms to the m-tuple consisting of the right-hand sides of the equations
with the recursive calls replaced by the original m-tuple. The Greibach Normal
Form condition ensures the contractivity of the map and hence the existence of its
fixed point.

As an example, consider a signature ¥ consisting of a binary symbol A and a
unary symbol B, and let €2 contain only a unary symbol ¢. Then the -algebraic
equation ¢(z) = A(z, #(Bzr)) has as solution the infinite 3-term ¢ given below

BBz

To see this, start with A(x, ¢(Bz)) and replace ¢(x) with x to obtain A(z, B(x)).
Next take the term A(x, ¢(Bz)) and replace ¢(z) with A(z, B(z)) thus obtaining
the term A(z,A(B(x),B(Bx))). By iterating the construction, we get a Cauchy
sequence, whose limit is ¢f. This process — repeatedly substituting a function
symbol ¢(z) by the right-hand side of its defining equation — is precisely the oper-
ational semantics of a functional programming language. Viewed denotationally,
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this is nothing else but approximation to a fixpoint. The solutions of algebraic
systems of equations are called algebraic terms. Rational terms [7,8] are intu-
itively those algebraic terms which arise as solutions of systems over a signature
Q consisting of only constant symbols or, equivalently, as solutions to recursive
systems where no parameter passing occurs, e.g. ¥ = A(x, ).

Recently Moss [20], Adamek et al. [2,18] and ourselves [10] have been looking at
categorical, specifically coalgebraic, approaches to recursion with the aim of gen-
eralizing standard concepts such as rational and algebraic terms and to a wider
setting. Replacing the concrete representation of the topology on infinite trees
given by the tree metric with the more abstract universal property of final coal-
gebras has considerably simplified reasoning and, unlike metric-based arguments,
generalized smoothly to other categories.

For some time is has been known that infinite terms over a specific set of
variables form a final coalgebra in much the same way that finite terms form an
initial algebra. In order to define a substitution for infinite terms, [2,11,20] showed
that if F'is an endofunctor then the map sending each object X to the (underlying
object of the) final X + F-coalgebra defines a monad T%. Adamek et al. [1] further
characterized this monad abstractly as the free completely iterative monad over F'.
Moving on from infinite terms, solution theorems for rational systems of equations
have been proven using coalgebra [10,18]. The natural setting for these results is
that of a finitary endofunctor on a locally finitely presentable (Ifp) category. The
rational monad over an endofunctor is characterized as the free iterative monad
in [5] thereby generalizing [7].

Given the success of the coalgebraic approach to rational terms, it is natural
to ask whether coalgebra can similarly be used to enhance our understanding
of algebraic terms. This paper grew out of an extended abstract presented at
FICS 2002 [9] which showed that this was indeed possible. Concretely, this paper
generalises algebraic systems of equations in two orthogonal ways:

e The definition of signatures, terms and substitution above is highly cor-
related to working over the category Set. We show how algebraic systems
of equations can be defined for lfp categories;

e Y-algebraic systems of equations can be described as recursion over the
initial Y-algebra since the right hand side of each equation belongs to
an initial 3 U Q-algebra. We generalize algebraic terms to recursion over
other algebras such as infinite terms or rational terms using what we call
coalgebraic monads.

This paper further proves a unique solution theorem covering both of these ex-
tensions and the classic solution theorems of Courcelle and Guessarian arise as
a special case by taking the category to be Set and using the free monad over a
signature to define the right hand sides of the equations. The generalization to Ifp
categories is motivated by our desire to study rational and other forms of infinite
rewriting [16] while the generalization to coalgebraic monads is motivated by lazy
functional languages where recursive definitions over infinite data structures are
permitted.
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Although several groups, including ourselves, have tried to reduce algebraic
systems of equations to rational equations in a functor category this has so far
proved impossible. Thus our results do not follow from the solution theorems
for rational equations cited above. Moss also has an unpublished approach [19] to
solving algebraic equations using coalgebra although his approach is more concrete,
limited to the category Set and only deals with equations whose right hand sides
are finite terms. At a technical level, our use of coproducts of monads gives us
an elegant construction of the solution of an algebraic system. Since the first
publication of this work, Milius [17] has pointed out to us in an unpublished
manuscript that by working in a certain comma category many of our constructions
can be explained in more abstract terms. We shall summarize his comments in
the running text. We are grateful to both Moss and Milius for sharing their ideas
with us.

