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Abstract. It is well known that, given an endofunctor H on a cate-
gory C, the initial (A + H−)-algebras (if existing), i.e., the algebras of
(wellfounded) H-terms over different variable supplies A, give rise to
a monad with substitution as the extension operation (the free monad
induced by the functor H). Moss [17] and Aczel, Adámek, Milius and
Velebil [2] have shown that a similar monad, which even enjoys the
additional special property of having iterations for all guarded substi-
tution rules (complete iterativeness), arises from the inverses of the final
(A+H−)-coalgebras (if existing), i.e., the algebras of non-wellfounded
H-terms. We show that, upon an appropriate generalization of the
notion of substitution, the same can more generally be said about
the initial T ′(A,−)-algebras resp. the inverses of the final T ′(A,−)-
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Introduction

It is well known that, given an endofunctor H on a category C, the initial
(A +H−)-algebras (if existing), i.e., the algebras of (wellfounded) H-terms over
different variable supplies A, give rise to a monad with substitution as the exten-
sion operation (the free monad generated by H). This is the starting point in the
category-theoretic approach to universal algebra, cf. Manes [14]. In contrast, the
comparably fundamental fact that a similar monad, which even enjoys the addi-
tional property of having iterations for all guarded substitution rules (complete
iterativeness), arises from the inverses of the final (A+H−)-coalgebras (if existing),
i.e., the algebras of non-wellfounded H-terms over different A, was only recently
pointed out by Moss [17] and Aczel, Adámek, Milius and Velebil [1, 2] (their sub-
stitution and solution theorems), although the “down-to-earth” universal-algebra
case, where C = Set and H is a polynomial endofunctor, was settled in the 1970s
by Elgot and colleagues [9].

In this paper, we show that, upon an appropriate generalization of the no-
tion of substitution, the same statements can more generally be made about
the initial T ′(A,−)-algebras (if existing) resp. the inverses of the final T ′(A,−)-
coalgebras (if existing) for any endobifunctor T ′ on any category C such that
the functors T ′(−, X) uniformly carry a monad structure. The generalization
gives simpler proofs, as all inessential detail pertaining solely to the special case
T ′(A,X) = A + HX is removed from the main proofs into an auxiliary proof
that the functors T ′(−, X) uniformly carry a monad structure. The generalization
also gives new examples of structures carrying a substitution-like operation. The
examples beyond wellfounded and non-wellfounded terms in a given signature in-
clude the inductive and coinductive versions of Krstić, Launchbury and Pavlović’
hyperfunction spaces [12] and finitely or possibly infinitely branching wellfounded
or non-wellfounded decorated trees. For the latter, which may be seen as Böhm
tree notations of purely applicative terms (lambda-terms without lambdas), the
notion of generalized substitution coincides with the substitution of Böhm trees.
This suggests that the generalization is “right”.

Some results of the present paper were preliminarily reported in the author’s
conference paper [19].

The paper is organized as follows. In Section 1, we recall some basics about
monads, initial algebras and final coalgebras, mostly to fix the terminology and
notation for the rest of the paper and to introduce the examples of monads and the
disciplined recursion and corecursion schemes used later in the paper. Section 2
contains a recapitulation of the known facts that both the algebras of terms and
those of non-wellfounded terms in a given signature are substitution-carrying and
that the latter are moreover completely iterative. In the proof of the substitution
theorem, we take advantage of the validity of primitive corecursion as a morphism
definition principle, which significantly modularizes the argument. In Section 3,
we proceed to generalized substitution and generalized versions of the results. We
also discuss examples of families of algebras carrying generalized substitution. The
related work is reviewed in Section 4. In Section 5, we conclude.
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1. Monads, initial algebras, final coalgebras

We begin by recalling the concept of monad. We choose to employ the extension
form (Kleisli triples), as completely iterative monads needed later on will be most
intuitively definable from this basis.

Definition 1.1. A monad on a category C is a triple (T, η,−?) formed of a map-
ping T : |C| → |C|, a |C|-indexed family η of C-morphisms ηA : A → TA (unit),
and an operation −? taking every C-morphism f : A → TB to a C-morphism
f? : TA→ TB (extension operation) satisfying

(i) f? ◦ ηA = f for f : A→ TB;
(ii) ηA

? = idTA;
(iii) (g? ◦ f)? = g? ◦ f? for f : A→ TB, g : B → TC.

The following examples standard in programming language semantics will be useful
for us.

Example 1.2. Given an object E of a category C with finite coproducts. Then
(T, η,−?) defined by

TA = A+ E
ηA = inlA,E

f? = [ f, inrB,E ] for f : A→ TB

is a monad. In semantics, it is known as the exception monad. One can also think
of it as the term algebras monad for a signature with E many 0-ary operators
(constants) and no operators of higher arities.

Example 1.3. Given an object E of a cartesian closed category C. Then (T, η,−?)
defined by

TA = E ⇒ A
ηA = curry (fstA,E)

f? = curry (evE,B ◦ 〈 f ◦ evE,A, sndTA,E 〉) for f : A→ TB

is a monad, the storage reader monad.

Example 1.4. Given a monoid (E, e,m) in a category C with finite products.
Then (T, η,−?) defined by

TA = A× E
ηA = (idA × e) ◦ unit×A

f? = (idA ×m) ◦ assoc×B,E,E ◦ (f × idE) for f : A→ TB

is a monad that models several notions of computation (output, complexity). Con-
cretely, one could, e.g., choose (E, e,m) = (Nat, 0,+), if C has a natural numbers
object.
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A monad’s property of complete iterativeness in the sense of Aczel et al. [2]
is, for a given, but unspecified notion of guardedness of morphisms, definable as
follows.

