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CIRCULAR SPLICING AND REGULARITY *
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Abstract. Circular splicing has been very recently introduced to mo-
del a specific recombinant behaviour of circular DNA, continuing the
investigation initiated with linear splicing. In this paper we restrict our
study to the relationship between reqular circular languages and lan-
guages generated by finite circular splicing systems and provide some
results towards a characterization of the intersection between these two
classes. We consider the class of languages X™, called here star lan-
guages, which are closed under conjugacy relation and with X being a
regular language. Using automata theory and combinatorial techniques
on words, we show that for a subclass of star languages the correspond-
ing circular languages are (Paun) circular splicing languages. For ex-
ample, star languages belong to this subclass when X is a free monoid
or X is a finite set. We also prove that each (Paun) circular splicing
language L over a one-letter alphabet has the form L = X UY, with
X, Y finite sets satisfying particular hypotheses. Cyclic and weak cyclic
languages, which will be introduced in this paper, show that this result
does not hold when we increase the size of alphabets, even if we restrict
ourselves to regular languages.
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1. INTRODUCTION

Requests for new applications from the world of computing and technology are
stimulating interest towards computational models inspired by biological mecha-
nisms. Molecular computing is one of the research directions in this framework
and one of its highlights is in experiments which have produced efficient algorithms
for solving typical NP-complete problems, underlining the computational power of
biological phenomena (see Adleman’s experiment and Lipton’s experiment among
them [25]).

In the wake of these discoveries, molecular computing has been developing in
several directions which are both technological and theoretical. In particular, one
research direction which is strictly related to formal languages theory, is based on
the notion of splicing systems. This aspect will be considered here. The notion of
splicing systems was first introduced in [17], where Head modelled a recombinant
behaviour of DNA molecules (under the action of restriction and ligase enzymes)
as a particular operation between words in a formal language thus suggesting the
possibility of using molecules to perform computations. In short, a restriction
enzyme is able to recognize a pattern in a DNA molecule and cut the molecule
inside the pattern in a specific position, thus providing two segments of DNA.
Then a ligase enzyme binds together pairs of sequences from two molecules into
a new one. In order to treat this cut and paste phenomenon in formal language
theory, an initial set I of strings (the initial set of DNA molecules) and a set R
of splicing rules or special words (simulators of enzyme behaviour) are given, such
that the set of all possible molecules generated by the biochemical process of cut
and paste is the language of all possible words that may be generated by applying
the rules to the strings. We deliberately ignore other molecular considerations and
basic details (for a complete monograph see [25]).

DNA occurs in both linear and circular form and, correspondingly, linear and
circular splicing systems have been defined. There are three definitions of (linear)
splicing systems given by Head, Paun and Pixton. The computational power
of these systems, i.e. the class of languages which are generated by them, has
been described. This computational power also depends on which level in the
Chomsky hierarchy the initial set I and the set of the rules R belong to. Under
some hypotheses on I, R, splicing systems can reach the same power of Turing
machines [19,24]. At the opposite end of the hierarchy, when we restrict ourselves
to splicing systems with a finite set R of rules and a finite set I of strings (finite
linear splicing systems), we get a proper subclass of regular languages, as shown in
[13,16,22,26]. This class of languages has not been yet completely characterized
even if partial results are known [7,8]. However, the size of this family of regular
languages increases when we substitute Head’s systems with Paun’s systems and
Paun’s systems with Pixton’s systems [11].

On the contrary, few results are known about circular splicing systems. In Na-
ture circular splicing occurs in a recombinant mechanism (transposition) between
bacteria and plasmids. Moreover, the replication is possible only if DNA has a
circular form in the host cell. Furthermore, it could be interesting to use circular
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DNA in Adleman’s experiment, since plasmids replicate themselves without errors
or exponential weight increase, which are weak points in Adleman’s approach [1].
In fact, in [18,20] a new method of computing, applicable to a wide variety of
algorithmic problems, has been introduced by using DNA plasmids: a circular
DNA plasmid is specifically constructed step by step, using a scheme of enzymatic
treatments.

In this paper we deal with circular splicing systems even if we provide interesting
links with the linear case, deepening the observations made in [28]. Furthermore,
in our theoretical model there is no hypothesis on the number of copies of each
molecule in the initial set.

Classical results in formal language theory and combinatorial tools have been
of great use when obtaining our results. Indeed, circular splicing systems deal
with circular languages the elements of which are equivalence classes under the
conjugacy relation (circular words). It is worthy of note that this notion plays an
important role in combinatorics on words as well as in some language factorization
problems (e.g. the problem of finding factorizations of free monoids, see [2,23]).

As in the linear case, three definitions of the circular splicing operation have
been given (by Head, Paun and Pixton) along with a counterpart of the notion
of regular language, namely the notion of regqular circular language. Here we give
some results towards a characterization of those regular circular languages which
are generated by finite circular splicing systems.

In order to be more precise, given a star language (i.e. a language X* closed
under conjugacy relation and with X a regular language) and considering a supple-
mentary hypothesis, we prove that the corresponding circular language is generated
by a finite Paun circular splicing system (Th. 6.1). This supplementary hypothe-
sis deals with special labels (cycles) of closed paths in the transition diagram of a
finite state automaton recognizing X *, along with simple results concerning these
labels which have been proved in [9] and recalled here. Furthermore, the above-
mentioned result concerning star languages has a relationship with the theory of
variable-length codes [2]. Indeed, we prove that for all star languages X* when X
is a finite set or a rational code, the corresponding circular languages are regular
circular languages generated by finite Paun circular splicing systems (Prop. 6.3
and Cor. 6.1).

In contrast with the linear case, a finite initial set and a finite set of rules do not
guarantee that for the language L generated by the corresponding circular splicing
system, we have that L is a regular circular language. However, this happens for
languages over a one-letter alphabet and in Proposition 7.1 we also prove that in
this case L = X T UY, with X,Y finite sets satisfying simple hypotheses which
make subgroups of cyclic groups intervene (notice that in the special case of a
one-letter alphabet, we can identify each language with the corresponding circular
language). The situation is much more complicated for alphabets of larger size
— even if we restrict ourselves to regular languages. Indeed, there exist regular
languages which are not the Kleene closure of a regular language and such that
the corresponding circular languages are generated by finite Paun circular splicing
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systems. Examples of these languages are cyclic and weak cyclic languages which
are introduced in Section 8 (Prop. 8.3).

Let us briefly sketch the contents of this paper. In Section 2 we gathered
some known results and other easy new results on circular languages (Sect. 2.1)
and splicing (Sect. 2.2). Differences between linear and circular splicing have
been underlined in Section 2.3 whereas related notions have been collected in
Section 2.4. As far as we know, very few results for circular splicing systems
are known, and these are surveyed in Section 2.5, along with several additional
hypotheses which might or might not be added to circular splicing systems. In
Section 3 we explicitly observe that the computational power of the three circular
splicing systems is different. Some questions are also asked. In Section 4, we
introduce the general problem we are attacking. Section 5 is devoted to definitions
and results concerning cycles. The last three sections in this paper are dedicated
to our main results which are given with respect to the Paun definition (with no
additional hypotheses). However, digressions on Pixton’s systems are also given.
In Section 6 we prove our result for star languages. The case of languages over a
one-letter alphabet is investigated in Section 7. In Section 8 we introduce cyclic
and weak cyclic languages. A preliminary shorter version of some of the results
gathered in Sections 2—4 and 6 in this paper was presented at DNA6 [5]. In
addition, Theorem 6.1 (reported in Sect. 6 with a correct proof) is a generalization
of Theorem 1 presented (with a wrong proof) in the same paper [5].

2. LANGUAGES AND SPLICING: DEFINITIONS AND PROPERTIES

In this section we give the necessary definitions and results concerning languages
and splicing systems which will be used in the next part of this paper. Circular
languages will be considered in Section 2.1 whereas circular splicing systems will
be examined in Sections 2.2-2.4. Additional hypotheses which are introduced in
literature are reported in Section 2.5 but will not be taken into account in this
paper.

Let us also fix some notations. We denote by A* the free monoid over a finite
alphabet A and by |w| the length of w € A*. For every a € A, w € A*, we denote
by |w|, the number of occurrences of a in w, whereas for a subset X of A* we
denote by |X| the cardinality of X. We also set AT = A* \ 1, where 1 is the
empty word. A word x € A* is a factor of w € A* if uy,us € A* exist such that
w = uirue and x is a proper factor of w if uyus # 1. Furthermore, x is a prefiz
(resp. suffir) of w if uy =1 (resp. ue = 1) and z is a proper prefiz (resp. proper
suffiz) of wif ug #1 = wuy (resp. u; # 1 = ug). In addition, for each w € A*, we
set alph(w) = {a € A | a is a factor of w}.

We also use the following notations and we suppose the reader is familiar with
elementary finite state automata theory (see [2,21]). Let A = (Q, A, d, g0, F) be a
finite state automaton, where () is a finite set of states, go € @ is the initial state
and F C () is the set of final states. The transition function § is defined in the
classical way [2,21]. A is deterministic if, for each ¢ € Q, a € A, there exists at
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most one state ¢ € @ such that §(¢g,a) = ¢’. In addition, A is trim if each state is
accessible and coaccessible, i.e., if for each state ¢ € @ there exist x,y € A* such
that d(go,x) = ¢ and d(q,y) € F. As usual, in the transition diagram of a trim
deterministic automaton A, each final state will be indicated by a double circle
and the initial state will be indicated by an arrow without a label going into it.
A successful path is a path in the transition diagram of A going from the initial
state to a final state.

Let A = (Q,A,0,q0,F) be a trim deterministic finite state automaton, let
ai,...,an,q,q be such that ai,...,a, € 4, ¢,¢ € Q, 6(q,a1---a,) = ¢. We
say that ¢ and 0(q,a1---a;), 1 < i < n, are the states crossed by the transition
5(¢,a1---an) = ¢ and, for each i € {1,...,n — 1}, 6(¢q,a1---a;) is an internal
state crossed by the same transition. Given a regular language L C A*, it is well
known that there exists a minimal finite state automaton A recognizing it, i.e.,
such that L = L(A). This canonical automaton is determined uniquely up to a
renaming of the states and (when we make it trim) it has the minimal number
of states. In this paper, for a regular language L, A = (Q, A4, 6, qo, F') will be the
minimal automaton recognizing it. Regular languages will be also represented at
times by means of regular expressions.

2.1. CIRCULAR LANGUAGES

As we have already said in Section 1, circular words have been intensively ex-
amined in formal language theory. For a given word w € A*, a circular word ~w
is the equivalence class of w with respect to the conjugacy relation ~ defined by
xy ~ yx, for x,y € A* [23]. For every a € A, the notations |~w|, |~w|, and
alph(~w) will be defined respectively as |w|, |w|, and alph(w), for any representa-
tive w of ~Yw. Furthermore, when the context does not make it ambiguous, we will
use the notation w for a circular word ~w. ~A* is the set of all circular words over
A, i.e. the quotient of A* with respect to ~. Given L C A*, "L = {~w | w € L}
is the circularization of L, i.e. the set of all circular words corresponding to el-
ements of L, while every language L such that YL = C, for a given circular
language C' C~A*, is called a linearization of C. The full linearization Lin(~L)
of ~L is the set of all the strings in A* corresponding to the elements of ~L, i.e.,
Lin(“L) ={w' € A* | 3w € L : w' ~ w}. In the next part of this paper, for all
X1,..., X CA*, weset (X7 X)) ="X1--- X,,.

Example 2.1. For w = abbaa, we have Lin(~abbaa) = {abbaa, bbaaa, baaab, aaabd,
aabba}. Every non empty subset of Lin(~abbaa) is a linearization of ~abbaa. The
circularization of {abbaa,bbaaa} is ~abbaa.

Circular splicing deals with circular strings and circular languages and as a
result, with formal languages which are full linearizations of circular languages.
The following proposition states an obvious property of full linearizations. It is
reported here for the sake of completeness.
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Proposition 2.1. A language L is the full linearization L = Lin(C) of a circular
language C if and only if L is closed under the conjugacy relation, i.e., for all
LI'e A*ifle L andl' € ™1, we have l’ € L.

Proof. Let L = Lin(C) = {w' € A* | 3~w € C': w' ~ w} be the full linearization
of a circular language C'. Let [ € L. Then, ~I € C and, by using the definition
of full linearization, for every I’ € ~I, we have I’ € L. Then, L is closed under
the conjugacy relation. Conversely, L C Lin(~L) and, if L is closed under the
conjugacy relation, then it holds Lin(~L) = L. O

In the next part of this paper, we will consider languages closed under the
conjugacy relation and the action of circular splicing over their circularization.
We denote by Fin (resp. Reg) the class of finite (resp. regular) languages over
A. Given a family of languages FF'A in the Chomsky hierarchy, F'A™ consists
of all those circular languages C' which have some linearization in F'A. In this
paper we deal only with circular languages having a regular linearization, i.e.,
with Reg™ = {C C~A* | 3L € Reg : ~L = C}. It is classically known that
given a regular language L C A*, Lin(™~L) is regular (see Ex. 4.2.11 in [21] where
Lin(~L) is called CYCLE(L)). As a result, given a circular language C, we have
C € Reg™ if and only if its full linearization Lin(C') is regular. If C € Reg™ then
C' is a regular circular language. Analogously, we can define context-free (resp.
context-sensitive, recursive, recursively enumerable) circular languages.

2.2. CIRCULAR SPLICING

The splicing operation in the circular case deals with biological phenomena
which are different from the ones modelled by the linear case, but as well as for
linear splicing, three definitions of circular splicing are known and are recalled
below.

Head’s definition [28]. A Head circular splicing systemis a quadruple SCy =
(A,1,T,P), where I C~A* is the initial circular language, T C A* x A* x A*
and P is a binary relation on T such that, for each (p,z,q),(u,y,v) € T, if
(p, z, q)P(u,y,v) then x = y. Thus, given two circular words ~hpzxq, ~kurv €~ A*
with (p,,q), (u,x,v) € T and (p,x,q)P(u,z,v), the splicing operation is defined
to produce ~hprvkuzxq.

Paun’s definition [24]. A Paun circular splicing system is a triplet SCpa =
(A,I,R), where I C™~A* is the initial circular language and R C A*|A* $A*|A*,
with |,$ & A, is the set of rules. Then, given a rule r = wuj|us$uz|uy and two
circular words ~hujus,™ kusug, the splicing by the rule is defined to cut and lin-
earize the two strings obtaining ushu; and uskus, and to paste and circularize
them obtaining ~ushujuskus.

Pixton’s definition [26]. A Pizton circular splicing system is a triplet
SCpr = (A,I,R) where A is a finite alphabet, I C~A* is the initial circular
language, R C A* x A* x A* is the set of rules and if r = (a, &’; ) € R then there
exists ' such that 7 = (¢/, ; 8') € R. Thus, given two circular words ~ae,~a'¢,
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the splicing by the two rules r,7 is defined to cut and linearize the two strings,
obtaining ea, €’a’, and then to paste, substitute and circularize them, producing
~efe' 3. Any pair of rules (r,7) of the given form may be used.