The rest of this paper will be structured as follows: in Section 2, we will gener-
alize algebraic equations to locally finitely presentable categories. In Section 3, we
introduce the notion of a coalgebraic monad which allows algebraic equations to
have right hand sides which are not necessarily finite terms. The main technical
part of the paper is Section 4, in which we show that every such generalized alge-
braic system has a unique solution. We conclude with a summary and our future
research plans in this area.

2. ALGEBRAIC EQUATIONS IN LFP CATEGORIES

In this section, we take the traditional definition of algebraic equations and
transform it into an equivalent one in terms of monads on Set. We then abstract
this monadic version to get a generalized form of algebraic equation in terms of
monads over a locally finitely presentable category.

First, in order to treat Courcelle’s algebraic equations categorically, we need
categorical analogues of signatures, finite terms, infinite terms. A signature can
be given as a map 3:N —— Set, mapping each number to the set of operations
of that arity. The term algebra for the signature ¥ may then be constructed
as follows. Firstly, from ¥ one constructs an associated functor Fy:Set —— Set
which can be thought of as mapping a set of variables X to the set Fx X of X-terms
of depth 1

Fe(X)= [T x™ (3)

fes(n)

Secondly, note that the functor X + Fx (where X here refers to the constantly
valued X functor) gives us the set of terms of depth 1 or 0. Thus, by iterating this
process we obtain the set of all terms built over a set X of variables. Formally, the
set of all finite terms built over a set X of variables from a signature X is the initial
X + Fy-algebra. In addition, the mapping sending X to (the underlying object of)
the initial X + Fx-algebra defines the free monad Ts, over Fx. A similar argument
gives an abstract characterization of the set of finite and infinite terms: if instead
of taking the initial X + Fx-algebra, we take the final coalgebra of X + Fx,, we get
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the set T¥(X) of all finite and infinite terms. The mapping of X to T¥(X) again
forms a monad meaning we have an abstract way of talking about variables and
substitution.

Now recall from the introduction that we can think of an algebraic system
as a morphism mapping the unknowns to their matching terms in the equation.
Thinking of N as a discrete category, signatures become functors, and morphisms
between them natural transformations. Then, a ¥-algebraic system of equations
is a natural transformation from a signature {2 (regarded as a functor) to Txyq.
A term being in Greibach Normal Form means that its root is a symbol from ¥,
that is, the term is actually an element of FxTx1qX. Since our real interest lies
in systems in Greibach Normal Form (and the generalization of this condition
to lfp categories), we henceforth only consider such systems and just call them
Y-algebraic systems. Thus an algebraic equation is a natural transformation

Q —_— (1 + FZTXH-Q) o J (4)

where Q is some signature. Actually, we have allowed the mild generalization in
that the right-hand side of an equation may be a variable (the 14 part). This
actually makes the mathematics easier and hence the inclusion. The inclusion
J:N —— Set simply restricts the domain of the functor 1 + FxTx o to agree
with that of Q.

We have reformulated the definition of a 3-algebraic equation in this way since
it now becomes possible to abstract from the category Set to any locally finitely
presentable category C [4] while keeping the traditional algebraic equations as
special cases. We follow [14] in making the following definitions:

Definition 2.1. Let C be an Ifp category. A signature for C is a functor
Y:N —— C where N is the discrete subcategory formed by a set of repre-
sentatives, up to isomorphism, of the finitely presentable objects of C. The end-
ofunctor Fy is the left Kan extension of ¥ along the inclusion J: N —— C, i.c.
FE = LanJE.