Definition 1.5. Given a monad (T, η,−?) on a category C with finite coproducts.
If some of the morphisms A → T (A + B) have for all A, B been classified as
guarded, the monad is said to be completely iterative with respect to this notion
of guardedness, if, for any guarded morphism f : A→ T (A+B), there is a unique
morphism g : A→ TB, called its iterate and denoted f̄ , such that

g = [ g, ηB ]? ◦ f.

It is useful to note that this is equivalent to the unique existence of a morphism
h : T (A+B) → TB, denoted f̃ , such that

h = [h ◦ f, ηB ]?.

The conversions are: f̃ =
[
f̄ , ηB

]
?, f̄ = f̃ ◦ f = f̃ ◦ ηA+B ◦ inlA,B .

An example of a monad completely iterative with respect to a useful notion of
guardedness will be discussed in the next section.

Let us also recall the concepts of (initial) algebra and (final) coalgebra of an
endofunctor.

Definition 1.6. Given an endofunctor F on a category C, an F -algebra is a pair
(X,ϕ) consisting of an object X (carrier) and a morphism ϕ : FX → X (algebra
structure). An F -algebra map from (X,ϕ) to (Y, ψ) is a morphism h : X → Y
such that

FX

Fh

��

ϕ // X

h

��
FY

ψ // Y

Dually, an F -coalgebra is a pair (A,ϕ) consisting of an objectX (underlying object
or carrier) and a morphism ϕ : X → FX (coalgebra structure). An F -coalgebra
map from (X,ϕ) to (Y, ψ) is a morphism h : X → Y such that

FX

Fh

��

X
ϕoo

h

��
FY Y

ψoo

Both the F -algebras and the F -coalgebras form a category (with identity and
composition inherited from C). If C has an initial algebra for F (there can only
be one up to isomorphism), we denote it (µF, inF ). For the final F -coalgebra, we
write (νF, outF ), if it exists. In semantics, initial algebras and final coalgebras are
employed to model inductive and coinductive types, i.e., the types of wellfounded
resp. non-wellfounded recursive data structures. Two important recursive schemes
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of function definition are direct consequences from their initiality and finality: iter-
ation (structural recursion) and coiteration. Iteration says that, for any morphism
ϕ : FX → X , there exists a unique morphism h : µF → X , denoted ItF (ϕ ), such
that

F (µF )

Fh

��

inF // µF

h

��
FX

ϕ // X
Coiteration, dually, asserts that, for any morphism ϕ : X → FX , there is a unique
morphism h : X → νF , denoted CoitF (ϕ ), such that

FX

Fh

��

X
ϕoo

h

��
F (νF ) νF

outFoo

Often, however, it is practical to make use of more advanced recursion and corecur-
sion schemes. We shall take advantage of primitive corecursion, see, e.g., [20]: for
any morphism ϕ : X → F (X + νF ), there exists a unique morphism h : X → νF ,
denoted CorecF (ϕ ), such that

F (X + νF )

F [h,idνF ]

��

X
ϕoo

h

��
F (νF ) νF

outFoo

The one and only h with the requested property is

CorecF (ϕ ) = CoitF ( [ϕ, F inrX,νF ◦ outF ] ) ◦ inlX,νF .

Finally, we need to recall the well-known Lambek’s lemma: inF and outF are both
isomorphisms, with inverses in−1

F = ItF (F inF ) = RecF (F sndF (µF ),µF ), out−1
F =

CoitF (FoutF ) = CorecF (F inrF (νF ),νF ).

2. Substitution in wellfounded and non-wellfounded

term algebras

We now proceed to discussing the properties of substitution in wellfounded
and non-wellfounded term algebras. For the purposes of modular presentation,
however, we first introduce what we call substitution-carrying families of algebras1.
This concept is also useful as a basis for uniform treatment of not only wellfounded

1In a recent tutorial text [1], Aczel gave the same concept the name “substitution systems”.
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and non-wellfounded terms, but also term-equivalence-classes (wrt. a system of
equations), term graphs, rational terms etc.

Definition 2.1. Given an endofunctor H on a category C with finite coproducts.
Then any assignment (T, α) of some (A +H−)-algebra to every C-object A, i.e.,
any mapping T : |C| → |C| and |C|-indexed family α of morphisms αA : A +
HTA → TA, yields two |C|-indexed families η, τ of morphisms ηA : A → TA,
τA : HTA→ TA defined by

ηA = αA ◦ inlA,HTA
τA = αA ◦ inrA,HTA

so that αA = [ ηA, τA ]. We say that (T, α) is substitution-carrying, if, for every
morphism f : A → TB, there exists a unique morphism h : TA → TB, denoted
f?, satisfying

A+HTA
αA

(=[ ηA,τA ])
//

A+Hh

��

TA

h

��
A+HTB

[ f,τB ] // TB

i.e., A
ηA //

f $$III
III

III
I TA

h

��

HTA
τAoo

Hh

��
TB HTB

τBoo

Intuitively, if an assignment (T, α) of an (A + H−)-algebra to every object A is
substitution-carrying, then TA is, in some (possibly quite metaphorical) sense of
the word “term”, the set of H-terms over variables from A, ηA is insertion of
variables, τA is insertion of operator applications and −? is substitution. For any
morphism f : A → TB (a substitution rule), the morphism f? (the correspond-
ing substitution function) is by our definition required to be a unique morphism
agreeing with f on variables and commuting with operator applications.