Remark 2.1. We notice that in a Pixton circular splicing system, for r,7 € R, we
can have r = 7. Furthermore, for a rule r = (o, &/; 8) € R, we could have different
rules 7; = (o/,;8)) € R such that the pair (r,7;) may be used. Nevertheless,
we will adopt the notation (r,7) since the context will not make it ambiguous.
Symmetrically, for given rules r; = (a,a/;0;) € R, 1 < i < v, the same rule
7 =7 = (,a; ") € R can be associated with all the r;’s. An example of this
situation is given in Example 3.2.

Remark 2.2. As usual, we restrict ourselves to circular splicing systems with a
finite or regular initial circular language. Furthermore, it goes without saying that
the sets T" and R are finite in the three definitions of circular splicing given above.

Remark 2.3. We must note that in the original definition of circular splicing
language given by Paun in [19], rules in R can be used in two different ways: one
way has been described above, the other, called self-splicing, will be defined in
Section 2.5. In this paper, in order to make the three definitions uniform, we have
preferred to omit self-splicing from Paun’s definition.

We now give the definition of circular splicing languages. For a given splicing
system SCx, with X € {H, PA, PI}, we denote (w',w"”)F,w the fact that w is
produced from (or spliced by) w’, w” by using a rule r. Furthermore, given a lan-
guage C C~A*, we denote o' (C) = {z €~ A* | Jw',w" € C,3Ir € R. (v, 0" )k, 2}
Thus, we define 0°(C) = C, o'*1(C) = ¢*(C) U o’'(c*(C)), i > 0, and then
0*(C) = U;»0 0" (C). We explicitly note that for Pixton’s systems, the splicing
operation is the combined action of a pair of rules, r and 7, and we will use the
notation k.7 to make this behaviour evident.

Definition 2.1. Given a splicing system SCx, with X € {H, PA, PI}, the cir-
cular language C(SCx) = o*(I) is the language generated by the system SCy,
I being the initial circular language in SC'x.

A circular language C is Cx generated (or C is a circular splicing language) if a
splicing system SC'x exists such that C = C(SCx).

Example 2.2. In [28] it is shown that {~(aa)™|n > 0} is Cy generated by SCy =
(A, I,T,P) with A = {a}, I = {~1,"aa}, T = {(1,a,1)}, and (1,a,1)P(1,a,1).
We can observe that {~(aa)™|n > 0} is also Cp4 generated, by choosing SCps =
(A, I,R), with A = {a},I = {~aa} U1, R = {aa|1$1|aa}, as shown in Section 7.
Finally, in Example 3.1 we prove that C' ="(aa)*b is Cp; generated by choosing
SCpr = (A, I, R), with A = {a,b}, I = {~b,~a?b,~a*b}, R = {(a?, a?b; a?), (a®b,
a*1)}.

We end this section with Lemma 2.1 which shows that in order to character-

ize the class of the Cpa generated languages C, we can limit ourselves to the
Cpa generated languages C' with 1 ¢ C| i.e., to the circular splicing systems
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SCpa = (A,I,R) with 1 € I. The proof is rather simple and reported below only
for the sake of completeness.

Lemma 2.1. Let SCpa = (A,I,R) be a circular splicing system. Then, the
following conditions hold.

1) For each w €~A*, r € R, if r can be applied to the pair (w,1) (resp.

(L,w)), then (w, 1), w (resp. (1,w)k, w).

2) For each wy,we €~A*, r € R, if (w1, w2), 1 then wq = we = 1.

3) Let C = C(SCpy4). Then 1€ C if and only if 1 € I.

4) If C =C(SCpya) and 1 € C, then C\ {1} is a Cpa generated language.
5) If C =C(SCpa) and 1 ¢ C, then C U {1} is a Cpa generated language.
Proof. 1) Let w €~ A*, r = uj|usSus|us € R be such that r can be applied to
the pair (w,1) and let w; €~A* be such that (w,1)F, w;. Then, looking at
the definition of the circular splicing operation, there exist h,k € A* such that
~huius = w, “kusug = 1 and “ushujuskus = wi. As a direct result we have
k=u3z =wu4 =1 and so w = w;. A similar argument allows us to conclude that if
r can be applied to the pair (1,w) and (1, w)F, w; then w = wy.

2) As a preliminary observation, we notice that, by looking at the definition of
the circular splicing operation, for each circular splicing system SCpa = (A, I, R),
for each wy, we €~ A*, r € R, if (w1, wa), w then alph(w) = alph(wi)Ualph(ws).
Consequently, if (w1, ws)b, 1 then alph(w;) U alph(ws) = 0 and wy = we = 1.

3)If 1 € I then 1 € C since I = 0%(I) C U, 0'(I) = 0*(I) = C. Conversely,
let 1 € C = U;500'(I) and, by contradiction, suppose that 1 ¢ I = ¢%(I).
Then, there exists i > 0 such that 1 € o¢*(I) = o'~ }(I) U o/(¢*"1(I)). Thus,
for the minimal integer ¢ such that the above condition is satisfied, we have 1 €
o' (o0'=1(I)), i.e., there exist wy,wy € o'~ 1(I), r € R, such that (w1, wq), 1. By
using 2), we get w3 = wy = 1 and this is a contradiction.

4) Let C = C(SCpa) with SCpa = (A,I,R) and 1 € C. By using 3), we get
1 € I. We claim that C'\ 1 = C(SC}p,), where SCp, = (A, I\ 1, R).

Indeed, we first prove, by using induction over 4, that for each i € IN we
have 1 ¢ o'(I \ 1) C ¢%(I). This relation is obviously satisfied for i = 0 since
1¢o°I\1)=1I\1CI=0%1I)and, fori > 0, in view of 2), by using the relation
o'TH(I\1) = o*(I\1)Uo’ (¢*(I\1)) and the induction hypothesis. As a consequence,
C(SCh4) =Uise0'(I\1) CC\ 1since 1 € ;500 (I\1) C U500 (1) =C.

Conversely, let us prove that C\ 1 = J,~q0"(I) \ 1 € C(SC},), i.e., that for
each i € N, we have ¢'(I) \ 1 C C(SCp,), by using induction over i. If i = 0
then o®(I)\1 =1\1=0%°1I\1) C C(SCp,). Otherwise, for i > 0, we have
o'(I)\'1 = [o" 1 (I) U o' (c""1(I))] \ 1. By induction hypothesis, o*~*(I) \ 1 C
C(SC%,4). Let w € o/(c®"1(I)) \ 1. Then, there exist wy,ws € oc*"1(I), r € R,
such that (wy,ws)F, w. In view of 1), we have wy # 1 or wy # 1. So, by using
once again 1), either wy = 1, wo =w € o} (I)\lorwy =1, wy =w € o1 (I)\ 1
or wy,ws € 0"~ 1(I)\ 1 and, by using the induction hypothesis, w € C(SC}p ,).

5) Let C = C(SCpa) with SCpa = (A, I,R) and 1 ¢ C. We claim that
CU{1}=C(SCp,), where SCp, = (A, IU{1}, R).
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Indeed, it is easy to prove, by using induction over ¢, that for each i € N we
have o?(I) C C(SCh,) = U;so o' (I U{1}). This relation is obvious for i = 0
since 0%(I) = I C TU{1} = ¢°(J U {1}) and, for i > 0, by using the relation
o I) = o'(I) U o'(6*(I)) and the induction hypothesis. Consequently, since
1eITUu{l} =0T U{1}), we have C U {1} = ;5o " (I) U{1} C C(SCh ).

Conversely, let us prove that C(SCp,) = U, (I U {1}) C C U {1}, ie.,
that for each i € N we have o*(I U {1}) C C U {1}. Indeed, it is obvious that
o%(Iu{1}) =1TU{1} C CU{1}. Furthermore, in view of 1), for i > 0, we have
ol (ITU{1}) =01 (TU{1})Uo'(c""1(I)). Thus, c*(IU{1}) C CU{1}, by using
the induction hypothesis. O

In the next part of this paper, any circular splicing system SCx = (4, I, R),
with X € {PA, PI},is called a finite circular splicing system if both I, R are finite
sets. Analogously, a Head circular splicing system SCy = (A,I,T, P) is finite if
both I, T are finite sets.

2.3. LINEAR AND CIRCULAR SPLICING

Attempting to extend the results from the linear case to the case of circular
splicing is a natural research direction which arose. Example 2.3 shows that this
attempt fails and actually underlines the difference between linear and circular
splicing, deepening the observations made in [28]. In our examples we also use
Proposition 2.2 which allows us to state that some circular languages are not
generated by finite Paun’s splicing systems. The analogous result for finite Head’s
splicing systems can be proved by using a similar argument or can be obtained
as a byproduct of Proposition 3.1. Since we only deal with finite circular splicing
systems, a circular language C will be called C'x generated, with X € {H, PA, PI},
if a finite circular splicing system SCx exists such that C = C(SCx).

Proposition 2.2. Let L = Lin(C) be an infinite language which is the full lin-
earization of a circular language C. Suppose that L satisfies the following condition

ViimeL: Im¢L.

Then C is not generated by a finite Paun circular splicing system.

Proof. By contradiction, suppose that a finite Paun circular splicing SCpy =
(A, 1, R) exists such that C' = C(SCpa). Let w be a word of L with length greater
than the maximal length of the circular words in I. Since ~w € C'\ I, there exist
~hujus, ~kugug €L such that w ~ushujuskus. Now, L being closed under
the conjugacy relation (Prop. 2.1) and w being in L, we have ushujuskus € L.
Thus, ushu; €~hujue and ~huius €~ L and hence | = ushu; € L. By the same
argument, m = ugkus € L and Im = ushujuskus € L which is a contradiction. [

Example 2.3. In [15] (resp. [4]) it is shown that (aa)* is not generated by a finite
Head (resp. Pixton) linear splicing system, while, as observed in Example 2.2,
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its circularization {~(aa)™|n > 0} is generated by a finite Paun (or Head) circu-
lar splicing system. On the contrary, let us consider the regular language (aa)*b.
Using results in [7,9], we know that (aa)*b is generated by a finite Paun linear
system. Take its circularization C' ="(aa)*b. Notice that there is a lineariza-
tion {a*ba* | k € N} of C which is not regular. However, the full linearization
Lin(C) = (aa)*{b, aba}(aa)*, given in [26], is regular. Thus, C' € Reg™ (Sect. 2.1).
Furthermore, for all I,m € Lin(C'), we have |lm|, = 2 and so Im ¢ Lin(C). Using
Proposition 2.2, we have that C cannot be generated by a finite Paun (or Head)
circular splicing system.

2.4. DESCRIPTIONAL COMPLEXITY

In Section 4, we introduce the main problem we deal with in this paper but
also other interesting questions about circular splicing could be asked and will
be outlined in the next part of this section. One of these interesting problems
could be the investigation of the splicing sub-system of a given circular splicing
system. For example, ~(A2)*, for A = {a,b}, is Cpa generated by I = ~A? and
R = {w1|1$1| wa | wy,ws € A%} (Prop. 6.3). Thus, with the same A and I, by
considering R; = {aa|1$1|aa} C R, we obtain ~(aa)*, with Ry = {bb|1$1]bb} C R
we generate ~(bb)* and with Rz = {ab|1$1]|ab} C R we obtain ~(ab)*. It would
be interesting to prove or to disprove that all circular languages can be obtained
as described before.

Let us take Ly = {w € A* | 3h,k € N |w|q = 2k, |w|, = 2h}. It is easy to see
that L, is a language closed under conjugacy. Moreover, L, is a regular language
since L is the shuffle of (aa)* and (bb)* (see [21] for the definition of the shuffle op-
eration between languages). Thus, ~ Ly is a regular circular language. In Section 6,
we will see that the splicing system SCpy = (A,I, R) generates ~L;, when we
choose A = {a,b}, I = {~aa,~bb,~abab}Ul and R = {aa|1$1|1, bb|1$1|1, ab|1$1|1}.
On the other hand, one can see that ~L; cannot be generated by choosing a proper
subset of R. This observation is related to the notion of a minimal splicing system
which is introduced in [25] and which is a typical research topic concerning de-
scriptional complezity. It goes without saying that this notion is the counterpart of
the minimal automaton for regular languages. Here, the minimality of the system
could be referred to the cardinality of R or to the length of the rules in R. In the
first case, a complete answer to this question will be given for languages over a
one-letter alphabet in Section 7.

2.5. OTHER MODELS OF CIRCULAR SPLICING SYSTEMS

As we have already said in Section 1, additional hypotheses can be added to the
definitions of circular splicing given by Paun and Pixton. We report them below
along with a result proved in [26] which uses these hypotheses.

Hypothesis 1. R is a symmetric scheme, i.e. for each rule r = wuj|ua$us|uy
(resp. 7 = (a, @’;3)) in the splicing system SCpa (resp. SCpy) there is the rule
T = uslugSusluz (resp. T = (o/, 5 3')).
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Remark 2.4. Any set R of rules in a splicing system SCp;y is implicitly supposed
to be symmetric.

Hypothesis 2. R is a reflexive scheme, i.e. for each rule wuj|ua$us|ug (resp.
(o, &5 B)) in the splicing system SCp 4 (resp. SCpr) there are the rules uq |ug$ug |us
and uglusSuslug (resp. (o, ;) and (o/,d';a)).

Hypothesis 3. Self-splicing. Self-splicing is defined in a splicing system SCp 4
(resp. SCpr) producing ~ughu; and ~uskusg from ~hujuskusus and the rule
up|ugBus|ug (resp. ~0e,~['e starting from ~aea’e’ and the rules (a,a’;f),
(o/,a;3")). We denote w F,(w', w”) (resp. w k. 7(w',w”)) the fact that (w’,w")
is produced from w by using self-splicing with a rule r (resp. a pair of rules r
and 7).

Below we report a known result which uses Pixton’s systems with Hypotheses 1—-
3 and which generalizes a similar theorem proved for linear splicing [26]. In order
to be more precise, we first give the definition of circular languages generated by
splicing systems which use both splicing and self-splicing operations.

Given a splicing system SCx, with X € {PA, PI}, and given a language
C C~A*, we denote 7'(C) = {z €¥A* | ', w" € C,3Ir € R. (W, 0" z}
U{z, 2" €e”A* | Fw e C,3r € R. wh,.(2/,2")} (resp. 7/(C) ={z €~ A* | Tu',w" €
C,3r € R. (W, w7 2} U{Z,2" €”A* | Jw € C,3r € R. w F,.7(2,2")}).
Thus, we define 79(C) = C, 71(C) = 74(C) U 7(7*(C)), @ > 0, and then
™(C) = UiZO m(C).