We will be interested in two monads that may be constructed from a functor

Lemma 2.2. Let F:C —— C be a functor. Then

— For each object X, assume the initial X + F-algebra exists (where X is
regarded as the constantly valued X -functor). Then the map sending each
object X to the underlying object of the initial X + F-algebra defines a
monad Tr.

— For each object X, assume the final X 4+ F'-coalgebra exists. Then the map
sending each object X to the underlying object of the final X 4+ F-coalgebra
defines a monad Tg.

Proof. The first half of the lemma is folklore [13]. For the second, see [20]. O

As mentioned above T is the free monad on F' and 7% is the free completely
iterative monad on F' [1]. If the functor F arises from a signature via Definition 2.1,
we denote the associated monads 7%, and T¥. Since F¥ is always finitary, Tx always
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exists while [3,6] provides mild conditions on an lfp category which guarantee the
existence of T%. In the rest of this paper we shall assume 7% does indeed exist.

Equation (4) can now be taken as the definition of a Y-algebraic system in any
1fp category and will allow us to develop a theory of algebraic (and rational) terms
within such categories. Applications are many-sorted theories where one uses Set™,
term rewriting where one uses Pre, categories with structure where one uses Cat,
and others [15,22].

This achieves our first goal of defining algebraic equations over categories other
than Set. Now, we would like to allow the right hand sides of equations to come
from other terms algebras. The key technical idea is to replace the natural trans-
formation of (4) with an equivalent monad morphism. That T% is free means
that if S is a monad on the same category, there is a bijection between monad
morphisms Ty, — S and signature morphisms ¥ —— S o J [14]. Under this
adjunction, a Y-algebraic system is given by a signature {2 and a monad morphism

To — 1+ FxTxiq. (5)

That 1 + FxTx4q is a monad follows from Lemma 3.1 below. Since coproducts
are preserved by free constructions (i.e. left adjoints), Ts1q = Tx @ T where &
is the coproduct in the category of finitary monads. From [14], the coproduct of
two finitary monads on an lfp category always exists and we will denote it & to
distinguish it from the coproduct in the functor category which we denote by the
usual +. It turns out that T can be generalized to any monad E whatsoever,
yielding a partial generalization of a Y-algebraic system as a monad morphism

E—>1+F(Ts®E). (6)

We cannot, however, generalize Ty, arbitrarily since the solution of a X-algebraic
equation must be in the set of finite and infinite ¥ terms. The notion of a coalge-
braic monad we introduced recently [10,16] provides the right generalization.

3. COALGEBRAIC MONADS

Given an endofunctor F' on a category C, we can think of an F-coalgebraic
monad on C as a functor building, for each object X, some class of F-terms over
variables in X. The canonical examples are the set of finite terms and the set of
finite and infinite terms. However, in order to formulate a precise definition, we
need the following lemma, whose proof can be found in [10, 16].

Lemma 3.1. Let (T,n,un) be a monad on C and F an endofunctor on C. Let
7: F —— T be a natural transformation, and let « = p.7p. Definen = inl: 1 ——
1+ FT, where 1 is the identity endofunctor, and

T4 FT 4 FT(1 + FT) X o pp oy pp2 BHETEUL o
I

Then, (1+FT,7, ) is a monad, and 8 = [n,a): 1+ FT — T is a monad morphism.
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A coalgebraic monad is precisely a monad for which the morphism (§ described
above is an isomorphism.

Definition 3.2 (Coalgebraic Monad). Let F' be an endofunctor on a category C.
An F-coalgebraic monad on C is a 4-tuple (T, n, u, 7) such that (T, n, 1) is a monad
on C and 7 is a natural transformation between F' and T for which the monad
morphism [, u.7T]: 14+ FT —— T is an isomorphism.

A morphism between two F-coalgebraic monads (T,n, u,7) and (T", 0/, i/, 7")
is a monad morphism ¢ between T and T’ such that ¢T = 7'.

We now give some canonical examples of coalgebraic monads

Example 3.3. If X: N —— C is a signature on an Ifp category C, then the free
monad T on Fy; is Fx-coalgebraic. Similarly, the monad T¥ is also Fx-coalgebraic.
These results hold since 7% and 7% are respectively the initial and final coalgebras
of the functor 1+ Fx, 0 —: [C,C] —— [C, C] and such structure maps are always
isomorphisms. This is a variable free formulation of Lemma 2.2 — see [1].