Carrying substitution always implies presence of a monad: the monad laws are
valid properties of substitution.

Theorem 2.2. Given an endofunctor H on a category C with finite coproducts. If
an assignment (T, α) of an (A+H−)-algebra to every C-object A is substitution-
carrying, then (T, η,−?) is a monad.

Proof. Assume (T, α) is substitution-carrying. The monad laws for (T, η,−?) are
verified as follows.

(i) The following triangle commutes for any f : A→ TB.

A
ηA //

f ''OOOOOOOOOOOOO

char. −?

TA

f?

��
TB
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(ii) The triangle and square in the following diagram commute for any A.

A
ηA //

ηA
''NNNNNNNNNNNNN

triv.

TA

idT A

��
triv.

HTA
τAoo

idHTA

��
TA HTA

τAoo

Hence, by the characterization of substitution, ηA? = idTA.
(iii) The outer triangle and square in the following diagram commute for any

f : A→ TB and g : B → TC.

A
ηA //

f ''OOOOOOOOOOOOO

char. −?

TA

f?

��
char. −?

HTA
τAoo

Hf?

��
TB

g?

��
char. −?

HTB
τBoo

Hg?

��
TC HTC

τCoo

Hence, by the characterization of substitution, (g? ◦ f)? = g? ◦ f?. �

We are interested in two examples: the initial (A + H−)-algebras for differ-
ent objects A, i.e., the algebras of wellfounded H-terms over different variable
supplies, and the inverses of the final (A+H−)-algebras, i.e., the algebras of non-
wellfounded H-terms. Both structures carry substitution and are hence monads.

In the case of wellfounded H-terms, substitutionality and presence of a monad
are nearly immediate.

Theorem 2.3. If C has an initial (A+H−)-algebra for every object A, then (T, α)
defined by

(TA, αA) = (µ(A +H−), inA+H−)
is substitution-carrying and hence (T, η,−?) is a monad.

Proof. The proof is so trivial that it is a crime to speak of a theorem here.
(T, α) is substitution-carrying with

f? = ItA+H−( [ f, τB ] ) for f : A→ TB

since the right-hand side is, for a given f , by the characterization of iteration
(initiality) the unique solution in h of the square

A+HTA
αA //

A+Hh

��

TA

h

��
A+HTB

[ f,τB ] // TB
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but that is also the square that f? is supposed to be the unique solution in h of
by the characterization of substitution. �
Remark 2.4. As is known since [5], the monad from the initial (A+H−)-algebras
is actually the free monad generated by H .

The example of non-wellfounded H-terms, investigated in Moss [17] and Aczel
et al. [2], is considerably more interesting. Substitution is definable also for non-
wellfounded H-terms, but the definition is not as simple any more as for well-
founded H-terms.

Theorem 2.5 (The substitution theorem of Moss [17] and Aczel et al. [2]). If
C has a final (A +H−)-coalgebra for every object A (which is what H being iter-
atable means in Aczel et al.’s terminology), then (T, α) defined by

(TA, αA) =
(
ν(A+H−), out−1

A+H−
)

is substitution-carrying.

Proof. The substitution operation is conveniently definable with the help of prim-
itive corecursion by

f? =

CorecB+H−(
[
(B +H inrTA,TB) ◦ α−1

B ◦ f, inrB,H(TA+TB) ◦H inlTA,TB
] ◦ α−1

A ) )
for f : A→ TB.

The right-hand side is, for any given f , by the characterization of primitive core-
cursion, the unique solution in h of the outer square in the diagram

(∗)

B +H(TA+ TB)

B+H[ h,idT B ]

��

A+H(TA+ TB)
[ (B+HinrT A,T B)◦α−1

B ◦f,inr ]
oo

A+H[ h,idT B ]

��
triv.

A+HTA
A+HinlT A,T B

oo

A+Hhttjjjjjjjjjjjjjjj

∗∗

αA

// TA
α−1

A

oo

h

��

a A+HTB

[α−1
B ◦f,inr ]

fffffff

ssffffff [ f,τB ]
XXXXXXXXXX

,,XXXXXXXXXXXXXdef. τ

B +HTB
αB // TB
α−1

B

oo

The left-hand side, i.e., f?, must, at the same time, be the unique solution in h
of the inner square marked (**). But (**) commutes for any h if and only if the
outer square of (*) does, as the triangle

(a)
B +H(TA+ TB)

B+H[h,idTB ]
��

triv.

B +HTB
B+HinrT A,T Boo

hhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

B +HTB

commutes. �
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Remark 2.6. Substitution is, of course, also definable from the first principles
(finality) without making use of primitive corecursion. Notably, however, the
correctness proof is then considerably more complicated and the complications
amount to nothing else than an implicit justification of an instance of primitive
corecursion. Hence, it adds to the clarity and modularity of the proof, if primitive
corecursion is justified first in its generality and only then used.

In addition to substitution, the algebra family of non-wellfounded H-terms also
has iteration for all guarded substitution rules for a natural notion of guardedness.
In Aczel et al.’s [2] terminology (which builds on that of Elgot et al. [8, 9]), their
monad is completely iterative.