Theorem 2.1 [26]. Let SCp; = (A,I,R) be a circular splicing system with I a
regular circular language and R reflexive and symmetric. Then 7*(I) is regular.

3. COMPUTATIONAL POWER OF CIRCULAR SPLICING SYSTEMS

In Section 4 we will introduce the problem we will focus on in the next part of
this paper. So, before going on, it is necessary to specify which of the three above-
mentioned definitions will be referred to in our investigation. This observation
naturally leads to the question posed in Problem 3.1 which has a negative answer,
as Example 3.1 shows. Proposition 3.1 is an attempt to give a more precise answer
showing that the computational power of circular splicing systems increases when
we substitute Head’s systems with Paun’s systems. We also give examples that
lead us to believe that an analogous result holds for Paun’s systems and Pixton’s
systems (Exs. 3.1 and 3.2). Nevertheless, in this paper we mainly deal with finite
Paun’s systems and with the corresponding class of generated languages, denoted
C(Fin, Fin).

Below we formalize the problem of comparing the computational power of the
three definitions of circular splicing given in Section 2.2.

Problem 3.1. Given C = C(SCx), with X € {H, PA, PI}, does SCy exist, with
Y # X, Y € {H, PA, PI}, such that C = C(SCy)?
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Proposition 3.1 gives a partial answer to Problem 3.1. This proposition shows
that Paun’s systems have a greater computational power than Head’s systems.

Proposition 3.1. If C C~A* is Cy generated, then C is Cpy generated.

Proof. Given SCy = (A,I,T,P) and C = C(SCy), let us consider the sys-
tem SCps = (A,I,R), where R = {r | r = pz|qSuz|v, (p,z,q),(u,z,v) €
T, (p,z,q)P(u,z,v)}, and C' = C(SCpa). Set C = J,sg0y(I) and C" =
U;>0 0% (I), where we denote by oy (resp. op) the function o defined in Sec-
tion 2.2 when we refer to SCy = (A, I, T, P) (resp. SCpa = (A, I, R)). We prove
that C' = (", i.e., that for each i € N we have o (I) = 0% (I), by using induction
over 1.

Indeed, for i = 0, we obviously have ¢%,(I) = I = 0%(I). On the other hand,
for i > 0, we have w € 0% (I) = o '(I) U o'y (ol (1)) if and only if either w €
0?1(1) or there exists w’ ="~hpxq, w”’ =~kuzv € 03;1(]), with (p,z, q), (u,x,v) €
T, (p,z,q)P(u,x,v), w ="hparvkuxq. In the first case, by using the induction
hypothesis, we have w € o5 '(I) C 0% (I). The second case is equivalent to the
existence of w',w” € o'5 ' (I) = o7 ' (I) (induction hypothesis) and to a rule r =
pz|qSuz|v in R (by construction of R) such that w’,w” generate w through r, i.e.,
w € ol (I). Conversely, if w € % (), then either w € o5 ' (I) = o' 1 (I) C oy (1)

(induction hypothesis) or w € o/p(0s *(I)). As we have already observed, in the

latter case, we have w € o’y (0% (1)) C o (I). O

Remark 3.1. One can ask whether the result contained in Proposition 3.1 can be
extended to finite Pixton’s systems, i.e., if each C C~A* which is C'p 4 generated
is also Cpr generated. We do not know whether this question has a positive
answer. However, a trivial extension of the argument contained in the proof of
Proposition 3.1 does not work.

Indeed, given SCps = (4,1, R), we consider the system SCp; = (A, I, R'),
where R’ = {(ujug, usug; uiuyg), (ustg, uiug; uguz) | ui|ueduslug € R}. Examples
exist such that C(SCpa) # C(SCprp).

For instance, let us consider the finite Paun circular splicing system SCpyg =
(A,I,R), where A = {a,b}, I = { ~aa, ~bb } and R = {aa|181|bb, a|a$b|b}. We
prove that, for each w € C(SCpa) = ;50" (I), there exist m,n € N such that
|w|, = 2n, |w|, = 2m, by using induction on the minimal i such that w € o*(I).
Indeed, if ¢ = 0, i.e., w € I, then the conclusion holds. Thus, let us suppose
i > 0. Since o'(I) = o'~ Y(I) Uo’(c*"1(I)), by using induction hypothesis, we can
suppose that there exist wy,ws € o*~1(I), r € R such that (wy,ws) . w. Thus,
wy; = “haa, wy = ~kbb and, by induction hypothesis, ni,n2,mi,ms € N exist
such that |wi]s = 2n1, |wilp = 2ma, |wals = 209, |walp = 2ma. As a result, we
have |w|, = 2n, |w|y = 2m, with n = ny + n2, m = my + ma. As a consequence
~aaabbb & C(SCp ).

Now, let us consider the canonical transformation of the splicing system SCp 4
given above into the Pixton system SCp; = (4,1, R'), where R’ = {t1,11,t2,{2}
with t; = (aa,bb;aabd), t; = (bb,aa;1), t2 = (aa,bb;ab), ta = (bb,aa,ba).
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We can easily check that (~aa,™ bb) b, 1, ~aabbba. As a consequence C(SCpa) #
C(SCpr).

On the other hand, let SCp4s = (A, I, R) be a Paun system satisfying the follow-
ing property: for each wuq|ug$ug|ug, uf|ubSuslul € R, if ujus = vjul and ugug =
usuy then, we have ujuy = uju}, usus = ujub. Thus, it is easy to see that, for the
Pixton system SCp; = (A, I, R'), with R = {(ujuga, usus; uiuy), (ustg, uits; uzuz)
| ui|uaSuslug € R}, we have C(SCpa) = C(SCpy).

The following examples give results concerning the computational power of
circular splicing systems. Namely, we have already observed that Paun’s circular
splicing systems cannot generate all regular circular languages (Ex. 2.3). Pixton’s
systems seem to have a greater computational power and this is emphasized in
Examples 3.1 and 3.2. Nevertheless, regular circular languages exist that cannot
be generated by any finite circular splicing system [10].

Example 3.1. Let us consider again C' =~ (aa)*b. We know that C' cannot be
Cy or Cpa generated (Ex. 2.3). On the contrary, we prove that C' is Cpy gen-
erated by choosing SCp; = (A, I, R), with A = {a,b},I = {~b,~a?b,~a*b}, R =
{(a?,a®b;a?), (a®b,a?;1)}. Firstly let us show that C(SCpr) = ;50 (1) C C,
by induction on the minimal i such that w € ¢*(I). If i = 0, i.e., w € 6°(I) = I,
then w € C. Now, let w € o'(I) = 0" 1(I) U0’ (0" 1(I)), with i > 0 and let us
prove that w € C'. By using induction hypothesis, we can suppose that there exist
wy,wy € 0"~ 1(I) and 7,7 € R such that (w1, ws2)r7 w. Since wy,ws € o~1(I),
then, by induction hypothesis, wi,ws € C. Thus, k',h’ € N exist such that
lwila = 2K, Jwala = 20 and |wi|p = 1 = |waly, i.e. wy ="(aa)¥'b, wy ="(aa)"'b,
K',h" > 1. Given that R = {(a?,a%b;a?), (a?b,a?;1)}, looking at Pixton’s def-
inition of splicing, with the same notations as in this definition, we see that
w; =aae with € = (aa)* ~1b, wy =~aabe’ with ¢ = (aa)” ' and w ="eaae'.
Thus, w =~ (aa)* b(aa)” ~! € C.

Vice versa, let us show that C C C(SCpy), i.e., by using induction over n, we
prove that for every n > 0, we have w ="~ (aa)"b € C(SCpy). If n =0,1,2, then
w € I. Let us suppose n > 2 and ~(aa)'b € C(SCpy), for 0 < i < n. We prove
that there exist wy,wy € C and r,7 € R such that (w1, ws)bF,7 ~(aa)™b. Take
wy ="(aa)" b and wy ="~(aa)?b. By induction hypothesis, wy,ws € C(SCpr).
Furthermore, by setting (aa)"~2b = ¢, aa = €’ and by using the rules r,7 € R, we
get (w1, w2)br s ~(aa)" 2baaaa =~ (aa)™b.

In the example below we use the notion of factors of a circular word: = € A* is
a factor of a circular word w when a representative w’ of w exists such that z is a
factor of w'.

Example 3.2. Consider Ly = {w € A* | 3h,k € N |w|, =2k +1,|w|p =2h+1}.
It is easy to see that Ly is a language closed under conjugacy. Moreover, Lo is
a regular language since Ly is the shuffle of (aa)*a and (bb)*b (see [21] for the
definition of the shuffle operation between languages). Thus, ~ Ly is a regular
circular language. On the other hand, for all [;m € Lo, since |lm|, and |lm|, are



202 P. BONIZZONI ET AL.

both even, then Im ¢ Lo. So, thanks to Proposition 2.2, we have that ~ Ly is not
Cy or Cpa generated.

Let us prove that ~ Lo is Cpy generated by choosing SCp; = (A, I, R), with
A= {avb}a I = {Nab,Naaab,Nbbba}, R = {T07T17T2;T3}a T = (abal;aa)ar2 =
(ab,1;bb), 73 = (ab, 1;abab), T1 =To =T3 =19 = (1,ab; 1) (see Rem. 2.1).

Firstly, let us show that C(SCpr) = U;>q0'(I) €~ L, by induction on the
minimal i such that w € o*(I). Clearly, 0°(I) = I C~Ly. Let w € o'(I) =
o= HI)U o' (0" 1(I)) with i > 0. By using induction hypothesis, we can suppose
that wy,we € o~1(I) exist and r,7 € R also exist such that (w,ws2)r.7 w. By
induction hypothesis, wy,ws €~ Lo. We can distinguish three cases.

Case 1. Let T = rog = (1,ab;1) and r = 1 = (ab,1;aa). Thus w; =",
wy ="abe’ and so w ="~e€e’'aa. We have w €~ L. Indeed, |w|, = |e€'aal, = |wil|a+
l€')a+2 = |w1]q+ |w2|s+ 1. By induction hypothesis |w; |, and |w2|, are both odd,
0 |w|q is odd. Moreover, |w|, = |e€’aaly = |e€’|y = |wil|p +|€'|p = |w1]p + |walp — 1.
By induction hypothesis w1 |, and |ws|, are both odd, so |wl, is odd.

Case 2. Let T =19 = (1,ab; 1) and r = ro = (ab, 1;bb). This case is symmetric
to case 1, so we can use the same argument as in case 1 by substituting a with b
and vice versa.

Case 3. Let T = rg = (1,ab;1) and r = r3 = (ab,1;abab). Thus, w; =",
wg ="abe’ and so w ="ee'abab. We have w €™~ Ly. Indeed, |w|, = |e€'ababl, =
le€' |l + 2 = |€la + |€]a + 2 = |wi]a + |w2]|a + 1. By induction hypothesis |ws |,
and |wsl, are both odd, so |wl|, is odd. Moreover, |w|, = |e€’ababl, = |e€’|p + 2 =
|wi]p + |wzlp + 1. Once again, by induction hypothesis |wi|, and |wz|p are both
odd, so |wlp is odd.

Vice wversa, let us show that ~“Ly C C(SCpr) by using induction over |w|,
w €~ Ly. If w €¥Ly and |w| < 5, then w € I. Let w €~ Ly with |w| =n > 5.
Once again, we can distinguish three cases.

Case 1. Suppose that aa is a factor of w, i.e., wiaaws € w. Take x = wow; and
y = ab. We have |z| < |w|, Yy € I C C(SCpr) and ~x €~ Ly (|z|, = |w|, — 2 and
|z|p = |wl|p are both odd numbers). Thus, by induction hypothesis, ~z € C(SCpy).
Furthermore, (~z,~y)Fr,,r, w. Indeed, when we set € = wowq, 8 =1, € = 1,
B = aa, we get (z,y)ry.r ~€BE S = Ywowiaa = w.

Case 2. Suppose that bb is a factor of w, i.e., wibbws € w. This case is
symmetric to case 1, so by using the same argument as in case 1, we can prove that
w =" waw1bb € C(SCpy) by using 1o, r2 (applied to ~x =~wqyw; and ~y ="ab).

Case 3. Suppose that neither aa nor bb are factors of w. Thus, w ="~(ab)t,
where ¢ is an odd number and ¢ > 1. Consider ~z =~(ab)!~? and ~ab €~ Lo.
Since t is odd, t — 2 is odd too, i.e. ~x =~(ab)!"? €~ Ly. In addition, we have
~ab € I C C(SCpy), |z| < |w| and so, by induction hypothesis, ~x € C(SCpr).
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Finally, when we set « = 1,e =z, =1 and o = ab, ¢ = 1,3 = abab, we have
(“z,~ab)yry rs “€B€' B = ~zabab =" (ab)".

4. MAIN PROBLEM

It is already known that in contrast with the linear case, C'(Fin, F'in) is not
intermediate between two classes of languages in the Chomsky hierarchy. For ex-
ample, in [28] the authors show that ~(ca)™(¢b)™ is Cy generated. A slight modi-
fication of their arguments shows that ~a™b" is Cy generated with a finite initial
circular language, but ~a™b" is a context-free circular language which is not a reg-
ular circular language (since it has no regular linearization). On the other hand,
we have already seen examples of regular circular languages that cannot be gener-
ated by using finite Paun circular splicing systems (Exs. 2.3 and 3.2). In addition,
regular circular languages exist which cannot be generated by any finite circular
splicing system [10]. So far, we have not yet discovered whether C(F'in, Fiin) con-
tains any context-sensitive or recursively enumerable circular language which is
not context-free. Nevertheless, in this paper we restrict our investigation to the
following problem.

Problem 4.1. Characterize Reg™ N C(F'in, Fin).

In the next sections, we approach Problem 4.1 by dealing with different classes
of languages. In Problem 4.2, which generalizes Problem 4.1, we also take into
account the additional hypotheses given in Section 2.5.

Problem 4.2. Can we characterize FA~NC(Fin, Fin) (resp. FA~YNC(Reg, Fin))
for each class F A of languages in the Chomsky hierarchy, for every definition of
C(Fin, Fin) (resp. C(Reg, Fin)) and for every possible combination of the three
hypotheses given in Section 2.5¢

We conclude this section with comments and questions related to Problem 4.1,
i.e. the characterization of the regular circular languages generated by finite cir-
cular splicing systems. In all of them, we will refer to Paun’s definition of circular
splicing but the same conclusions maintain for Pixton’s systems [10].

First of all, note that the class of regular languages closed under conjugacy
relation is closed under union. However, while ~(A42)*, ~(4%)* € C(Fin, Fin),
as shown in Proposition 6.3, we prove in Proposition 4.1 that ~(A2)*U~(A43%)*
¢ C(Fin, Fin). This means that Reg™ NC(Fin, Fin) is not closed with respect to
union. One could ask for additional hypotheses to be added so that the union of
regular circular splicing languages will still be a circular splicing language. Propo-
sition 6.3 gives a partial answer to this question. This research line could bring us
to a complete characterization of the class of regular circular languages that are
generated by finite circular splicing. In the next proposition, as usual, for positive
integers s,t we say that s divides t if t = sv for a positive integer v.
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Proposition 4.1. ~(A%)*U~(43)* ¢ C(Fin, Fin).