Actually, more is true. For any finitary endofunctor F' on a locally finitary pre-
sentable category, the free monad T and the free completely iterative monad T'%
are the initial and the final F-coalgebraic monads, respectively [10,16]. Given any
other F-coalgebraic monad H, we will write !fy: H —— T¥ for the unique mediat-
ing morphism. Another example of a coalgebraic monad is the monad of rational
terms. Again see [10]. Finally, we conjecture that the collection of algebraic terms
forms a coalgebraic monad.

We are now in a position to reach a suitably abstract definition of algebraic
systems, by replacing Tx. with an F-coalgebraic monad H in the map (6).

Definition 3.4 (Algebraic System). Let H be an F-coalgebraic monad over an
arbitrary category C. An algebraic system over H consists of a monad E and a
monad morphism e: ¥ —— 14+ F(H @ E). A solution for e is a monad morphism
el: E. —— T¥% making the following commute:

t
E c > T
e = (7)
1+ F(H+E) e 1+ FTYp

In the more concrete language of sets and signatures, a solution is a mapping of the
unknowns to finite or infinite terms, such that for every unknown the value of this
map is the same as replacing the unknowns in the right-hand side of the equation —
the latter corresponds to going around the left and lower side of diagram (7).

Notice that we achieved a very high level of generality which at the same time
is guaranteed to cover many examples since we can instantiate Definition 3.4 with,
for example, the free monad over a signature on an lfp category. Thus instead of
being able to define recursive functions using algebraic systems, our work can be
thought of as allowing the definition of recursive morphisms.
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4. A SOLUTION THEOREM

We first need to introduce a couple of technical lemmas, whose purpose is to
ensure that we can perform the operations we will need in the proof of the solution
theorem. We consistently use the notations of Lemma 3.1.

Lemma 4.1. Let (H,n,u) and (K,n', ') be two monads, and let 7: F —— H
and 7': F —— K be two natural transformations. Let : H —— K be a monad
morphism such that .7 = 7'. Then v induces a monad morphism 1+ F1) between
the monads (1+FH,5,1) and (1+FK,n/, /). Moreover, v is a (14 Fo—)-algebra
morphism.

Proof. Tt is trivial to observe that ¢.7j = 1/, because ¥.p = n’. The fact that
multiplication is preserved is proven by the following diagram

(LHF)?
\+FH+FH(1+FH) 1+FK+FK(1+FK)
WFH+FH(14+p7H) HWFEKAFK (144 75)
Fy+F
V4 FH+ FH1+H) 22000 L b PR K)
1+FH+1iH[n,H] 1+FK+11K[77’,K]
1+FH+FH? . 1+FK+FK?
HHEY+-Fap
H{FH,Fu HFK,Fpu']
1 +FH T 1+FK

which commutes because, by assumption, 7 is a monad morphism and ¥.7 = 7'.
This shows that 1 + F4 is a monad morphism.
To show that v is an algebra morphism amounts to show that

(', 1 7 ).(L+ F1p) = .0, p7a),

which splits along its two components as n' = ¢.n and p' .7 .F¢p = ¥.p.7y. The
first holds because 9 is a monad morphism, whereas the second holds again by the
properties of ):

W By =y Kry = p Kby = WAty =Ty (]

Milius has pointed out to us [17] that Lemmas 3.1 and 4.1 can be expressed more
abstractly as follows. Given a functor F: C —— C, form the comma category
F/Mon(C) whose object consists of monads T" equipped with natural transforma-
tions 7: F —— T and whose maps : (1,T) — (7/,T") are monad morphisms
: T —— T’ such that 1.7 = 7/. Then Lemmas 3.1 and 4.1 amount to defining
a copointed endofunctor F: F/Mon(C) — F/Mon(C).
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Furthermore, Milius points out that our next lemma states that T}, which is
the final (1 + F o —)-coalgebra, is also the final F-coalgebra.