Definition 2.7. Given a substitution-carrying assignment (T, α) of an (A+H−)-
algebra to every C-object A, we say that a substitution rule f : A→ T (A+B) is
guarded, if it factors in the canonical way

A
f //

ϕ ((RRRRRRRRR T (A+B)

B +HT (A+B)
[ ηA+B◦inrA,B ,τA+B ]

44jjjjjjjj

through some morphism ϕ : A→ B +HT (A+B).

If C = Set and H is polynomial (which is the setting of universal algebra),
then a rule f : A→ T (A+B) for replacing variables from A with terms over the
disjoint union of A and B is guarded, if every variable from A becomes either a
variable from B or an operator application to terms over the disjoint union of A
and B (and not a variable from A). For instance, if A = {x1, x2}, B = {y}, then
f1 = [x1 7→ f(x2), x2 7→ g(x1)] and f2 = [x1 7→ h(x1, x2), x2 7→ y] are guarded but
f3 = [x1 7→ f(x2), x2 7→ x2] is not.

The iterate of f is its repetition as many times as are needed to get rid of
all variables from A in the terms returned by the repetition. The iterates of
f1 and f2 are f̄1 = [x1 7→ f(g(f(g(. . .)))), x2 7→ g(f(g(f(. . .))))], f̄2 = [x1 7→
h(h(h(h(. . . , y), y), y), y), x2 7→ y], but f3 cannot be iterated (the iterate is under-
defined). Intuitively, guarded substitution rules have iterates because guardedness
is a simple sufficient condition for productivity of repetition.

Theorem 2.8 (The solution theorem of Moss [17] and Aczel et al. [2]). Let (T, α)
be defined as in Theorem 2.5. The monad (T, η,−?) is completely iterative with
respect to the guardedness notion of Definition 2.7.

Proof. The operation −̃ is definable by

f̃ = CoitB+H−
( [ [

ϕ, inlB,HT (A+B)

]
, inrB,HT (A+B)

] ◦ α−1
A+B

)
for f : A→ T (A+B) guarded.
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The right-hand side is, for any given f , by the characterization of coiteration
(finality), the unique solution in h of the outer square of the diagram

(∗)

B +HT (A+B)

B+Hh

��

(A+B) +HT (A+B)
[ [ϕ,inlB,HT (A+B) ],inrB,HT (A+B) ]

oo

(A+B)+Hh
��

αA+B

//

∗∗

T (A+B)
α−1

A+B

oo

h

��

a + b (A+B) +HTB

[ [α−1
B ◦h◦f,inlB,HT B ],inrB,HT B ]

eeeeee

rreeeeee [ [ h◦f,ηB ],τB ]
WWWWWW

++WWWWWWdef. η, τ

B +HTB
αB // TB
α−1

B

oo

The left-hand side is, if f is guarded, supposed to be the unique solution in h of
the equation

h = [h ◦ f, ηB ]?

which is equivalent, by the characterization of substitution, the square marked
(**). Hence, it is enough to prove that, for any h, the outer square of (*) commutes
if and only (**) commutes. Inspection of (*) shows that for this it suffices, if the
outer square of diagram (a) and diagram (b) below commute both if the outer
square of (*) commutes and if (**) commutes.

(a)

B +HT (A+B)

B+Hh

��

inrA,B+idHT (A+B)

KKKKKKKKK

%%KKKKKKKKK
[ ηA+B◦inrA,B ,τA+B ]

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
def. guarded

def. η, τ

A
ϕoo

f

��

c or cc

(A+B) +HT (A+B) αA+B

// T (A+B)

h

��
B +HTB TB

α−1
B

oo

(b)

B +HT (A+B)

B+Hh

��

triv.

B
inlB,HT (A+B)
oo

inlB,HTB

{{xx
xx

xx
xxx

xx
xx

xxx
xx

x

B +HTB



GENERALIZING SUBSTITUTION 325

If the outer square of (*) commutes, then the outer square of (a) commutes because
the outer square of

(c)

B +HT (A+B)
inrA,B+idHT (A+B)

++WWWWWWWWWWWWWWWWWWWWW

B +HT (A+B)

B+Hh

��

(A+B) +HT (A+B)
αA+B //

[ [ϕ,inlB,HT (A+B) ],inrB,HT (A+B) ]

triv.
oo T (A+B)

h

��

α−1
A+B

oo

∗

B +HTB TB
α−1

B

oo

commutes. If (**) commutes, then the outer square of (a) commutes because the
outer square of

(cc)

B + HT (A + B)

B+Hh

��

inrA,B+idHT (A+B)//

triv.

(A + B) + HT (A + B)

(A+B)+Hh

��

αA+B // T (A + B)

h

��

B + HTB
inrA,B+idHT (A+B)

triv.
// (A + B) + HTB

[ [ α−1
B ◦h◦f,inlB,HT B ],inrB,HT B ]

ffffff

ssffffffff [ [ h◦f,ηB ],τB ]
UUUUUUUU

**UUUUUUUUdef. η, τ

∗∗

B + HTB
αB // TB
α−1

B

oo

commutes. (b) commutes always. �

Remark 2.9. Aczel et al. [2] have shown that the monad from the final (A+H−)-
algebras is even the free completely iterative monad generated byH . In the present
paper, this aspect will not be discussed.

