Theoretical Informatics and Applications
RAIRO: Theoret. Informatics Appl. 38 (2004) 19-25
DOI: 10.1051/ita:2004001

WEIGHTREDUCING GRAMMARS AND ULTRALINEAR
LANGUAGES
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Abstract. We exhibit a new class of grammars with the help of
weightfunctions. They are characterized by decreasing the weight dur-
ing the derivation process. A decision algorithm for the emptiness
problem is developed. This class contains non-contextfree grammars.
The corresponding language class is identical to the class of ultralinear
languages.
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INTRODUCTION

The emptiness problem for classes of grammars containing non-contextfree
grammars is in general difficult to solve. The reader should remember that this
problem is undecidable for contextsensitive grammars. Moreover the word prob-
lem can be reduced to the emptiness problem under very mild conditions. We
exhibit a class of grammars with a solvable emptiness problem, which contains
non-contextfree grammars. Our method uses weightfunctions such that the weight
decreases during the derivation process, moreover a criterion is added, which sep-
arates via the weightfunction variables and terminals. This class of grammars is
called the class of weightreducing grammars. For this class we develop a decision
algorithm for the emptiness problem. Furthermore we show that the corresponding
language family is exactly the family of ultralinear languages.
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1. BASIC NOTATIONS AND DEFINITIONS

Let X be an alphabet, then X* is the set of words w over X (free monoid). [J
is the empty word and X+ = X* \ 0. Fixing # € X we define the homomorphism
|lw|z : X* = N by |yls = 02,y (y € X,0z, is Kronecker’s symbol), hence |wl, is
the number of occurrences of x in w.

For X’ C X we define: |w|x: = >, ,cx/ |wl|er, therefore |w|x = |w| is the
length of w.

A (Chomsky-)grammar G is a quadruple G = (V,T, P,0) where V,T are
alphabets with VNT =0,0 € V and P C VT x (VUT)* is a finite set.

We call V' the set of variables, T the set of terminals, A = VUT the alphabet
of G, o the startsymbol and P the set of productions. As usual (p,q) € P will
be written p — q.

With respect to the underlying Semi-Thue-System (A, P) we define
derivations of words in the following way. For every w,w’ € A* we write w - w’

*
iff there exist u,v € A*, p — q € P such that w = upv and w’ = uqu. wF w' is
the reflexive and transitive closure of .

For every grammar G the generated language L(G) is defined by

L(G):{weTwanfw}-

Grammar classes are denoted by I' and the associated language family is
LIT)={L|3Gel:L(G)=L}.

We are mostly interested in the following grammar classes:
T'cn = all Chomsky-grammars;
P ={Ge€Tlcn |Vp—qeP:lp =1}
in={Gel¢|Vp—qgeP:qgeT* - (Vul) T*};
Ifn.index = {G €l'cn | dk e NVw € L(G)
Jo=ubub...Fu,=wVO0<i<n:|ulyv <k} (see [1]);

o Tiitralinear = {G € T'o¢ | 3 a partition (A4;)7; of V,V i e [l...n],
£€AE—peP=pe(TUU_,A)*UT*- A; - T*} (see [4]).

The corresponding language families are Lcn, Lefy Liins Lin.index and Lultralinear-

We assume the reader to be familiar with the basic concepts of grammars and
languages (see [5,6]).

2. WEIGHTREDUCING GRAMMARS

Definition 2.1. Let G € I'cp, v : A* — N a homomorphism.
v reduces G iff
(i) Vp—qeP:v(p) 27(q);
(ii) Vee A:v(z)=0&2€T.
Definition 2.2. A grammar G is weightreducing iff there is a homomorphism
~ that reduces G.
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The class of weightreducing grammars is denoted by I'y,, and Ly, is the associ-
ated language family.

Remark. Our definition is something of a counterpart of contextsensitive gram-
mars. For contextsensitive grammars the weight is increasing.

Observation 2.1.

(i) w li w = y(w) > y(w');

(i) o Ii w = |wly < (o).
Example 2.1. For any G € Ty, let y(§) =1 forall £ € V.
Then v reduces G.