Lemma 4.2. Let T" X be the final X +F -coalgebra (therefore TV is the final (1+Fo
—)-coalgebra, and it is a monad [2]). Let H be a monad and 7: F —— H a natural
transformation. Suppose also that there is a monad morphism v: H — 1+ FH
such that yv.7 =inr.Fn: F —— 14+ FH, making H a (1+ F o —)-coalgebra. Then,
the unique morphism o to the final such coalgebra TV is also a monad morphism.

H T

Proof.

Let us call 7 the final coalgebra structure from T to 1+ FT", which, because of
Lambek’s Lemma, is an isomorphism, with inverse :~!. Using the same notation
as in Lemma 3.1, we can depict the situation in the following diagram

where the two leftmost triangles commute, as well as the square involving . Let
us write n” and p” for the unit and multiplication of the monad T". Then, all we
need to prove is that on =" and op = o?p¥. The first equality follows because

on = ofinl = i Yiofinl =i (1 4+ Fo)yn =i (14 Fo)inl =i tinl = n".

A bit more work is needed in order to prove that o respects multiplication. In
order to achieve this, we will show that both o and o?u” are coalgebra morphism
from the same (1 + F' o —)-coalgebra into T; finality of T will then prove them
equal. Here is the diagram relative to op.
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H? K H UK

14+ FH + FH(1 + FH) Y i (10)

1+FH|+FHB

1+ FH + FH?

1+ [FHn,FH? 1+ FH,F )

2 v

1+Fpu

Here the commutativity of the top-left cell is just the fact that v is a monad
morphism.
The diagram for o?u” is slightly more complicated.

H2 Ho - HTY orv _ Tl/2 w . TV

| | |
1 . ;

H 4+ FH? WP v pppy  GFFD7y e w2

v+ FH? i+Fopy i+ FTY?2 i (11)
4+F oF o2
1+ FH+FH? 22250 14 FTV 4+ FTY? 1+ FTY+FT"?
1HFHn, FH2] 1HFHnY ,FH o) 1+[FTYY,FTY?] 14+[Fnpv ,FTY?)

1+FT"

1+ FH? — 1+ FHT" —

2
1+FHo v L+ FT

+Fop 14+FpY

Unfortunately, the two coalgebras are not the same, in that in the second case,
after applying vy, one applies the identity on FH?2, whereas in the first case
one applies FH((.7). This requires one more observation to close the proof. In
diagram (11) the identity on F H? in the middle arrow of the left side is eventually
followed by the map F'Ho. Now, because of the universal property of o, if we can
show that 8.7 is a (1 + F o —)-coalgebra morphism, then we have that necessarily
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o = 0.0y, because they are both the (unique) coalgebra homomorphism from H
to TV, therefore we can safely substitute the coalgebra structure in (11) by the
one in (10). In other words, we want to show that

v.By =1+ FB).(14 Fy).y

which follows by commutativity of the following diagram, when precomposing the
two outermost paths with ~.

1+F~y

1+FH - 1+ F(1+FH)
\1 [7inl, mrFV](lW/
g 1+H? —— (1+FH)? 147
/ o \
H - 1+FH

Here the left triangle is just the definition of §; the bottom square commutes
because « is a monad morphism; the right triangle commutes because of how 1 is
defined, and, finally, the top square commutes because

(int.Fn)iirgl+ Fy= (vTisra . Fy =yyru Hy.tg = v2.7H. O

We can now state the solution theorem and give its proof.

Theorem 4.3 (Solution Theorem). If e: E —— 1+ F(H @& E) is an algebraic
system over a coalgebraic monad (H,n, u,T), then e has a unique solution.