3. Generalized substitution

The monads resulting from substitution-carrying assignments of an (A+H−)-
algebra to every object A are, by the explicitly defining and characterizing equa-
tions of their constituent data, very similar to the monads that the object map-
pings T ′(−, X) given by T ′(A,X) = A+HX carry uniformly in X . Indeed, setting
η′A,X = inlA,HX , τA,X = inrA,HX and f◦ = [ f, τB ] for f : A → T ′(B,X), we get
that (T ′(−, X), η′−,X ,−◦) is a monad for every X . This observation leads to the
questions: is this a hint about some “causality”? Can it be used to modularize
the proofs of the statements above and to generalize them? The answer is: yes.
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To present the generalization, we introduce the concept of parameterized monad.

Definition 3.1. A parameterized monad on category C is a triple (T ′, η′,−◦)
formed of a mapping T ′ : |C| × C → C functorial in the 2nd argument, a |C| × |C|-
indexed family η′ of morphisms η′A,X : A→ T ′(A,X) and an operation −◦ taking
every morphism f : A → T ′(B,X) to a morphism f◦ : T ′(A,X) → T ′(B,X)
satisfying:

(i′) f◦ ◦ η′A,X = f for f : A→ T ′(B,X);
(ii′) η′A,X

◦ = idT ′(A,X);
(iii′) (g◦ ◦ f)◦ = g◦ ◦ f◦ for f : A→ T ′(B,X), g : B → T ′(C,X);
(iv′) T ′(A, ξ) ◦ η′A,X = η′A,Y for ξ : X → Y ;
(v′) T ′(B, ξ) ◦ f◦ = (T ′(B, ξ) ◦ f)◦ ◦ T ′(A, ξ) for f : A→ T ′(B,X), ξ : X → Y.

Remark 3.2. It is easy to verify that a parameterized monad is essentially just a
functor from C to Monad(C). In principle, thus, the definition we just made is re-
dundant. Practically, however, the “uncurried” format of a parameterized monad
will be a lot handier to work with because the “curried” format of the equivalent
monad-delivering functor fixes one of the two arguments of the uncurried format
as the first and the other as the second in the “wrong” one of the two possible
orders.

Each of the monad examples of Section 1 is easily modifiable to yield an example
of a parameterized monad.

Example 3.3. Given an endofunctor H on a category C with finite coproducts.
Then (T ′, η′,−◦) defined by

T ′(A,X) = A+HX
η′A,X = inlA,HX

f◦ = [ f, inrB,HX ] for f : A→ T ′(B,X)

is a parameterized monad.

Example 3.4. Given a contravariant endofunctor H on a cartesian closed cate-
gory C. Then (T ′, η′,−◦) defined by

T ′(A,X) = HX ⇒ A
η′A,X = curry (fstA,HX)

f◦ = curry
(
evHX,B ◦ 〈 f ◦ evHX,A, sndT ′(A,X),HX 〉) for f : A→ T ′(B,X)

is a parameterized monad. A typical more specific example is obtained by choosing
HX = E ⇒ X for some fixed object E of C.

Example 3.5. Given a functor X 7→ (HX, eX ,mX) from a category C with finite
products to Monoid(C). Then (T ′, η′,−◦) defined by

T ′(A,X) = A×HX
η′A,X = (idA × eX) ◦ unit×A

f◦ = (idA ×mX) ◦ assoc×B,HX,HX ◦ (f × idHX) for f : A→ T ′(B,X)
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is a parameterized monad. A useful instance, if C has list objects, is (HX, eX ,mX) =
(List X, nilX , appendX).

Parameterized monads give us a well-behaved generalization of the concept of
substitution-carrying family of algebras.

Definition 3.6. Given any parameterized monad (T ′, η′,−◦) on any category C.
Then, given any assignment (T, α) of some T ′(A,−)-algebra to every object A
with αA : T ′(A, TA) → TA iso for every A2, we also have |C|-indexed family
η of morphisms ηA : A → TA and an operation {−} taking every morphism
f : A→ TB to a morphism {f} : T ′(A, TB) → TB defined by

ηA = αA ◦ η′A,TA
{f} = αB ◦ (α−1

B ◦ f)◦ for f : A→ TB

so that αA = {ηA}. We say that (T, α) is substitution-carrying, if, for every
f : A→ TB, there is a unique h : TA→ TB, denoted f?, such that

T ′(A, TA)
αA

(={ηA})
//

T ′(A,h)

��

TA

h

��
T ′(A, TB)

{f} // TB

Clearly, the previous definition for the special case T ′(A,X) = A + HX is an
instance of this new more general definition. But, pleasantly, everything we stated
for the special concept generalizes. Moreover, the proofs become simpler, since
the presence of a parameterized monad structure on T ′ is used consciously, not
proven over and over again without noticing.

Firstly and foremostly, if an assignment of T ′(A,−)-algebra to every object A
is substitution-carrying, then we have a monad.

Theorem 3.7. Given a parameterized monad (T ′, η′,−◦) on a category C. If
an assignment (T, α) of an T ′(A,−)-algebra to every C-object A is substitution-
carrying, then (T, η,−?) is a monad.

Proof. Assume that (T, α) is substitution-carrying. That (T, η,−?) satisfies the
monad laws is verified as follows.

2The iso requirement can be avoided at the cost of switching to a somewhat less intuitive
setup of definitions and statements.
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(i) The outer triangle of the following diagram commutes for any f : A→ TB,
since the inner polygons commute.

A

ηA

((
def. η

η′A,T A //

η′A,T B ((PPPPPPPPPPPPPP

f

//

iv′

T ′(A, TA)
αA //

char. −? + def. {−}T ′(A,f?)

��

TA

f?