Example 2.2. Consider for any £ > 1 the grammar G;  with o = o and the
set of productions

Ok—i = (Ok—i) | (Oh—i—1)ok—im1 |O(0<i<k—2)

g1 — (0’1) | .

Choose: v(ok—i) = 287%(0 < i < k) then v reduces G.

Observe that with the help of Dy, = L(G1 ) the index-hierarchy is shown
in [4].
Example 2.3. Consider the grammar G with ¢ — oc¢€ | 0, — aéb | O, then
L(G)=(c-{a™"™ | n>1})*.

G is a finite-index grammar, but not weightreducing.

Since Lyin € Ly by Example 2.1 and Lgy.index € Let by the Ginsburg-Spanier-

theorem [3] we conclude Ly C Ly C Lanindex C Lot by Observation 2.1(ii).

We now study the question, how reducing +'s can be calculated.

Theorem 2.1. The question wether a grammar allows a reducing function, i.e.
is a weightreducing grammar or not, is decidable.

Proof. Let G be a grammar with V = {&,...,&,} and 0 = &. Since by con-
dition (ii) of Definition 2.1 a possible v must automatically fulfil y(z) = 0 for
x € T, only the (&) have to be determined. But then conditions (i) and (ii) of
Definition 2.1 rewrite to

(1) p—a€P=3" (ple —lg

(2) (&) >0for 1 <i<nm.
Therefore the construction of a reducing v is equivalent to solve the following
system of linear inequations with variables z1,...,z, over Q :

§i) 7(&) > 05

n

> (Ip

i=1

& —lgle) -2 >0 (p—qg€P) and z; >0(1 <i<n).

If 7 is reducing then z; = y(&;) (1 < i < n) is a solution, conversely if (x1,...,2,)
is a solution then defining v(&;) = Ax; for 1 <4 < n and suitable A € N we obtain
a reducing ~. O
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3. ULTRALINEAR AND WEIGHTREDUCING GRAMMARS

We want to show: Lujtralinear = Lwr. 10 do this we study certain transforma-
tions of grammars. The following definitions introduced in [2] are useful:

Definition 3.1. For every G € 'y, and for every w € A* the rank of w r(w) is
defined by r(w) = sup{|u|y | v € A* and w F u}.

Observation 3.1.

(i) If G € Tcp then: wy,wy € A* = r(wiws) >
(ii) If G € T'¢r then: wy,we € A* = r(wiws) =

r(wy) - r(ws).
r(wy) - r(ws).

Definition 3.2. A grammar G € I'¢y is variable-bounded iff there exists a

constant k € N such that for every w € A*: o F w = |w|y < k.

Theorem 3.1. If G € T'cy, is weightreducing then G is variable-bounded.

Proof. Let G € T'¢t be weightreducing and « the corresponding weightfunction.
Suppose G is not variable-bounded. Consider k = v(o) and a word w € A* with

o+ wand |wly > k. But then v(w) > |w|y > k > (o), a contradiction to
Observation 2.1(ii). O

A variable £ € V is reachable from o iff o - uév for some u,v € A*.

Theorem 3.2. If G € 't is variable-bounded and every variable is reachable from
o then G is weightreducing.

Proof. Let G € T'¢+ be variable-bounded by k and every £ € V reachable from o.

In this case the rank r has the property r(§) < k for every £ € V. Furthermore

by definition of r, r(x) = 0 for every « € T.. Hence, r is a reducing function for G

because Observation 3.1(ii) ensures that r is a homomorphism in the contextfree

case. O
Combining Theorems 3.1 and 3.2 we get

Theorem 3.3. If G € 't and every & € V is reachable from o then G is variable-
bounded iff G is weightreducing.

Theorem 3.4. The family of ultralinear languages coincides with the family of
contextfree weightreducing languages.

Proof. In [2] is shown: If G € I'¢¢ then G is ultralinear iff G is variable-bounded.