Proof. By contradiction, suppose that ~(A2?)*U~(A3)* = C(SCpa), for a finite
circular splicing system SCpag = (4,1, R). Circular splicing systems with an
initial finite set and an empty set of rules generates only finite sets. So, R # 0 and
let r = uq|usSus|us € R. Now, there exists h € A* such that 3 does not divide
s = |hujug| (take h = 1 if |ujuz| # 0 (mod 3), h € A otherwise). Analogously,
there exists k € A* such that 2 does not divide ¢ = |kugua| (take k = 1 if
|uzug| # 0 (mod 2), k € A otherwise). Thus, consider the two words w = (hujusg)?
and z = (kusug)®. We have ~w €~ (A?)*, ~z €~ (A3)* and so ~w,~z € C(SCpa).
Furthermore, rule r can be applied to ~w, ~z. By definition, this rule r generates a
circular word ~y which should be in C(SCp4) and |y| = 2s+3t. Now, ~y ¢~ (A?)*
(since 2 does not divide 2s+ 3t) and ~y ¢~ (A3)* (since 3 does not divide 2s + 3t),
and this is a contradiction. (]

5. CYCLES

In this section we introduce some definitions which will be used in the statements
of the main results in this paper. Let L be a regular language and let A =
(Q, A, 0, qo, F) be the minimal finite state automaton recognizing L. In the next
part of this paper, we say that a word ¢ € A% is a label of a closed path if there
exists ¢ € @ such that 6(¢q,¢) = ¢. Intuitively, if a regular infinite language L
is generated by a finite circular splicing system, we must exhibit a finite set of
rules which are able to produce words with a non-bounded number of occurrences
of such labels as factors. This is the reason for which we give a definition for
referring to some special labels ¢ (cycles) of closed paths in A. As a matter of
fact we mainly deal with a restricted subset of cycles, namely simple cycles, but
the more general Definition 5.1 is given below for the sake of completeness. As
another motivation, we notice that the same notion of a cycle has been considered
in connection with the counterpart of Problem 4.1 for linear splicing systems in [9]
where Proposition 5.1 has also been proved. Finally, in [5], the definition of cycles
has been outlined along with the notion of fingerprint of a cycle. These two
notions allowed us to prove the main result in [5]. This main result is generalized
in Theorem 6.1 and its proof does not make use of these notions.

Definition 5.1 Cycle. Let A = (Q, A, 0, qo, F') be a trim deterministic finite state
automaton. Let ¢, q be such that c € A%, ¢ € Q and 6(q,¢) = q. Let ay,...,a, € A
be such that ¢ = ay -+ - an, n > 1. The word ¢ € AT is a cycle in A (with respect to
the transition §(g, ¢) = ¢) if the internal states crossed by the transition §(q,c) = ¢
are different from ¢ (i.e., for all ¢/, ¢’ € AT such that ¢ = /¢, we have §(q,c’) # q)
and either the states 6(q,a1---a;), i € {1,...,n}, are different from one another
(simple cycle) or the condition which follows is satisfied.

e There exist a positive integer k, wui,...,ury1,¢1,...,cxk € AT, positive

integers p1,...,pr and qq, 4, ..., Qs Gy € @, With ¢y = ¢, = ¢, such
that
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—Cc= U1szlu2 e 'Ukczkuk—i-l;

— 0(qi_q,u;) = ¢}, 1 <i < k+1 and the internal states crossed by the
transition d(g(, u1 - - - ug+1) are different from one another (and with
respect to q);

— for each i € {1,...k}, d(q},¢ci) = ¢, and either ¢; is a cycle (with
respect to d(g,ci) = ¢;) or p; = 1 and ¢; is the concatenation of
powers of distinct cycles, i.e., ¢; = (7)™ (¢3)" - - (c})", with ¢} being
a cycle (with respect to d(q;,cj) = ¢;) and ¢} # ¢}, j,5" € {1,...,s}.

A cycle ¢ with respect to (g, ¢) = ¢ is simply named cycle when the context makes
the meaning evident.

The characterization of the labels of closed paths which are not cycles given in
the proposition below has been proved in [9]. In this proposition, concatenation
means the concatenation of words in A*.

Proposition 5.1 [9]. Let L be a regular language and let A = (Q, A, 0, qo, F') be
the minimal finite state automaton recognizing L. Let c,q be such that ¢ € AT,
q € Q and §(q,c) = q. If ¢ is not a cycle, then one of the following cases occurs.
(1) There exist c1,...,c, € AT and positive integers p1, ..., px such that ¢ =
e ¥ eis a cycle (with respect to 6(q,¢;) = q), 1 < i < k, and
either k >1 or k=1 and px > 1.
(2) There exist h,c1,9,\ € AT, ¢ € Q, such that ¢ = heiherg, 6(q,h) = ¢/,
0(¢',c1) =q =6(¢',N), 6(q',9) = q, c1 is a cycle and X is not a power of
c1 (e, NECE, t>1).

6. REGULAR LANGUAGES IN C(F'in, Fin): CYCLE CLOSED STAR
LANGUAGES

In this section, we will introduce a class of regular languages whose circular-
ization we prove to be in C'(Fin, Fiin). As we have already said, we will consider
languages L closed under conjugacy relation, and the action of circular splicing
over their circularization YL = C. Furthermore, since we will be referring to
Problem 4.1, L will be regular. Here, we also consider the particular case in which
L = X* is the Kleene closure of a regular language (Def. 6.1). In this case, we prove
that the circularization of L = X* is in C(Fin, Fin) under the additional hypoth-
esis that either X is finite or that X™* is a cycle closed language, i.e., X contains
each simple cycle in the minimal finite state automaton A = (Q, A, J, qo, F') recog-
nizing L (Th. 6.1, Prop. 6.3). Several examples are given comparing the class of
languages satisfying these additional hypotheses with both circularizations of star
languages and regular circular languages generated by (Paun or Pixton) splicing
systems (Exs. 6.2-6.4) and some questions are posed (Probs. 6.1 and 6.2).

Definition 6.1. A star language is a language L C A* that satisfies the following
conditions:

(1) L = X*, with X a regular language;

(2) L is closed under conjugacy relation.
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Under an additional hypothesis, a star language has its circularization in C(F'in,
Fin), as shown in Theorem 6.1, the proof of which can be obtained thanks to the
following proposition.

Proposition 6.1. Let X* be a star language and let SCpy = (A,I,R) be a
splicing system. If I C~X* then C(SCpa) C~X*.

Proof. Let us prove that C(SCpa) = ;50" (I) C~X* holds, by using induction
on the minimal i such that ~y € oi(I). If i = 0, i.e., Yy € 6°(I) = I then
~y €7 X*, since I C~X*. Otherwise, ~y € o'(I) = o1 (I) Uo’(c*71(I)) with
¢ > 0. By using induction hypothesis, we can suppose that 3y’ €~y exists such
that ' = ushuiugkus with ~ughuy,~uskus € o*=1(I). By induction hypothesis,
~ushuy,~ugkus €~ X* and, X* being closed under conjugacy, ushui, uskus € X*.
Because X* is a submonoid, ushujuskus =y € X*, and so ~y €~ X*. O

Definition 6.2. Let L be a regular language and let A = (Q, A, 0, qo, F') be the
minimal finite state automaton recognizing L. L is cycle closed if for each simple
cycle ¢ in A, we have ¢ € L.

FIGURE 1. Automaton for (ba*b)*.

The notion of cycle closed language L is referred to the minimal finite state
automaton recognizing L. Nevertheless, it is easy to see that all the arguments
which follow maintain when L is a language containing all the simple cycles in
a trim deterministic finite state automaton recognizing L. If we give this more
general definition, decidability questions can obviously be asked. Namely, can we
decide whether a star language is cycle closed? One of the difficulties in answering
this question is that in order to prove a star language L does not have this property,
we must check all finite automata recognizing L. So, a further development of this
paper will be to prove (or disprove) that a star language which is cycle closed with
respect to a finite automaton recognizing it, is always cycle closed with respect to
a standard automaton, e.g., the minimal automaton recognizing it.

Example 6.1. Let us consider the regular language L = (ba*b)*. L = (ba™b)* is
not a cycle closed language. Indeed, for the cycle ¢; = a in the minimal automaton
which recognizes it, depicted in Figure 1, we have ¢; = a € L. Furthermore, let
A be a trim deterministic automaton recognizing L. Let k be a positive integer
greater than the number of the states in .4 and consider ba*b € L. It is easy to see
that there exists j such that j < k and a7 is a cycle in \A. Thus, since LNa* = 0,
L is not a cycle closed language with respect to A. Observe that L is not a star
language.
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We now prove that the circularization of a cycle closed star language (i.e., a
language which satisfies both Defs. 6.1 and 6.2) is generated by a finite circu-
lar splicing system. In order to do that, we need two preliminary results. In
Lemma 6.1 we will define a set of words I; and we will show that I is a finite set.
The circularization of I; will be the initial set of the splicing system associated
with a cycle closed star language L (Th. 6.1). Informally, I; will be the set of the
labels w of the successful paths in A such that, for each state ¢ crossed by the
transitions associated with w, there exists at most one closed path which starts
and ends in ¢ and this closed path has a simple cycle as a label. In Lemma 6.2,
we prove that each label of a closed path has a simple cycle as a factor.

Lemma 6.1. Let L be a regular language and let A = (Q, A, d,qo0, F) be the
minimal finite state automaton recognizing L. Let

I = {yeL|VuveA* ce AT qeQ ify=ucv

with 6(qo,u) = q = 0(q,c), then c is a simple cycle in A}

Thus, I is a finite set. Furthermore, suppose that L is a cycle closed language
and let C(L) be the set of the simple cycles in A. Thus, C = C(L) C I} and C is
also finite.

Proof. Obviously, if we prove that I; is a finite set, the proof is ended since C C I}
for a cycle closed regular language L. On the other hand, each y € I; is the
label of a successful path 7 in the transition diagram of A such that, for every
q € Q, 7 contains at most two occurrences of ¢ (otherwise, u,z € A*, ¢1,co € AT
and ¢ € @ exist such that y = ucicaz, 6(¢,c1) = ¢, 6(q,c2) = g. Thus, using
Definition 5.1, ¢ = ¢q¢2 is not a simple cycle and y & I1). Consequently, |y| < 2|Q)|
and I; is a finite set. O

Lemma 6.2. Let L be a regular language and let A = (Q, A,d,qo, F) be the
minimal finite state automaton recognizing L. Let ¢ € AT be the label of a closed
path in A, i.e., there exists q € Q such that 5(q,c) = q. Then, u,v € A*, d € AT,
q € Q exist such that ¢ = udv, §(q,u) = ¢ = §(¢',d), §(¢',v) = q and d is a
simple cycle with respect to the transition 0(q’',d) = ¢'.

Proof. Suppose that ¢ € A" is the label of a closed path in A, i.e., there exists
q € @ such that §(q,c) = q. We prove that the property contained in the statement
is satisfied for ¢ € AT, by using induction on |c|. If ¢ is a simple cycle, e.g. when
le| = 1, then the conclusion holds by choosing © = v = 1. Otherwise, looking at
Definition 5.1 and Proposition 5.1, we have that y,z € A*, ¢/ € AT, and ¢; € Q
exist such that yz € A", ¢ = yd'z, §(q,y) = @1 = 6(q1,¢), 6(q1,2) = g and ¢ is
a cycle with respect to the transition d(¢1,¢’) = ¢1. Since |¢/| < |¢|, by using the
induction hypothesis we have that u',v" € A*, d € AT, ¢’ € Q exist such that
d =dudv, §(q,u') = ¢ = 6(¢,d), §(¢',v') = q1 and d is a simple cycle with
respect to the transition d(¢’,d) = ¢’. Consequently, ¢ = (yu')d(v'z) satisfies the
property contained in the statement when we set u = yu’ and v = v'z. (I
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Theorem 6.1. Let X* be a cycle closed star language. Then ~X* € Reg™ N
C(Fin, Fin).

Proof. Let X* be a cycle closed star language and let A be the minimal automaton
recognizing X*. Let C = C(X™) be the set of the simple cycles in A and let I; be
the set defined in Lemma 6.1, i.e.,

I = {yeX*|Vu,ve A ,ce AT qeQify=ucv

with 6(go,u) = g = (g, ¢), then c is a simple cycle in A}

Let us consider the circular splicing system SCpa = (4, I, R) where I =~I; and
R = {1]181|¢; ¢ simple cycle in A}. Then, I and R are finite sets (Lem. 6.1) and
I="I; C”X*. Let us denote C = C(SCp4) and let us prove that C =~ X*.

Firstly, we will show that Y X* C C. Let ~“y €~ X*. By induction on |y|, we
prove that ~y € C, i.e., ~y is generated by the finite splicing system given above.
If ~y € I, then obviously we have ~y € C.

Thus, suppose ~y ¢ I. Since ~y €~ X*, each representative of ~y is the label
of a successful path in A. Furthermore, since ~y & I, for each representative y of
~y we have y € I;. Consequently, z,z € A*, ¢ € AT exist such that y = zcz with
5(qo,x) = ¢q, 6(q,¢) = q, 6(¢q,2) € F and c is not a simple cycle. Since c is the label
of a closed path in A, in view of Lemma, 6.2, there exist u,v € A*, d€ AT, ¢ € Q
such that ¢ = udv, §(¢g,u) = ¢ = §(¢’,d), 6(¢’,v) = q and d is a simple cycle with
respect to the transition 6(¢’,d) = ¢'.

Consequently, we have y = zudvz. Since y is the label of a successful path
and 6(¢’,d) = ¢/, then y' = xuvz is also the label of a successful path, and, by
using induction hypothesis, ~y’ € C. Consider the representative vzzxud of ~y.
Set vzaxud = ushujuskus, with h = vzzru, u1 = us = k = ug = 1, uqy = d.
Clearly, u1|u28us|us = 1]181|d € R. Moreover, ~ushu; =~vzzu = ~y' € C and
~ugkuz =~d € C: by using the splicing definition we have ~vzaxud =~y € C.

Vice versa, C C~ X* follows by using Proposition 6.1, since I C™~ X*. O

Remark 6.1. As already said, in [5], the authors introduced the more involved
class of fingerprint closed languages (see Def. 3 in [5]). Furthermore, Theorem 1
in the same paper [5] is the same as Theorem 6.1 for fingerprint closed languages.
While the proof of Theorem 1 in [5] is wrong, Theorem 6.1 is an improvement of
the above mentioned Theorem 1, since fingerprint closed languages are also cycle
closed languages.