��
T ′(A, TB)

(α−1
B ◦f)◦ //

i′

T ′(B, TB)
αB // TB

TB

α−1
B

99sssssssss

iiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiii

(ii) The outer square of the following diagram commutes for any A, as the inner
polygons do.

T ′(A, TA)
αA //

triv.idT ′(A,T A)

��

TA

idT A

��
T ′(A, TA)

(α−1
A ◦ηA)◦

??
ii′ + def. η

T ′(A, TA)
αA // TA

Hence, by the characterization of −? and definition of {−}, ηA? = idTA.
(iii) The outer square of the following diagram commutes for any f : A→ TB,

g : B → TC, as the inner polygons do.

T ′(A, TA)
αA //

char. −? + def. {−}T ′(A,f?)

��

TA

f?

��
T ′(A, TB)

(α−1
B ◦f)◦

//

v′T ′(A,g?)

��

T ′(B, TB)
αB //

char. −? + def. {−}T ′(B,g?)

��

TB

g?

��
T ′(A, TC)

(T ′(B,g?)◦α−1
B ◦f)◦

//

(α−1
C ◦g?◦f)◦

66
iii′ + char. −? + def. {−}

T ′(B, TC)
(α−1

C ◦g)◦
// T ′(C, TC)

αC // TC

Hence, by the characterization of −? and definition of {−}, (g? ◦ f)? = g?◦f?. �

Further, the initial T ′(A,−)-algebras give a monad.
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Theorem 3.8. If C has an initial T ′(A,−)-algebra for every object A, then (T, α)
defined by

(TA, αA) = (µ(T ′(A,−)), inT ′(A,−))

is substitution-carrying.

Proof. The substitution operation −? is very straightforwardly defined by

f? = ItT ′(A,−)( {f} ) for f : A→ TB.

For a given f , the right hand side is by the definition of iteration (initiality) the
unique solution in h of the square

T ′(A, TA)
αA //

T ′(A,h)

��

TA

h

��
T ′(A, TB)

{f} // TB

which is also the square that f? is supposed to be the unique solution of by the
characterization of substitution. �

A monad is also given by the inverses of the final T ′(A,−)-coalgebras.

Theorem 3.9 (Generalization of the substitution theorem). If C has a final
T ′(A,−)-coalgebra for every object A, then (T, α) defined by

(TA, αA) = (ν(T ′(A,−)), out−1
T ′(A,−))

is substitution-carrying.

Proof. The substitution operation −? is defined by primitive corecursion by

f? = CorecT ′(B,−+TB)( (T ′(B, inrTA,TB) ◦ α−1
B ◦ f)◦ ◦ T ′(A, inlTA,TB) ◦ α−1

A )
for f : A→ TB.

The right-hand side is, for any given f , by the characterization of primitive core-
cursion, the unique solution in h of the outer square in the diagram

(∗)

T ′(B, TA + TB)

T ′(B,[ h,idT B ])

��

T ′(A, TA + TB)
(T ′(B,inrT A,T B)◦α−1

B ◦f)◦

oo

T ′(A,[ h,idT B ])
��

triv.

T ′(A, TA)
T ′(A,inlT A,T B)
oo

T ′(A,h)ttiiiiiiiiiiiiii

∗∗

αA

// TA
α−1

A

oo

h

��

v′ + a T ′(A, TB)

(α−1
B ◦f)◦

ffffffff

ssffffffff {f}YYYYYYYYYYY

,,YYYYYYYYYYYYYYdef. {−}

T ′(B, TB)
αB // TB
α−1

B

oo
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The left-hand side, i.e., f?, must, by the characterization of substitution, be the
unique solution in h of the inner square marked (**). The triangle

(a)
T ′(B, TA+ TB)

T ′(B,[h,idT B ])
��

triv.

T ′(B, TB)
T ′(B,inrTA,T B)

oo

iiiiiiiiiiiii

iiiiiiiiiiiii

T ′(B, TB)

commutes. Hence, for any h, (**) commutes if and only if the outer square of (*)
does. �

Being a generalization of the monad of non-wellfounded H-terms, the monad
from the inverses of the final T ′(A,−)-coalgebras has the extra structure of being
completely iterative with respect to an appropriate notion of guarded substitution
rule.

Definition 3.10. Given a substitution-carrying assignment (T, α) of a T ′(A,−)-
algebra to every C-object A, we say that a substitution rule f : A→ T (A+B) is
guarded, if it factors in the canonical way

A
f //

ϕ ))RRRRRRRRRR T (A+B)

T ′(B, T (A+B))
{ηA+B◦inrA,B}

44iiiiiiiii

through some morphism ϕ : A→ T ′(B, T (A+B)).

Theorem 3.11 (Generalization of the solution theorem). Let (T, α) be defined as
in Theorem 3.9. The monad (T, η,−?) is completely iterative with respect to the
guardedness notion of Definition 3.10.

Proof. The operation −̃ is definable by

f̃ = CoitT ′(B,−)

( [
ϕ, η′B,T (A+B)

]
◦ ◦ α−1

A+B

)
for f : A→ T (A+B) guarded.