O

Theorem 3.4 doesn’t transfer directly to Ly,. This is due to the fact that the

rank of G € I'¢y, is in general not a homomorphism and Theorem 3.2 does not
hold in the general case if G is any Chomsky-grammar.
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Consider for example the grammar G given by

o — &
&8 — afbBeyd
& — a
6 — b
vy =

G is variable-bounded with £ = 3 but not weightreducing.

But there is another way to show Lyitralinear = Lwr and that we prove Ly, =
L(Tet NTyy) using a construction similar to the one showing Len index = L(Ter N
DPfin.index) found in [3].

For every alphabet A and k € N let ASF = {w € A* | |w| < k}.

Theorem 3.5. The family of ultralinear languages coincides with the family of
weightreducing languages.

Proof. Like mentioned above we show Ly = L(T¢f N Tyy). Consider G € T'y,.
Then G is variable-bounded with k& = (o) by Theorem 3.1.

Our aim is to replace every production p — ¢ with p € VT by a set of contextfree
productions simulating p — ¢ . This is possible because there are only finitely
many z,y € V* such that xpy occurs in a word derivable from o. Every xpy of
this kind interpreted as a new single variable builds the left hand-side of a new
production. Then we can show that the resulting contextfree grammar remains
variable-bounded and generates the same language as G.

More precisely, given a word w = voz1v1 ... &0, with n > 0, v; € V* (0 <
i <n), z €T (1 <i<mn),associate to it a new word f(w) defined by f(w) =
(vo)z1{v1) ... Tn{v,). Identify (O) with the empty word OJ. Then f(w) is defined
over the new alphabet T'U(V1). Note that if a set M of words over A is “variable-
bounded” in the sense that |w|y < k for every w € M, the new set of words f(M)
is defined over T'U (V'=F) and this alphabet is finite.

Now, define the new contextfree grammar G’ by

=T, V' =Wsh\(@D), o =)

and
P'={(zpy) — flzqy)lp = g€ P and zye V=F-IPl}.

Clearly, P’ is finite, because P is finite and V=F~IP| is finite for every p on the left
hand-side of a production in P.
Furthermore, if u F w by some production in G, f(u) F f(w) by some produc-

tion in G’ and wvice versa.
* *

Hence o F w if and only if f(o) F f(w) where f(o) = (o) = o' showing
L(G) = L(G").
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It remains to show, that G’ is variable-bounded. Consider a derivation ¢’ =

(o) F u in the new grammar G’. Then u = f(w) for some w € A* ie. o F w
is a derivation in G. But then |w|y < k, since G is variable-bounded with k. By
construction |uly: = |f(w)|v: < |w|y <k, i.e. G’ is variable-bounded with the
same k as G and the statement follows directly by Theorem 3.2. O

Corollary. The emptiness problem for Iy, i.e. the question whether a grammar
G € Ty generates the empty set or not, is decidable.

Proof. Let G € 'y, and ~ the weightfunction. If v is not given compute it by
Theorem 2.1. Then the following algorithm decides if L(G) = §:
Let k = (o).

(1) Construct the corresponding contextfree and weightreducing grammar G’
by Theorem 3.5 with |P’| < |[V=F| . |P|.

(2) Decide if o’ F w for some w € T*. This may be done with the help of the
following algorithm:

(2.1) construct the grammar G” from G’ replacing every terminal in every
production by the empty word;

(2.2) construct the directed graph with nodes from (V<*)<F such that two
nodes u and v are connected by an edge if and only if v is directly
derivable from u by a production of G”;

(2.3) decide if there is a path from (o) to the empty word. O

4. CLOSING REMARKS

We haven’t discussed any complexity question for the possible algorithms. The
suggested approach to the emptiness-problem for weightreducing grammars in-
volves:

(i) the solution of a (special) system of linear inequalities over Q;
(ii) the construction of a specific directed graph associated to the grammar
under inspection;
(iii) solving a specific pathproblem for this graph.

The last problem depends heavily on the size of the constructed graph, so this
would be the crucial point.
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