Example 6.2. We point out that rational languages exist which are not star
languages and which are the full linearization of regular circular splicing languages.
Indeed, L =~ (ab)* has (ab)* U (ba)* as the full linearization, and this is not a
star language. On the other hand, ~(ab)* is a regular circular splicing language
since it is generated by SCpa = (A,I, R), where A = {a,b},I = {1,”ab},R =
{ab|181|ab}. Indeed, for each n > 1, w = ~(ab)™ can be obtained by using the rule
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in R from ~ab and ~(ab)"~!: an induction over n shows that L C C(SCpa). Once
again, using induction over |w|, we can prove that C(SCp4) C L: if w is obtained
by using the rule in R from wy,ws, since |wi| < |w|, |wz| < |w|, by induction
wy,we € ~(ab)*. Thus, wy =~hab,wy ="kab imply h,k € (ab)*. Finally, w €
~(ab)*.

Example 6.3. Star languages exist which do not satisfy the hypothesis contained
in Theorem 6.1. For instance, consider L = A* \ a™ = (a*ba*)* over a two-letter
alphabet A = {a,b}. It is clear that L is a star language. Furthermore, consider
the minimal automaton A recognizing L and depicted in Figure 2. We see that
a is a cycle in A and a* N L = (). Thus, L is not a cycle closed language. Now,
let A be a trim deterministic automaton recognizing X*. Let k be a positive
integer greater than the number of the states in A and consider ba* € L. It is
easy to see that there exists j such that j < k and a’ is a cycle in A. Thus,
L is not a cycle closed language with respect to A. However, ~L is not Cpa
generated. Indeed, by contradiction, suppose that C =~L = C(SCp4) with
SCpa = (A,1I,R). Since ~(a*b) C C, n € N exists such that w =~(a"b) € C'\ I.
Thus, ~Yhujus € C, ~“kusuy € C also exist such that w =~ushujugskus. Since we
have only one occurrence of b in w, we get ~hujus €~a* or ~kusuy €~a*, which
is a contradiction.

FIGURE 2. Automaton for (a*ba*)*.

Example 6.4. On the contrary, ~(a*ba*)* is Cp; generated by SCp; = (A, I, R),
with A = {a,b}, I = {7b,~ab,"aab} Ul and R = {(b,a;b),(a,b;a), (b,b;b),
(a,a;a), (ab,b;aa), (b,ab; b)}. Indeed, denote L = (a*ba*)* and r1 = (b, a;b), 12 =
(a,b;a),r3 = (b,b;b), 74 = (a,a;a),r5 = (ab,b;aa), s = (b, ab;b). We immediately
observe that we must have ro = 7y, r3 = T3, 74 = 74, r¢ = T5. Let us prove
that C(SCpy) C~L by using induction on the length of the circular words. In-
deed, looking at the form of 71,735, 73,74, We see that using these rules and starting
from two circular words ~ea, ~€'a’ in YL we have a circular word ~efBe’3 =
~eae'a’ which is again in ~ L, since L is a submonoid closed under conjugacy re-
lation. Otherwise, if w =~¢fB¢' 3" is obtained by using r5,r¢ and ~ea, ~e'a’ in
~L, we have that a = ab,8 = aa, o/ = b = 3, ¢, € A*. Thus, “eBe'f =
~eaae'b €L ="(A* \ a™).
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Once again we prove that ~L C C(SCpy) by using induction over |w|, w €~ L,
and we distinguish two cases: |w|, = 1 and |w|, > 1. Now, if |w|, = 1, then
w ="a'ba!’, t > 2, t' > 1 (otherwise, w € I). Thus, w can be obtained from
wy ="aba'"? €“L, wy =~ba" €~L by using r5,75. If |wl, = m > 1, then
clearly we can write w = wiws, where |wi|p = my, |walp = M2, M1 + ma2 = m
and wy,ws €~ L. Now, we can see that rules r{,7; or r3,73 or r4,74 allow us to
produce w from wy, ws.

As far as we know, the structure of regular languages which are closed under
the conjugacy relation is unknown, even for the simple case of languages which
are the Kleene closure of a regular language. Nevertheless, this structure has been
completely described in [3,27] when X™* is a free monoid. The necessary definitions
for recalling this result can be found in [2]. We briefly report them below.

An algebraic description of some subclasses of the class of the regular languages
L C A* has been given by means of the syntactic monoid M(L) of L. This is the
quotient of A* with respect to the syntactic congruence =y, defined as follows:
w =g w, withw,w’ € A*, if and only if zwy € L & zw'y € L, for all z,y € A*. If
L is regular, a well known result states that M(L) is a finite monoid also related
to the minimal automaton recognizing L.

Historically, this notion arose in the context of variable-length codes. We re-

call that X* is a free monoid if and only if X is a code, i.e. for all x1,...,xy,
ah, ...z, € X, we have
Tyxy =) a, on=mand Vi € {1,...,n} z; = ).

A remarkable class of codes is the class of biprefix codes C. C C A* is biprefix if
no word in C is a proper prefix or a proper suffix of another element in C| i.e.
CNCAY = CnNATC = 0. For instance, uniform codes A% d > 1, are biprefix
codes.

Here we report two known results on codes. Theorem 6.2 will be used to prove
Proposition 6.2. Theorem 6.3 completely describes finite group codes.

Theorem 6.2 [3,27]. Let X C A" be a code. Then X* is closed under conjugacy
relation if and only if M(X™*) is a group.

We note that, under the hypothesis that X is a regular language, M(X™*) is a
group if and only if X is a group code, i.e. a group G and a surjective morphism
¢: A* — G exist such that X* = ¢~1(H), where H is a subgroup of G (see [2,3]
for this result). Group codes are biprefix codes.

Theorem 6.3 [3,27]. Let X C A" be a group code. X is finite if and only if
X=A4% d>1.

Example 6.5 [2]. Group codes exist which are not finite. Let A = {a,b} and
M, = (b*(ab*a)*)* be the set of words with an even number of a’s. M, is generated
by X, = bU ab*a, which is a (biprefix) code. Then M, = X is a free monoid.
Moreover, X, is a regular group code, where X} = ¢~1(0), ¢: A* — Z; is the
morphism given by ¢(a) = 1,¢(b) = 0 and with {0} being a subgroup of the
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quotient group (Z2,+) of the integers modulo 2. Observe that for the submonoid
X* ={w € A*||w|, = |w|p} composed of the words in A* having as many a’s as
b’s, we have X* = ¢~1(0) where ¢: A* — Z is such that ¢(a) = 1,¢(b) = —1, and
with {0} a subgroup of (Z,+). X is called a Dyck code over A and it is a (non
regular) group code.

Finally, Proposition 6.2 shows that the hypothesis contained in Theorem 6.1 is
satisfied by regular group codes.

Proposition 6.2. Let X be a reqular group code and let A be a trim deterministic
finite state automaton recognizing X*. For every label ¢ of a closed path in A we
have c € X*.

Proof. Let X be a regular group code and let A be a trim deterministic finite
state automaton recognizing X*. Let ¢ be the label of a closed path in A. Then,
x,y € A* exist such that zcy € X* and xy € X*. Moreover, since X* is closed
under conjugacy, we have yxc,yxr € X* and, since X* is biunitary, we have c € X*.
We recall that a code X is a biprefix code if and only if X* is biunitary, ¢.e. X* is
both left and right unitary, where a submonoid X* is right (resp. left) unitary if, for
all u,v € A*, the condition u,uv € X* (resp. u,vu € X*) implies v € X* [2]. O

Remark 6.2. Thanks to Proposition 6.2, for each regular group code X, X*
is cycle closed with respect to each trim deterministic finite state automaton A
recognizing X*.

Corollary 6.1. For each regular group code X, ~X* € Reg™ N C(Fin, Fin).

Example 6.6. Consider Ly = {w € A* | 3h,k € N |w|, = 2k, |w|y, = 2h}.
Obviously, L1 = M, N My, where M,, M} are defined in Example 6.5. Thus L; is
a free monoid which is closed under conjugacy, since it is the intersection of two
free monoids both closed under conjugacy. L; is also a regular language, since it
is the intersection of two regular languages (Ex. 6.5). Furthermore, since L; is a
free monoid, it follows that L1 = X*, where X is a code [2]. Moreover, it is well
known that when X is a code, X* is regular if and only if X is regular [2]. Since
X is a code which is regular and X* = L; is closed under conjugacy relation, by
using Theorem 6.2 we have that X is a group code. Consequently, L1 = X* is a
star language and ~L; =~ X* is in Reg™ N C(Fin, Fiin), thanks to Corollary 6.1.

In the proof of Theorem 6.1, we have given the construction of a splicing system
SCp4 which generates a cycle closed star language. Thanks to Remark 6.2, L is
a cycle closed star language and the above-mentioned construction for Ly yields
SCpa = (A, I, R’), where we set A = {a,b}, I = {~aa, ~bb, ~“abab} U1 = {~aa,
~bb, ~abab, ~baba} U1 and R’ = {1|1$1|aa, 1|1$1|bb, 1|1$1|abab, 1|1$1|baba} (see
also Fig. 3, where the minimal automaton A recognizing L, is depicted).

An explicit proof of this result can be also obtained by a slight modification
of the argument below which shows that the splicing system SCpy = (4,1, R)
generates ~ L1, when we choose R = {aa|1$1|1,bb|1$1|1,ab|1$1|1}.

Let us prove that ~“L; = C(SCpy4). Since L; is a star language and I C~
Ly, we have that C(SCpa) C™~L1, by using Proposition 6.1. Vice versa, we
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FIGURE 3. Automaton for L;.

show that every w €~L; is in C(SCp4), by using induction on |w| = n. We
obviously have w €~L; NI € C(SCpya). Then, suppose that w €~L; \ I and
so |w|, = 2k, |w|py = 2h, for h,k € N, |[w| > 4. If aa is a factor of w then
wy,we € AT exist so that w =~wiaaws with |w1|q + |wa]e = |w|e — 2 = 2k — 2,
lwilp + |walp = |w|p = 2h. Thus, “wewr €~L1 and |wewi| < |w|: by using
induction hypothesis, ~wsw; € C(SCpa). We also have ~aa € I C C(SCpa).
So, the rule aa|1$1|1, applied to ~wow; and ~aa, generates w. The case in which
bb is a factor of w is symmetric to the case above and can be handled with a similar
argument.

If neither aa nor bb are factors of w, then w ="(ab)?* with k& > 1. On the
other hand ~abab,™ (ab)**~2 €~ L,. We have ~abab € I C C(SCp4) and, by using
induction hypothesis, ~(ab)2*~1) is in C(SCp4): the rule ab|1$1|1, applied to
~(ab)?>*=1) and ~abab, generates w.

Observe that |R'| > |R|. Finally, we notice that, by using Remark 3.1, we can
prove that ~ L, is also Cp; generated.

As we have already said, we now prove that all star languages X* with X a
finite set have their circularization in Reg™ N C(Fin, Fin). In the proof of this
result, we also give a finite splicing system generating ~ X* the construction of
which is simpler than the one given in the proof of Theorem 6.1. For a subset L
of A* we denote Fact(L) the set of all the factors of the elements in L.

Proposition 6.3. For all finite sets X, Y C A* such that X* (resp. XT) and
Y are closed under the conjugacy relation, with X N Fact(Y) = 0, we have that
~(X*UY) (resp. (XY UY)) is in Reg™ N C(Fin, Fin).

Proof. Tt is clear that the finite splicing system SCpa = (A4, I, R) generates ~ (X *U
Y) (resp. ~“(XT UY)), when we choose I = {~z | z € XUY}U1 (resp. I =
{~z|ze XUY})and R = {x;|181]z; | zi,2; € X}.

Indeed, no rule in R can be applied to circular words w;,ws with w; €~Y or
wg €~Y. Furthermore, ~¥Y C I C C(SCp4) and we can easily prove that ~X* C
C(SCpa) (resp. “X* C C(SCpa)). Finally, we can show that C(SCpa)\~Y =
~X* (resp. C(SCpa)\~Y =~XT) with a slight variation of the argument con-
tained in Proposition 6.1. O
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All the examples of star languages X* which are cycle closed and which we
have reported above, are such that X is a (regular group) code. As a result, the
problems below arise.

Problem 6.1. Do star languages X* exist which do mot satisfy the hypothesis
contained in Theorem 6.1 (i.e. which are not cycle closed with respect to A, for all
trim deterministic finite automaton A recognizing X*), with X being not a finite
set and such that ~X* is Cpa generated?

Problem 6.2. Are there cycle closed star languages X* which are not generated
by a finite set or by a reqular group code X7

7. THE CASE OF A ONE-LETTER ALPHABET

In this section, we will consider the special case of a one-letter alphabet A = {a}.
Here, each language L C a™* is closed under the conjugacy relation since we have
~w = {w}, so we can identify each word w with the circular word ~w and each
language L with its circularization ~ L. Using Lemmata 7.2 and 7.3 as preliminary
results, we give a characterization of Reg™ NC/(Fin, Fin) for one-letter alphabets,
and so we provide an answer to Problem 4.1 in this particular case (Prop. 7.1).
Observe that circular splicing systems with an initial finite set and an empty set R
of rules generates only finite sets. This particular situation is not significant for a
characterization of Reg™ NC(F'in, F'in), so in the next part of this section we will
often suppose R # (). As usual we will refer to Paun’s systems, but we end this
section with Remark 7.2 regarding Pixton circular splicing systems. For a subset
G of N, weset a® = {a? | g € G}. In the lemma which follows we gathered results
which can be easily proved.

Lemma 7.1. Let G be a finite subset of N. Then, we have 1 € G if and only
if (a%)T = at. Furthermore, the following identities between regqular expressions
hold

a*=1+a+®>+a®)", a"=a+(a®*+a*)".

Lemma 7.2. Let SCpa = (A, I, R) be a circular splicing system with A = {a},
R = {r,...,r} and r; = a™i|a™>i$a™3i|a™4i, for i € {1,...,t}. For all
i e {1,....t}, for all x,y € a* with |x| > mi,; + ma,, |y| > ms; + ma,, the
circular word ~xy is generated by means of the rule r; and starting from ~xz, ~y.
As a result, denote m = max {mq; + mao;, ma; +ma,; | i€ {1,...,t}}. For all
x,y € a*, with |x| > m, |y| > m, if Yz, “y € C(SCpa), then ~axy € C(SCpa).

Proof. The conclusion follows by using Paun’s definition of circular splicing in the
special case A = {a}. O

Some notations and elementary notions from group theory will be used and
recalled below (see for instance [14]). Let IN be the set of the nonnegative integers,
let n € N, n > 2 and consider the cyclic group of order n which we realize, as
usual, as the quotient group Z,, of the integers modulo n (i.e., the group of the
congruence classes modulo n). For subsets 71,7 of N, T1 = Ta(mod n) means
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that the relation {(¢1,t2) | t1 € T1, t2 € Ta, t1 = ta(mod n)} is a bijection between
T1 and T2.