Proof. By composing 7 with the injection of H into H & E, one gets a natural
transformation 7': F —— H @ FE, which by Lemma 3.1 induces a monad structure
on 1+ F(H @ E). Moreover, the equality 7/ = inl.7 is satisfied by construction
of 7/, therefore, because of Lemma 4.1, there is also a monad morphism 1 +
Finl:1+ FH — 1+ F(H @ FE), which, being H coalgebraic, leads to a monad
morphism §: H — 1+ F(H®FE) (just precompose 1+ Flinl with the isomorphism
between H and 1+ F H). Copairing ¢ with the equation morphism e gives a monad
morphism [§,e]: HOE — 1+ F(H®FE), which endows H® F with a (14 Fo—)-
coalgebra structure. We therefore have a coalgebra morphism to the final coalgebra
B:H®FE — T" and we want to use Lemma 4.2 to show that it is a monad
morphism. Precomposition with the second injection into the coproduct will then
be our candidate solution morphism ef: E —— T". In order to apply the lemma
(where the H is now replaced by H & E), we have to show that [y, e].7/ = inr.F'yy/,
where 7’ is the unit of H & E. But, since the coproduct is in the category of
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monads, one has that the left injection is a monad morphism, hence ' = inl.7.
From this and the fact that H is coalgebraic, we get that

[v,e].7" = [y, e].inl.T = (1 + Finl).in’'.Fn = inr.Finl.Fn = inr.Fy/,

where inr’ is the injection of FH in 1 4+ FH, inl maps H to H @ E, and inr is the
inclusion of F(H® FE)in 1+ F(H @ E).

All we have to do now is to show that diagram (7) commutes, but this triv-
ially follows by looking at the second component of the commuting diagram (8),
where H is now replaced by H & E.

Now suppose d: E —— T" is another solution of the algebraic system. By
copairing it with the mediating morphism !, one gets a (1 + F' o —)-coalgebra
morphism from H & E to T", which is therefore the same morphism as v. By
precomposing with the right injection, now, one gets that d = ef, thus showing
the uniqueness of the solution morphism. O

5. CONCLUSION AND FURTHER WORK

In this paper, we have introduced a coalgebraic treatment of algebraic equations
which generalized the standard treatment of algebraic systems in two directions.
Firstly, we defined algebraic systems for arbitrary Ifp categories. Secondly, we
allowed the right hand sides of equations to be not just be a finite term, but to
be given by a coalgebraic monad. This includes having infinite terms or rational
terms as the right hand side of an equation. In the main section of the paper, we
have shown that every such generalized system of algebraic equations has a unique
solution.

An open question at this point is whether algebraic terms form a monad and
whether this monad has a universal property, thereby extending the analogous
results for rational terms [5]. Since we can encode algebraic terms as rational terms
with explicit substitution operators which can be given by first-order operations
and equations (which can be given by monad [21]), we conjecture it holds for
algebraic terms as well.

Infinite rewriting aims to identify a well behaved class of infinite sequences of
rewrites. On the one hand, we want to accept as many infinite rewrite sequences as
possible so as to avoid being over-prescriptive. On the other hand, over-generality
leads to a bad meta-theory. Rational rewriting considers those infinite terms which
are rational terms and allows rewriting on them by allowing recursively defined
rewrites. For example, let C' be a binary symbol, wI be the solution of ¥ =
C(A, 1) and wg be the solution of 1 = C(B,2). Then if A — B is a
finite rewrite, the equation ' = C(r, ') would have as solution the infinite rewrite
1/)1 — 1/); which performs an r rewrite on the left hand branch under each node
labelled C. Categorically, defining not just infinite terms but also infinite rewrites
between them means a shift from the category Set to the category Pre in the vein
of [15]. However, this rational rewriting is over-prescriptive in that the canonical
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motivation for infinite rewriting is the implementation of lazy functional languages
where recursion involving parameter passing is fundamental. Thus there are strong
motivations for generalizing rational rewriting to algebraic rewriting by defining
infinite rewrites recursively using parameter passing.

More speculatively, we are interested in a coalgebraic treatment of recursively
defined geometric objects such as Sierpinskis triangle, Mandelbrot sets and other
fractal like objects. While the recursive nature of these objects is clear, it is
currently still unclear to us as to exactly which category one should be working
in. Once this is understood, this would be a very exciting application.
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