The right-hand side of this definition is, for any f , by the characterization of
coiteration (finality), the unique solution h of the outer square of the diagram

(∗)

T ′(B, T (A+B))

T ′(B,h)

��

T ′(A+B, T (A+B))
[ϕ,η′B,T(A+B) ]◦oo

T ′(A+B,h)
��

αA+B

// T (A+B)
α−1

A+Boo

h

��

v′ + a + b T ′(A+B, TB)

[α−1
B ◦h◦f,η′B,T B ]◦

ffffff

rrffffff { [h◦f,ηB ] }
VVVVVVV

++VVVVVVVdef. η, {−}

∗∗

T ′(B, TB)
αB // TB
α−1

B

oo



GENERALIZING SUBSTITUTION 331

The left-hand side is, if f is guarded, expected to be the unique solution in h of
the equation

h = [h ◦ f, ηB ]?

which is equivalent, by the characterization of substitution, to the square marked
(**). It therefore suffices to show that, for any h, the outer square of (*) commutes
if and only (**) commutes. This will be the case if the outer square of diagram
(a) and diagram (b) below commute both if the outer square of (*) commutes and
if (**) commutes.

(a)

T ′(B, T (A+B))

T ′(B,h)

��

(η′A+B,T(A+B)◦inrA,B)◦
KKKKKKKKK

%%KKKKKKKKK
{ηA+B◦inrA,B}

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
def. guarded

def. η, {−}

A
ϕoo

f

��

c or cc

T ′(A+B, T (A+B)) αA+B

// T (A+B)

h

��
T ′(B, TB) TB

α−1
B

oo

(b)

T ′(B, T (A+B))

T ′(B,h)

��

iv′

B
η′B,T (A+B)oo

η′B,T B

||xx
xxx

xx
xx

xx
xx

xx
xx

xx

T ′(B, TB)

If the outer square of (*) commutes, then the outer square of (a) commutes because
the outer square of

(c)

T ′(B, T (A+B))
(η′A+B,T(A+B)◦inrA,B)◦

++WWWWWWWWWWWWWWWWWWWWW

ii′ (η′B,T (A+B))
◦

��
T ′(B, T (A+B))

T ′(B,h)

��

T ′(A+B, T (A+B))
αA+B //

[ϕ,η′B,T(A+B) ]◦
iii′ + doo T (A+B)

h

��

α−1
A+B

oo

∗

T ′(B, TB) TB
α−1

B

oo
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commutes, since so does the outer square of

(d)

B
inrA,B //

η′B,T (A+B)

��

triv.

A+B

η′A+B,T(A+B)

��

[ϕ,η′B,T (A+B) ]
pppppppppp

xxppppppppp

T ′(B, T (A+B)) T ′(A+B, T (A+B))
[ϕ,η′B,T(A+B) ]◦

oo

i′

If (**) commutes, then the outer square of (a) because of the commutation of the
outer square of

(cc)

T ′(B, T (A + B))

T ′(B,h)

��

(η′
A+B,T(A+B)◦inrA,B)◦

//

v′ + iv′

T ′(A + B, T (A + B))

T ′(A+B,h)

��

αA+B

// T (A + B)

h

��

T ′(B, TB)
(η′

A+B,T B◦inrA,B)◦

iii′ + dd

//

ii′ η′
B,T B

◦

��

T ′(A + B, TB)

[ α−1
B ◦h◦f,η′

B,T B ]◦
gggggg

ssgggggggg { [ h◦f,ηB ] }
UUUUUUU

**UUUUUUUdef. η, {−}

∗∗

T ′(B, TB)
αB // TB
α−1

B

oo

which, in turn, is a consequence of the commutation of the outer square of

(dd)

B
inrA,B //

η′B,T B

��

triv.

A+B

η′A+B,T B

��

[α−1
B ◦h◦f,η′B,TB ]

rrrrrrrrr

yyrrrrrrrrr

T ′(B, TB) T ′(A+B, TB)
[α−1

B ◦h◦f,η′B,T B ]◦
oo

i′

Diagram (b) commutes always. �

With generalized substitution and generalized guardedness defined and two
kinds of families of algebras shown to carry the structure of a monad resp. com-
pletely iterative monad with generalized substitution as the extension operation,
we can now finish the section by looking at the examples we get from Exam-
ples 3.3–3.5 of parameterized monads.

Example 3.12. To start with, ordinary substitution in wellfounded and non-
wellfounded terms is the first example of generalized substitution: if H is an
endofunctor on a category C with finite coproducts, then the well-known monad
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structure on T given by TA = µ(A + H−) (Th. 2.3) and the less well known
completely iterative monad structure on T given by TA = ν(A + H−) (Th. 2.5
and 2.8) are both rooted in the parameterized monad structure on T ′ given by
T ′(A,X) = A+HX .

Example 3.13. If H is a contravariant endofunctor on a cartesian closed cate-
gory C, then the parameterized monad structure on T ′ given by T ′(A,X) = HX ⇒
A yields a monad structure on T given by TA = µ(H− ⇒ A) and a completely
iterative monad structure on T given by TA = ν(H− ⇒ A).

In the special case of HX = X ⇒ E for a fixed C-object E, TA is, for a
given A, the inductive resp. coinductive space of hyperfunctions from E to A
in the sense of Krstić, Launchbury and Pavlović [12] (they wanted the inductive
and the coinductive version to collapse into one assuming a restricted form of
algebraic compactness, but this is not absolutely necessary). Hyperfunction spaces,
with applications in the semantics of processes, have some properties remarkably
similar to function spaces: denote the hyperfunctions from A to B by [A,B], one
can define identity and composition θ, # with the usual typing θA : 1 → [A,A],
# : [B,C]× [A,B] → [A,C] and the standard properties, but also an application-
like operation · with the typing · : [A,B] × [B,A] → B that has the properties
(h#g)·f = h ·(g#f) and θA ·f = f ·θA. There is also an operation lifting functions
to hyperfunctions with sensible properties.