For a subset T of N, t € N, weset t+T = {t+t' |t € T}. Thus, T is a
periodic subset of Z,, if t € N exists with t + T =T (mod n), t # 0(mod n). In
this case t is a period of T. It is well known that G’ is a subgroup of Z,, if and only
if there exist p,r € N such that n = prand G' = {pk | k€ N, 0 <k <r—1}.
As a result, for each t € N, t = 0(mod p), we have G’ = t + G’(mod n) and, if
G’ # {0}, p is a period of G'. Nevertheless periodic subsets of Z,, exist which are
not subgroups. For instance, {0,2,4} and {1,3,5} are both periodic subsets of
Zs ({0,2,4} +2 = {0,2,4} (mod 6) and {1,3,5} +2 = {1, 3,5} (mod 6)) but the
former is a subgroup of Zg whereas the latter is not a subgroup (5+1 ¢ {1, 3,5}).

Lemma 7.3. Let SCpa = (A, I, R) be a circular splicing system with A = {a},
1¢1, R={ry,...,r} andr; = a™v|a™2i8a"™si |+, fori € {1,...,t}. Denote
m = max {mi,; +ma;, ms; +ma,; | i € {1,...,t}}, L = C(SCpa) and Ly =
{we L ||wl >m}. Then, L = L1 U Ly where L1 = L\ Ly is a finite subset of
at. Furthermore, either Ly = () or there exists n € N, n > 2, and a subgroup
G' of Z,, such that Ly = (a®)T, where G = G'(mod n), a% N Fact(L,) = 0 and
n=min{m | m € G}.

Proof. As a preliminary step, we observe that, if L = a', then, in view of
Lemma 7.1, we have L = a* = a + (a® + a®)*. Thus, L satisfies the conditions
reported in the statement with Ly = {a}, n =2, G’ = {0,1}, G = {2, 3}.

Let us denote m = max {mq ;+ma;, mai+ma;|i€{1,...,t}}, L= C(SCpa)
and Ly = {w € L | |Jw| > m}. Then, we obviously have L = L; U Ly where
Ly = L\ Ly is a finite subset of a*.

If Ly = 0, the proof is ended. Otherwise, let n € N with n = min{Jl| | [ € Lo}.
We have n > 1 since 1 € L (see Lem. 2.1). For all j € {0,...,n — 1} such that
(a™)*a? N Ly # 0, let h; = min{h | a""*7 € Ly}. We have already observed
that ho = 1 and h; > 0, for all j’s. Let G C N with G = {hjn+j | j €
{0,...,n =1}, (a™)*a? N Ly # 0}.

Let us prove that Ly = (a%)*. We show that (a®)* C Lo, by using induction
on the length of a9 € (a®)T. Indeed, either a9 € a® C Lo or a9 = a9 a% with
a9t € (a%)*t, a2 € (%)t and |a% | < |a9|, [a%2| < |af]. In the last case, by using
induction hypothesis, a9',a92 € Ly and, by using Lemma 7.2, since |a9'| > m,
|a92| > m, we have that a9 = a%*a9% € Ly. So, (a®)* C Ly. In order to prove
that Ly C (a®)*, let a' € Ly and let h, j be such that [ = nh+ j, with h € N and
j €{0,...,n—1}. We already know that h > h;. Since a™"*J € (a%)* and a™ €
(a%)*, we have a""*7(a™)* C ()T and so a' = a7 € g (a")* C (a%)T.
Clearly we have a® N Fact(L1) = 0.

Finally, if n = 1 then L; = 0, 1 € G and L = (a®)" = a* satisfies the conditions
reported in the statement, as already observed above. Otherwise, n > 2 and let
us prove that G is a set of representatives of the elements of a subset G’ of Z,,
where G’ is a (periodic) subgroup of the finite cyclic group of order n.

We already know that n € G. Furthermore, for each g1,92 € G, we have
a%a% € (a®)* = L. Thus, for h € N and k € {0,...,n — 1} such that
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g1+ g2 =hn+k, we have h > hy with hyn + k € G. So, denote [t] the class
modulo n of t € {0,...,n — 1} and let G’ be defined as the set of the (different)
classes modulo n of the elements in G. We know that [0] € G’. Furthermore, for
all [g1], [95] € G', let g1, g2 the corresponding elements in G. We have proved that
g € G exist so that g = g1 + go(mod n), i.e., [g) + g5] = [g}] + [¢4] € G'. Thus
G’ is a submonoid of a finite group (namely Z,): a classical result from group
theory states that G’ is a subgroup (of Z,, indeed for each [g] € G', G’ being

a submonoid, we have (n — 1)[g] € G’ and [(n — 1)g] = (n — 1)[g] is the inverse
of [g)). 0
Lemma 7.4. Let SCpa = (A,I,R) be a circular splicing system with A = {a},
R = {r1,...,m} and r; = a™i|a™m2i§asi a4, for i € {1,...,t}. Denote

m = max {mi,; +ma;, ms; +ma,; | i € {1,...,t}}, L = C(SCpa) and Ly =
{we L | |wl >m}. Then, L = Ly U Ly where Ly = L\ Ly is a finite subset of
a*. Furthermore, either Lo = () or there exists n € N, n > 2, and a subgroup
G' of Z,, such that Ly = (a®)T, where G = G'(mod n), a N Fact(L,) = 0 and

n=min{m | m € G}.

Proof. The conclusion holds when either L = {1} or L C a™, in the latter case
by using Lemmata 7.3 and 2.1. Otherwise, set L’ = L\ {1}. By using once
again Lemma 2.1, we have that L’ is Cp4 generated. Then, in view of Lemma, 7.3,
L' = Ly UL, where L} = L'\ L, is a finite subset of a™. Furthermore, either L}, = ()
or there exists n € N, n > 2, and a subgroup G’ of Z,, such that L) = (a%)*,
where G = G'(mod n), a® N Fact(L}) = § and n = min{m | m € G}. Thus, it is
easy to prove that L = L; U Lo satisfies the condition reported in the statement
when we set L; = Ly U {1} and Lo = L5. O

Proposition 7.1. A subset L =~L of a* is Cpa generated if and only if either L
is a finite set or there exist a finite subset Ly of a*, positive integers p,r,n, with
n=pr>2and a subgroup G' = {pk | k€ N, 0<k <r—1} of Z, such that L =
L1U(a%)*, where G = G'(mod n), a® N Fact(Ly) = 0 and n = min{m | m € G}.

Proof. Thanks to Proposition 6.3 and to Lemma 7.4, the conclusion easily follows.
O

A simpler characterization of the Cp4 generated circular languages over {a} is
given below.

Corollary 7.1. A subset L of a* is Cps generated if and only if there exist finite
subsets L1, a® of a* and a positive integer n such that L = Ly U (a®)" and, when
a® # 0 and Ly # 0, max{|l| | | € L1} < n=min{|l| | | € a“}.

Proof. Thanks to Propositions 6.3 and 7.1, the conclusion easily follows. (|

Example 7.1. Let L = {a® a*} U {a% a'* a'%}*. Then L satisfies the hy-
pothesis contained in Proposition 7.1. Following the proof of Proposition 6.3,
we have that L is generated by the splicing system SCpa = ({a},I, R), where
I = {a®a* a5 a', a'%} and R = {a%|1$1]a®, a®|1$1]a'?, a®|181]a'®, a'4[1$1|at?,
a'*1$1]a'%, a'|1$1]a'%}.
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We end this section with some observations. We begin with a result concerning
the descriptional complexity of a circular splicing system which generates a circular
language L C a* (Prop. 7.2). We then make a comparison between the two cases
|A] =1 and |A| > 1, with respect to Problem 4.1 for Paun’s systems (Rem. 7.1).
Comments on Pixton’s systems with |A| =1 are given in Remark 7.2.

Proposition 7.2. Let L C a* be a Cpa generated language. Then, there exists a
(minimal) splicing system ({a}, I, R) generating L with either R =0 or R = {r}
containing only one rule.

Proof. Let L C a* be a Cpy generated language. Then, using Corollary 7.1 and
with the same notations, L = L; U(a®)* and a positive integer n exists such that,
when a® # (), n = min{|l| | I € a®}, Ly = {l € L | || < n}. If a¥ = () then the
circular splicing system ({a},I, R) where R = () and I = L, obviously generates
L=1L,.

Thus, suppose that a® # (). Consider the circular splicing system ({a}, I, R)
where I = Ly Ua® and R = {a" | 1 $ 1| a"}. Obviously, I is a finite set and
ICL.

Let us prove that L = C(SCpa). We show that L C C(SCpa). Obviously,
I C C(SCpa) and, for each a9 € L\ I, we prove that a9 € C(SCp4) by using
induction on |a9|. Since a9 € L\ I, then a9 € (a®)* \ a® which in turn implies
a? = a9 a% with a9 € (a“)*, a9 € (a9)7, [a9| < |a?], |a??| < |a9|. Furthermore,
a’%t € (a®)T implies gy > n and, analogously, a?> € (a®)" implies go > n. By
using induction hypothesis, a9',a92 € C(SCp4) and, by using Lemma 7.2, a9 =
adra9? € C(SCPA).

We now prove that C(SCpr) = U;>q0'(I) € L, with a slight variation of the
argument contained in Proposition 6.1 and by using induction on the minimal
i such that a9 € o*(I). Let a9 € o'(I) and let h,j be such that g = nh + j,
with h € N and j € {0,...,n — 1}. Since ¢°(I) = I C L, we can suppose
i > 0. Furthermore, since o%(I) = o'~ }(I) Uo’(c*"!(I)) and by using induction
hypothesis, we can suppose that a9 has been generated by using the rule in R
and starting from two words @™t gnh2tiz ¢ o=1(I). Then, hy > 1, hy >
1 (otherwise the rule in R cannot be applied) and a9 = anhitiignhetiz - By
using induction hypothesis, a®¥71 g*h2+i2 ¢ [ Then a"hiti gnhztiz ¢ (g%)*
(since hi,ha > 1), and thus a9 = a™M+iignhztiz ¢ (g%)*, since (a%)* is a
submonoid. O

Example 7.2. We already know that YL = L = {a? a*} U {a% a'* a'6}* is
in Reg™ N C(Fin, Fin) (Ex. 7.1). In virtue of Proposition 7.2, L = {a3 a*} U
{a%, a'*,a'®}* has a minimal circular splicing system which generates it, namely,
SCpa = ({a},I,R) where I = {a® a* a% a**, a'®} and R = {a"|1$1]a"} =
{a®|1$1]a®}. Looking at the proof of Proposition 7.2, and using the same argument
as in this proof, we can see that another minimal splicing system can be defined,
namely, SCpa = ({a}, I, R), where I = {a®,a*,a%, a'?, a'*, a'® a'® a?° a??} and
R = {a'?|1$1]a'?}. As a matter of fact, if L satisfies the hypothesis of Propo-
sition 7.1, for every h > 1, the circular splicing system ({a},In,Rp), where
Ry, = {a"[1$1|a""}, generates L if we choose a sufficiently large Ij,.
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Example 7.3. As another example, let us consider the rational language L =
{a3,a"} U {a* a®}*. We can see that even if L is expressed in a form that does
not correspond to the hypothesis of Proposition 7.1, L is Cp 4 generated by choos-
ing SCpa = ({a},I,R), where I = {a® a* a® a", a® a° a'®, a'?, a'?, a'*, a'®} and
R = {a®1$1|a®}. Furthermore, following the proof of Lemma 7.3, we have L =
{a3,a%, %, a7} U{a®, a%, a'®, a'?,a'3, a', a5} = {a®,a?, a5, a"} U{a®, a%, a'®, a'2,

a'?, a** a® a'}* and in this form, L satisfies the hypothesis of Proposition 7.1.

A decidability question naturally follows on from the last example: given a
language L, with L C a*, can we decide whether L is a Cpy generated language?
If no hypothesis is made over L, the answer to this question is no, thanks to the
Rice theorem [21]. On the contrary, in [10] the authors proved that this question
is decidable when we restrict ourselves to regular languages.

Remark 7.1. The computational power of Paun circular splicing systems dra-
matically decreases when we restrict ourselves to alphabets of cardinality one. In-
deed, in Proposition 7.1, we have proven that in this case Reg™ N C(Fin, Fin) =
C(Fin, Fin) is a class of languages satisfying the hypotheses of Proposition 6.3
since each L € C(F'in, Fin) has the form L = Ly U (a®)*, L1, G being finite sets
and a® N Fact(L;) = 0. We already know that there exist languages L having
this form and which are not cycle closed with respect to the minimal automaton
recognizing L [10]. Furthermore, with the same notations as in Proposition 7.1
and in virtue of Theorem 6.3, a® is a group code (and consequently (a%)* is gen-
erated by a group code) if and only if a® = a”, i.e., (a™)*a? N (a®)T =, for all
je{l,...,n—1}.

Remark 7.2. Languages exist which are C'p; generated but not Cp4 generated
even in the case of a one-letter alphabet (thus showing already in this case that
Problem 3.1 does not have a positive answer). Indeed, we will see that cyclic(aa) =
(a?)*a is Cp; generated (Prop. 8.6) but cyclic(aa) is not Cp4 generated (Ex. 8.3).
As in the case of a Paun system each rule in a Pixton system can be applied to a
pair of words x, y provided that |z|, |y| are large enough.

8. REGULAR Cpy4 GENERATED LANGUAGES: CYCLIC AND WEAK
CYCLIC LANGUAGES

We have already seen that regular circular Cp4 generated languages exist which
are not the circularization of a star language, namely ~(ab)* (see Ex. 6.2). The aim
of this section is to give other examples of such languages. Precisely, we construct a
class of these languages called cyclic languages (Def. 8.1). After some preliminary
definitions, we prove this result in Propositions 8.2 and 8.3. The same family of
cyclic languages allows us to give a negative answer to the natural question whether
the full linearization of a regular circular Cpa generated language is always cycle
closed (Prop. 8.4). As usual, in this section we implicitly suppose that Paun’s
definition for circular splicing is adopted.
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In this section we will often consider prefixes (resp. proper prefixes) x of w which
are not the empty word. Thus, we set Pref(w) = {x € AT | 3y € A" : zy = w}
and Suff(w) = {x € AT | Jy € A" : yr = w}. Proper prefixes of the words w’
such that w’ ~ w are also needed, and so we set Pref.(w) = {x € AT | Juw' ~
w:x € Pref(w')}. Finally, a word w € A* is unbordered if, for each x € AT,
w ¢ xA*x. As a matter of fact, in [12], an unbordered word is defined as a word
satisfying the property contained in Lemma 8.1 the proof of which is reported
below for the sake of completeness. The following proposition is also needed.