Example 3.14. If X 7→ (HX, eX ,mX) is a functor from a category C with finite
products to Monoid(C), then the parameterized monad structure on T ′ given by
T ′(A,X) = A × HX yields a monad structure on T given by TA = µ(A × H−)
and a completely iterative monad structure on TA = ν(A×H−).

If C has list objects, then, in the special case of HX = (ListX, nilX , appendX),
TA is, for a given A the object of wellfounded resp. non-wellfounded A-labeled
finitely branching trees. These may be thought of as Böhm trees corresponding
to lambda-terms without lambdas (purely applicative terms) over A. Remark-
ably, the generalized substitution operation delivered by our construction agrees
with substitution in Böhm trees: the substitution function f? : TA → TB that
corresponds to a given substitution rule f : A→ TB is specified by the equation

f?(x(t1, . . . tn)) = y(s1, . . . , sm, f?(t1), . . . , f?(tn)) where f(x) = y(s1, . . . , sm).

This is exactly how substitution is done in Böhm trees normally.

4. Related work

The study of the structure of the algebras of rational and non-wellfounded
H-terms was started by Elgot and colleagues [8,9] in the universal-algebra setting,
where C = Set and H is polynomial.

Moss [17] and Aczel et al. [2] switched to an arbitrary C with finite coproducts
and arbitrary H and proved that the algebras of non-wellfounded H-terms, de-
fined as the inverses of the final (A+H−)-coalgebras (assuming they exist), yield
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a completely iterative monad, i.e., carry substitution and iteration for all guarded
substitution rules (the substitution and solution theorems). Aczel et al. [2] also
showed that this monad is, in fact, the free completely iterative monad generated
by H , and more generally, for any monoidal category (D, I,⊗) with finite coprod-
ucts and any D-object E, the inverse of the final (I +E⊗−)-coalgebra (assuming
it exists) gives the free completely iterative monoid generated by E (the original
statement pertains to the special case D = [C, C], E = H).

Milius [16] showed that, if H generates a free completely iterative monad, then
it must be given by the inverses of the final (A +H−)-coalgebras, so they must
then exist.

For C strongly locally finitely presentable and H finitary and monos-preserving,
Adámek et al. [3, 4] showed that the algebras of rational H-terms exist and give
the free iterative monad generated by H , i.e., the free one among the monads from
H-algebras that carry substitution and iteration for finitary guarded substitution
rules.

Ghani et al. [11] considered even term graphs in addition to non-wellfounded
and rational terms.

It was a surprise to the author to discover that the result of [19] and the present
paper about the initial algebras and the inverses of the final coalgebras of the par-
tial applications of a parameterized monad giving monads appears anticipated in
unpublished notes by Paterson on monads for functional programming [18, Sect. 5],
with reference to Meijer, personal communication. Unfortunately, however, Mei-
jer and Paterson’s statement is entirely unmathematically formulated, the assump-
tions made are not spelled out. Their construction uses type and term level general
recursion, which are legitimate in CPO-like algebraically compact categories (cat-
egories where the initial algebra and the inverse of the final coalgebra of a functor
always coincide). The generalized solution theorem is not in [18].

Advanced disciplined recursion and corecursion schemes as useful tools for con-
structing morphisms from carriers of initial algebras resp. to carriers of final coal-
gebras as necessarily uniquely existing solutions to certain equations have been
promoted by Uustalu et al. [20,22], Bartels [6], and Cancila et al. [7]. (Lenisa [13]
required considerably less from such schemes.)

Uustalu and Vene [21] have pointed out that the duals of terms, non-wellfounded
terms and substitution for variables, i.e., of wellfounded and non-wellfounded trees
with cuts and grafting into cuts, are non-wellfounded resp. wellfounded decorated
trees and redecoration. In particular, while guarded substitution rules for non-
wellfounded terms can be iterated, guarded redecoration rules for wellfounded
decorated trees define new redecoration rules as uniquely existing solutions to a
fixedpoint equation. In practice, this fact about guarded redecoration rules is
routinely, but without noticing exploited in programming upwards accumulations.
The issue of what “cosyntax” should be about in more closer-to-syntax terms has
intrigued several authors, among them Ghani et al. [10].
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5. Conclusions and future work

We showed that the notion of substitution as a unique operation satisfying cer-
tain equational conditions is naturally generizable from terms (incomplete trees of
fixed branching factor) to hyperfunctions, finitely or possibly infinitely branching
decorated trees, etc. For the generalized notion, the proofs of the substitution and
solution theorems came out more transparent than those for the original notion,
as the inessential specific details did not show up. In the proof of the substitution
theorem, further economy was achieved by using primitive corecursion. This hints
that a good proportion of the effort in the proof from the basics goes on justifying
a specific application of primitive corecursion, unrecognized as such.

Future work includes extending the substitution and solution theorems to signa-
tures with binding and explicit substitution operators (joint project of the author
with Ralph Matthes, the substitution theorem appears in [15]), proving the free
completely iterative monad theorem of [2] for generalized substitution (this will
take generalizing their concept of ideal monad), a study of the pragmatics of gener-
alized redecoration, and also a detailed comparison of the concept of substitution-
carrying monad employed here to that of coalgebraic monad by Ghani et al. [11].
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