Proposition 8.1 [23]. Two words x,y € A" are conjugate if and only if there
erists z € A* such that xz = zy. More precisely, the above equality holds if and
only if there exist u,v € A* such that x = uv, y = vu, z € u(vu)*.

Lemma 8.1. For every unbordered word w with |w| > 2, we have Pref(w) N
Suff(w)=0.

Proof. By contradiction, suppose that z € Pref(w) N Suf f(w). Then, there exist
x,y € AT such that zz = w = zy. Thus, by using Proposition 8.1, words u,v € A*
exist and a nonnegative integer ¢ also exists such that z = uv, y = vu, z = u(vu)’.
Furthermore, since z # 1, we have either u # 1 or v # 1, t > 1. Consequently we
have w = u(vu)*! with u # 1 or v # 1, t > 1, which is in contradiction with the
hypothesis of w being unbordered. O

Definition 8.1 Cyclic languages. For each w € A, the cyclic language cyclic(w)
is defined as follows:

cyclic(w) = ~(w* Prefe(w)) = Upepref.(w) ~ (0'Pp).

Remark 8.1. Notice that, for each w € AT, cyclic(w) is a regular circular lan-
guage. Indeed, we have

Lin(cyclic(w)) = Z paw”py
p1p2=p, pEPrefc(w)
+ Z wow™ pw*wy .

wiwe=w, pEPref.(w)

Example 8.1. Let w = abc. Then, Pref.(abc) = {a,ab,b,bc, ¢, ca} and

cyclic(w) = “((abc)*a) U ~((abe)*ab) U ~((abe)*b) U ~((abe)*be)
U ~((abc)*c) U ~((abc)*ca).

Remark 8.2. Notice that words w,w’ exist such that w ~ w' and cyclic(w) #
cyclic(w'). For example, cyclic(abc) # cyclic(cab) since abca € cyclic(abe) \
cyclic(cab) (if abea € cyclic(cab) then we would also have abca ~ caba which
is impossible). Analogously, cyclic(aba) # cyclic(baa) since abab € cyclic(aba) \
cyclic(baa).
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The technical lemma below will be useful for proving our main result.

Lemma 8.2. For every z,w € A%, © € Pref.(w) if and only if either x is a
proper factor of w or x = sp, with s being a suffiz of w, p being a prefix of w and
|sp| < |w|. Furthermore, for every x € Prefe(w), x1,22 € AT, if x = x1135 then
x1,x9 € Pref.(w).

Proof. Let xz,w € AT. Suppose that either z is a proper factor of w or z = sp,
with s being a suffix of w, p being a prefix of w and |sp| < |w|. Then, obviously
we have z € Pref.(w).

Conversely, suppose that x € Pref.(w). Thus, there exist u € AT, y;,y2 € A*
such that w = y1y2, 2u = v’ = yay; ~ w. Two cases can occur: either |ys| > |z|
or |ya| < [x].

In the first case, there exists t € A* such that yo = xt. Consequently, we have
w = yyot with y1t # 1 (otherwise x = w = w’) and x is a proper factor of w. In
the second case, there exists t € A" such that z = yot. Consequently, we have
y1 = tu and w = tuys. So r = sp, with s = y, being a suffix of w, p =t being a
prefix of w and |sp| < |w| (since u # 1).

In order to prove the second part of the statement, suppose that © = z;xo with
x € Pref.(w), m1,x2 € AT. By using the first part of the statement, we have that
either x is a proper factor of w or x = sp, with s being a suffix of w, p being a
prefix of w and |sp| < |w|. In the first case x1,z2 are also proper factors of w
and so x1, 2 € Pref.(w). In the second case, we have z125 = sp. Consequently,
either 1 is a prefix of s or x5 is a suffix of p. If x1 is a prefix of s = 15’ then x;
is a proper factor of w and we have x5 = s'p, with s’ being a suffix of w, p being a
prefix of w and |s'p| < |sp| < |w|. So, we have z1,z2 € Pref.(w). Otherwise, z9
is a suffix of p = p’zo and 1 = sp’, with s being a suffix of w, p’ being a prefix of
w and |sp’| < |sp| < |w| and once again, xo being a proper factor of w, we have
21,9 € Pref.(w). O

We will now prove the main result of this section, namely that cyclic(w) is in
Reg™ N C(Fin, Fin) provided that w is an unbordered word with |w| > 2. The
proof of this result is broken up into several intermediate results. Lemmata 8.3
and 8.4 allow us to find a finite circular splicing system such that all the circular
words in cyclic(w) are generated by using its rules, as proved in Lemma 8.5.
Next, in Lemma 8.8 (by using Lemmata 8.1, 8.6 and 8.7 as preliminary results),
we prove that if a circular word ~x is generated by the above-mentioned finite
circular splicing system then ~z € cyclic(w).

Let us briefly sketch what we will prove in Lemmata 8.3 and 8.4. We must
generate all the words with the form w'p, where ¢ is a positive integer and p, €
Prefc.(w). In the next part of this section we will suppose that |pg] = ¢g. In
Lemma 8.3 we consider the case g = 1, whereas the case g > 1 is examined in
Lemma 8.4.

Intuitively, a circular word ~z is generated by a rule r in a circular splicing
system if one of the representatives of ~z is the concatenation of two other words
each being in turn a representative of a generated word and having a suffix and
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a prefix related to the rule r. If w = ps is a factorization of w, we will show in
Lemma 8.3 that we can define splicing rules such that
(1) wtpy ~ (wgplp)(swgl) and ~w'p; is generated starting from ~w9pip,
~swd € ceyclic(w), if p; is a suffix of w;
(2) wipy ~ (wgp)(swglpl) and ~w'p, is generated starting from ~w9p, ~pysw?
€ cyclic(w), if py is a factor of w, with the additional hypothesis that p;s
is once again a suffix of w;
(3) wipr ~ (w9p)(sprw? ) and ~w'p; is generated starting from ~w9p, ~sprw?9
€ cyclic(w), if py is a prefix of w.

Lemma 8.3. Let w € AT be an unbordered word with |w| > 2. Let p; € Pref.(w)
(i.e., let py € Pref.(w) with g = 1). Then, either p1 € Pref(w) \ Suff(w) or
p1 € Suff(w)\ Pref(w) orp',s € AT exist such that w = p'p1s. Furthermore,
the following statements hold.
(1) If pr € Suf f(w)\ Pref(w), let p,s € AT be such that w = ps and |s| > 2
(so, |pip| < |w|). Then, the circular word ~w'p; € cyclic(w) is generated
by means of the rule

Ry, =wpip | w$ w | sw

t1 1

and starting from ~wh " lpipw € cyclic(w) and ~w2"tsw € cyclic(w),
withty +to=t—1,1t1 > 2, to > 2.

(2) If p',s € AT exist such that w = p'p1s (so p1s is once again a proper
suffiz of w), let p = p'p1. Then, the circular word ~w'p; € cyclic(w) is

generated by means of the rule
Ry, =wp|w$ wp | sw

and starting from ~whlpw € cyclic(w) and ~w'2 pisw € cyclic(w),
wz’tht1+t2 :tf]., tl 22, t2 22

(3) Ifp1 € Pref(w) \ Suf f(w), let p,s € AT be such that w = ps and |p| > 2
(so |sp1| < |w|). Then, the circular word ~w'p; € cyclic(w) is generated
by means of the rule

Ry =wp|wd w|sprw

and starting from ~whlpw € cyclic(w) and ~w'2 lspiw € cyclic(w),
withty +to=t—1,1t1 > 2, to > 2.

Proof. The first part of the statement easily follows by using Lemmata 8.1 and 8.2.
Let t1, t2 be positive integers with t1 > 2, to > 2. Let p; € Suf f(w)\ Pref(w) and
let p,s € AT be such that w = ps, with |s| > 2 (so, |p1p| < |w]). Obviously, once
again by using Lemma 8.2, ~w" ~pipw € cyclic(w) and ~w'~lsw € eyclic(w).
Suppose now that p’,s € AT exist such that w = p’p1s (so pis is once again a
proper suffix of w) and let p = p’p;. Then, by using the same Lemma 8.2 we
can conclude that ~w' ~lpw € cyclic(w) and ~wt?~pisw € cyclic(w). Finally,
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let p1 € Pref(w) \ Suff(w), let p,s € A" be such that w = ps and |p| > 2 (so
|sp1| < |w|). Then, once again in virtue of Lemma 8.2, ~w® ~!pw € cyclic(w) and
~w2 lspiw € cyclic(w). Thus, by using Paun’s definition of circular splicing, it

is easy to see that the conclusion holds. O

Lemma 8.4 below deals with rules for generating circular words ~w'p, where
t is a positive integer and py € Pref.(w), g > 1. In the proof of this lemma we
will also use a part of the statement contained in Lemma 8.2. If p, = ps is a
factorization of py, we will show in Lemma 8.4 that we can define splicing rules
such that w'p, ~ (w9p)(sw?) and ~w'p, is generated starting from ~w9p and

~

swI .

Lemma 8.4. Let w € A* be a word with |w| > 2. Let p; € Pref.(w) with g > 1
and let p,s € AT be such that p; = ps. The circular word ~w'p, € cyclic(w) is
generated by means of the rule

Ry, =wp | wd w|sw

t1

and starting from ~w' " lpw € cyclic(w) and ~w'?~tsw € cyclic(w), with t; +ty =

tot1 > 2, ty > 2.

Proof. Let t1,ts be positive integers with ¢t; > 2, to > 2 and let p,s € AT be
such that p, = ps. By using Lemma 8.2, we have ~w" ~!'pw € cyclic(w) and
~w'2~lsw € cyclic(w). Then, by using Paun’s definition of circular splicing, it is
easy to see that the conclusion holds. O

Lemma 8.5. Let w € A* be an unbordered word with |w| > 2, let SCpa =
(A, 1, R) be the circular splicing system defined by

I= {N(wtprefc(w)) | 0 <t< 4}5 R= UngPTefc(w)Rpg
where the Ry, ’s are defined according to Lemmata 8.3 and 8.4. Then, cyclic(w) C
C(SCpa).

Proof. We prove that ~w!Pref.(w) C C(SCpa) by induction on . Ift € {0,1,2,3,
4} we have ~w!Pref.(w) C I and so ~w!Pref.(w) C C(SCpa). Let us suppose
that ~w/ Pref.(w) € C(SCpa), for 0 < j < t, t > 5, and let us prove that
~w'Pref.(w) C C(SCpa). Indeed, for all p, € Pref.(w) with g = 1 (respectively
g > 1), in virtue of Lemma 8.3 (resp. Lem. 8.4) the circular word ~w'p, €
cyclic(w) is generated by means of the rule R, , starting from ~wh T ip'w €
cyclic(w) and ~w'2~1s'w € cyclic(w), with t; +t3 =t — 1 (resp. t1 +ta = t),
t1 > 2, t > 2. By induction hypothesis over ¢, ~w' ~'p'w € C(SCp4) and
~wh2Tlg'w € C(SCpa). Consequently, ~w'p, € C(SCpa), by definition of circu-
lar splicing. O

Example 8.2. Let us consider cyclic(abe) (Ex. 8.1). By using Lemma 8.5,
each word in ecyclic(abc) is generated by the circular splicing system SCpy =
({a,b,c}, I, R) defined by I = {~((abc)! Pref.(abc)) |0 <t <4,}, R=R,UR,U
R.U Rup U Rpe U Ry, where w = abe, R, = wab|lwSw|caw, R, = wablw$wbd|cw,
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R, = weca|w$w|bcw, Ry = walwdw|bw, Ry = wb|lwSw|cw, Re, = welwdw|aw.
Thanks to Lemma 8.8, we will see that cyclic(abe) = C(SCpa).

Using the intermediate results reported below, we now prove that every word
generated by the circular splicing system defined in Lemma 8.5, is an element of
cyclic(w).

Lemma 8.6. Let w € A* be an unbordered word with |w| > 2. For allp € AT
with |p| < |w|, we have w & Suf f(w)p.

Proof. By contradiction, suppose that there exist p € A" with |p| < |w| and
s € Suf f(w) such that w = sp. Thus, we also have s € Pref(w) N Suff(w), in
contradiction with Lemma 8.1. O

Lemma 8.7. Let w € A* be an unbordered word with |w| > 2. For all p,p’ € AT
with |p| < |w|, |p'| < |w]|, for all h € A*, ¢ € N, q > 2, if hwp'w ~ wip then
h=w"2 and p = p'. In particular the result holds when p,p’ € Pref.(w).

Proof. Suppose that, for p,p’ € A" with |p| < |wl|, |p/| < |w|, h € A*, ¢ € N,
q > 2, we have hwp'w ~ wip. Two cases can occur:
(1) hwp'w = whwIpw? v} with w)w) = w, w},wh € A* and g+ ¢ = ¢ — 1;
(2) hwp'w = pawipy with p1ps = p, p1,p2 € A™.
Case (1). In the first case, w} is a prefix of w. Then, in virtue of Lemma 8.1,
we have either wj = 1 or w] = w and so we must have

hwp'w = w9 pw?’ (%)

or

hwp' = wipw? . (xx)

We notice that we cannot have equality (x) with ¢’ # 1 (otherwise we would also
have either sp’ = w or sp = w, with s € Suf f(w), in contradiction with Lem. 8.6)
nor can we have equality (xx) with ¢’ # 0 (otherwise, once again, we would also
have sp’ = w with s € Suf f(w), in contradiction with Lem. 8.6). Thus, suppose
that either () holds with ¢’ = 1 or (xx) holds with ¢’ = 0. In both cases we have
hwp' = w9 p. If p = p’ then h = w92 and the proof is ended. Otherwise, either
p’ is a proper suffix of p or p is a proper suffix of p’. As a result, we also have
either hw = w?~1p” with p” € Pref(p) or hwp” = wi=! with p” € Pref(p’). In
both cases we have w = sp” with 0 < [p”| < |w|, s € Suff(w), in contradiction
with Lemma 8.6.

Case (2). Assume that hwp'w = powip; with p1ps = p, p1,p2 € A*. Then, we
have either p; # 1 or p; = 1. Correspondingly, we also have either w = sp; or w =
sp’ with s € Suf f(w). In both cases we are in contradiction with Lemma 8.6. O

Lemma 8.8. Let w € A* be an unbordered word with |w| > 2, let SCpy =
(A, 1, R) be the circular splicing system defined by

I ={"(w'Pref.(w)) |0<t<4}, R= Up, € Pre f.(w) Fp,
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where the Ry ’s are defined as in Lemmata 8.3 and 8.4. Then, C(SCpa) C
cyclic(w).

Proof. Let us prove that C(SCpa) C cyclic(w) for the circular splicing system
SCpa = (A, I, R) defined in the statement above. Let ~z € C(SCpa), we will
prove that ~z € cyclic(w), by using induction over |z|. Since I C eyclic(w),
let us suppose that ~z is generated by using one of the rules in R. Then,
~z =“ughujugkug with uglusSuslus € R and ~hujus € C(SCpa), ~kusuy €
C(SCpa). Since for every rule in R we have u; # 1, for i € {1,2,3,4}, then
|huiug| < |z|, |kugua| < |z| and so, by using induction hypothesis, ~hujug €
cyclic(w), ~kusug € cyclic(w). Looking at the form of rules in R, there exist non-
negative integers ¢,j and p,p’,t,t' € Pref.(w) such that hujus = hwp'w ~ wip,
kusuy = kwt'w ~ wit. Consequently, ¢ > 2, j > 2, and in virtue of Lemma 8.7,
h=wl2 p=9p, k=w"2 t=1t. Finally, 2 ~ ushujuskus, and by looking
at the form of the rules in R, we see that there exists v € Pref.(w) such that
for ~ughuiuskus one of the following four cases occur: ushuiuskus ~ wlvww! or
ushuiugkus ~ wiwwl v or ughuiuskus ~ wlwvw! or ughuiuskus ~ wlvw’. Thus
~z =~ushujugkug € cyclic(w) and the conclusion holds. O

In virtue of Lemmata 8.5 and 8.8, we can state the result below.

Proposition 8.2. For all unbordered words w € A*, with |w| > 2, cyclic(w) is
Cpa generated.

The next two propositions allow us to compare cyclic languages with the classes
of languages introduced in Section 6. Indeed, Proposition 8.3 shows that the
class of cyclic languages is different from the class of the languages which are
circularizations of the Kleene closure of regular languages. Proposition 8.4 shows
that the class of the regular linearizations of cyclic languages is different from the
class of the cycle closed languages.

Proposition 8.3. There exist unbordered words w € A*, with |w| > 2, such that
cyclic(w) £~ X*, for every regular language X C A*.

Proof. Let w = abc. By contradiction, suppose that a regular language X exists
such that cyclic(abc) = ~X*. Since ~a € cyclic(abe) = ~X*, ~ab € cyclic(abe) =
~X* we have a, ab € X* or a, ba € X*. Consequently, aab € X* or aba € X*
and so ~aab €~ X* = cyclic(abe), which is a contradiction. O

Remark 8.3. Notice that we can easily prove that cyclic(abc) #~(X T UY), for
every pair of finite subsets X,Y of A* such that X and Y are closed under
the conjugacy relation. Indeed, by contradiction, suppose that such a pair X,Y
exists with cyclic(abe) = ~(X T UY'). Thus, a positive integer n also exists such
that ~(abc)™a € cyclic(abe) \™Y, ~(abc)™ab € cyclic(abc)\™Y. Consequently,
~(abc)"a, ~(abc)™ab €~ X*. Since X7 is closed under the conjugacy relation,
we have (abc)"a, (abc)"ab € X and so (abc)"a(abc)"ab € X . Now, we have a
contradiction since ~(abc)"a(abc)™ab €~ (Xt UY) \ cyclic(abe).

The following observation will be used in the proof of Proposition 8.4.



224 P. BONIZZONI ET AL.

Lemma 8.9. For all words w,w' € AT such that |w'| = glw|, g being a positive
integer, we have ~w' & cyclic(w).

Proof. By contradiction, suppose that for w,w’ € A" we have |w'| = glw| and
~w' € cyclic(w) with g being a positive integer. Using Definition 8.1, there exists
a nonnegative integer ¢, and p € Pref.(w) also exists such that ~w’ =~w?p. Then,
by using the above equalities we get |w'| = g|lw| = g|w|+¢, where 0 < t = |p| < |w]
which is a contradiction. (I

Proposition 8.4. There exist unbordered words w € A*, with |w| > 2, such that,
for each regular linearization L of cyclic(w), L is not a cycle closed language. In
particular the result holds for L = Lin(cyclic(w)).

Proof. For the sake of simplicity, take w = abc (the argument below works for all
words w).

By contradiction, suppose that a regular linearization L of cyclic(abc) exists
such that L is a cycle closed language. Obviously we have L C A'. Let A=
(Q,{a,b,c},0,q0, F) be the minimal finite state automaton recognizing L and let
v be a simple cycle in A (v exists since cyclic(abc) is not a finite set, so L is not
a finite set and we can apply Lem. 6.2). We now prove that v € L, so L is not a
cycle closed language (see Def. 6.2). Since A is trim, there exist u,z € A* such
that uwv*z € L. In particular, uz € L which implies uz # 1 and |uz| = glabe| + ¢,
with g,t € N, 0 <t < |abc| (Lem. 8.9). On the other hand, ¢’,¢' € N also exist
such that |v| = ¢'|abe| + ¢/, 0 < ¥/ < |abc|. If t' = 0, in view of Lemma 8.9, we
have ~v & cyclic(abc) =~L, so v ¢ L and we have ended the proof. Otherwise,
t,t’ € {1,2} and, given that uvz € L, using Lemma 8.9 once again, we have t +
t'(mod 3) € {1,2}, i.e., t =t =1 or t =¢ = 2. In both cases we have uwvvz € L
with |uvvz| = 0(mod 3), which contradicts Lemma 8.9. O

We have proven that cyclic(w) is Cpa generated under the hypotheses that w
is an unbordered word and |w| > 2. A natural question is whether the same result
holds when we remove the above-mentioned hypotheses. We are not able to answer
this question with respect to the first hypothesis. On the contrary, Example 8.3
shows that the hypothesis |w| > 2 in Proposition 8.2 is necessary.

Example 8.3. Let w € ({a,b})2. We can see that cyclic(w) ¢ Reg™~NC(Fin, Fin).
Indeed, by contradiction, suppose that the contrary holds. We observe that ev-
ery circular word w’ in eyclic(w) has an odd length, i.e., there exists a non-
negative integer n such that |w'| = 2n + 1. Since cyclic(w) is not a finite lan-
guage, for a sufficiently large n there exist two circular words z,y € cyclic(w),
|x| = 2k + 1,|y| = 2h + 1, with h,k € N, such that w’ is obtained by using a
rule and by starting from z,y. On the other hand, looking at the definition of
circular splicing, we see that the length of w’ is the sum of the lengths of z and y.
However, this sum is an even number and this is a contradiction.

We end this section with Propositions 8.5 and 8.6. Proposition 8.5 suggests that
we can modify cyclic(w) and define a similar class of regular circular languages
(weak cyclic languages) which are Cpa generated. Below, we will only define
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the weak cyclic language Weyclic(abe). Observe that Weyclic(abe) differs from
cyclic(abe) only in the last subset ~(abe)*ac. Proposition 8.6 shows that cyclic(w)
is Cp; generated, for each w € ({a,b})2. In the proof of Proposition 8.6, we use
Lemma 8.10 as a preliminary observation.

Proposition 8.5. The regular circular language

Weyclic(abc) = ~(abe)*a U ~(abe)*b U ~(abc)*c U ~(abe)*abU ~(abe)*be U
~(abc)*ac

is Cpa generated by the splicing system SCpa = (A, I, R) where we set w = abe,
A = {a,b,c}, I = {~w'a,~w'b,~w'c,”w'ab,~w'bc,”w'ac | 0 < i < 4}, R =
{Ra, Ry, Rc, Rupy Roe, Rac} and R, = wablwSwa|cw, Ry = wablw$wblcw, R, =
walcwSw|bew, Rqp = walwSwlbw, Ry = wblwSw|cw, Rqe = walwSw|cw.

Proof. Let us denote Weyclic(abc) = ~(abe)* Prefye, where Pref,. = {a,b,c,ab,
be, act. We prove that ~w! Pre f,.(w) € C(SCpa) by using induction on ¢.

If t € {0,1,2,3,4} we have ~w'Prefy,.(w) C I and so ~w'Prefy.(w) C
C(SCpa). Let us suppose that ~w’ Pref,.(w) C C(SCpa), for 0 < j <t, t > 5,
and let us prove that ~w'Pre fy,.(w) C C(SCpa). Indeed, for all p, € Prefy.(w)
with |pg| =1 the circular word ~w'p, € Weyclic(w) is generated by means of the
rule R, , starting from ~w" " 'pw € Weyclic(w) and ~w™ tsw € Weyclic(w),
with t1 +to =t —1, t1 > 2, to > 2 (in virtue of Lem. 8.3 for Ry, by using Paun’s
definition of circular splicing for R, and R., with p = ab, s = ac for R, and p = ac,
s = be for R.). By using induction hypothesis over ¢, ~w" ~1pw € C(SCpa) and
~wt2 lsw € C(SCpa), consequently ~w'p, € C(SCpa), by using the definition
of circular splicing.

Furthermore, for all p, € Pref,.(w) with |py| > 1 the circular word ~w'p, €
Weyclic(w) is generated by means of the rule R, , starting from ~wh T lpw €
Weyclic(w) and ~w'?~1sw € Weyclic(w), with t1 +t2 =t, ps = pg, t1 > 2, to > 2
(in virtue of Lem. 8.4 for R,, and Ry, and by using Paun’s definition of circular
splicing for R,.). By using induction hypothesis over t, ~w®* ~lpw € C(SCp4) and
~w'2lsw € C(SCpa), consequently ~wip, € C(SCp4), by using the definition
of circular splicing.

Let us prove that C(SCpa) C Weyclic(w) for the circular splicing system
SCpa = (A, I, R) defined in the statement above. Let ~z € C(SCpa). We will
prove that ~z € Weyclic(w), by using induction over |z|. Since I C Weyclic(w),
let us suppose that ~z is generated by using one of the rules in R. Then,
~z =ughujugkug with uglusSusjus € R and ~hujus € C(SCpa), ~kusuy €
C(SCpa). Since for every rule in R we have u; # 1, for ¢ € {1,2,3,4}, then
|hurug| < |z|, |kugug| < |z| and so, by using induction hypothesis, ~hujus €
Weyclic(w), ~kusuy € Weyclic(w). Looking at the form of rules in R, there exist
nonnegative integers ¢, j and p,p’,t,t' € Prefy,.(w) such that hujus = hwp'w ~
wip, kusuy = kwt'w ~ wit. Consequently, ¢ > 2, 5 > 2, and in virtue of
Lemma 8.7, h = w92, p=p/, k =w 2, t =t'. Finally, 2 ~ ushujuskus and, by
looking at the form of the rules in R, we see that there exists v € Prefy.(w) such
that for ~ughuiuskus one of the following three cases occur: ushuiuskus ~ wivw?
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or ushujuskus ~ wlwwlv or ushuiuskus ~ vwlww?. Thus ~z ="~ushujuskus €
Weyclic(w) and the conclusion holds. O

Lemma 8.10. We have Lin(cyclic(ab)) = {(ab)*a(ab)?, b(ab)*a(ab)ta, (ab)*b(ab)?,
b(ab)*b(ab)ta | s,t > 0}. Furthermore, cyclic(ab) = cyclic(ba).
Proof. Tt is easy to observe that cyclic(ab) =" (ab)’aU™ (ab)?b and Lin(cyclic(ab)) =
{(ab)%a(ab)t, b(ab)*a(ab)a, (ab)*b(ab)t, b(ab)*b(ab)'a | s,t > 0}.
Furthermore, we notice that:
e (ab)*a(ab)’ ~ a(ba)**t, ~a(ba)**t € cyclic(ba);
a(ba)*~1b(ba)tb, ~a(ba)*~tb(ba)tb € cyclic(ba) for s > 0,
(ba)tb, ~(ba)'b € cyclic(ba) for s = 0;
e b(ab)*a(ab)ta = (ba)*a(ba)t, ~(ba)* T a(ba) € cyclic(ba);
e b(ab)*b(ab)ta = (ba)®b(ba)t™t, ~(ba)*b(ba)'*! € cyclic(ba).
Consequently, cyclic(ab) C cyclic(ba). Symmetrically, cyclic(ba) C cyclic(ab) (it
suffices to substitute the a’s with the b’s and vice versa in the above equalities). O

o (ab)®b(ab)t = {

Proposition 8.6. For each w € ({a,b})?, cyclic(w) is Cpr generated.

Proof. We prove the statement for w = ab (case 1) and for w = aa (case 2). The
other cases (when w = ba or w = bb) can be obtained by substituting the a’s with
the b’s and vice versa in cases 1 and 2.

Case 1. Suppose w = ab. We will prove that cyclic(ab) = C(SCpy) by consider-
ing SCpr = ({a,b}, I, R) with I = {~a,~b,~aba,”~abb} and R = R,UR}, with R, =
{ra,Ta}, ra = (aab,ab;abab), 7, = (ab,aab;1); Ry = {ry,Ts}, 1o = (abd, ab; abab),
Ty = (ab,abb; 1). Firstly, let us show that C(SCpr) = ;5o 0" (I) C cyclic(ab), by
using induction on the the minimal i such that ~w’ € o*(I). Clearly I C cyclic(ab).
Since o%(I) = o*~1(I) U o’(c*"1(I)) and by using induction hypothesis, we can
suppose that there exist ~w,~wy € o'~ 1(I) such that (~wy,~ws)ry, 7 ~w', for
Ty, Tz € Ry, @ € {a,b}. By induction hypothesis, ~wq,~ws € cyclic(ab). If z = a
(i.e., we consider r,,T,), then ~w; ="~ ae = ~aabe € cyclic(ab) and ~wy =~a'€ =
~abe’ € cyclic(ab). This means that aabe, abe’ € {(ab)*a(ab)t,b(ab)*a(ab)ta,
(ab)*b(ab)t, b(ab)*b(ab)ta | s,t > 0} (Lem. 8.10). This implies ¢ € (ab)* and
abe’ € {(ab)*a(ab)t, (ab)*b(ab)! | s,t > 0}. Thus, ~w’ ="eababe’ € cyclic(ab).

Otherwise, if x = b (i.e., we consider ry,,7p), then ~“w; ="~ae = ~abbe €
cyclic(ab), ~wy = ~d'e’ =~abe' € cyclic(ab). We already know that abe’ €
{(ab)*a(ab)t, (ab)®*b(ab)t | s,t > 0} and, as above, ~abbe € cyclic(ab) implies
€ € (ab)* (Lem. 8.10). Thus, ~w’ ="eababe’ € cyclic(ab).

Vice versa, let us prove that cyclic(ab) C C(SCpy), by induction on the length
of ~w' € cyclic(ab). If ~w’ =~(ab)'a, with i € {0,1}, then ~w’ € I (similarly,
if ~w’ =~ (ab)b, with i € {0,1}, the same holds). Suppose that the statement
holds for every ~w' =~(ab)ia and for every ~w’ =~(ab)'b, with 0 < i < n,
n > 1. Thus, ~(ab)"ta € C(SCps) and we also have ~aba € I C C(SCpy).
Consequently, starting from ~(ab)" 'a and “~aba, and by applying r,,7,, we
can generate ~(ab)"~2ababa ="~ (ab)"a. Analogously, starting from ~(ab)" b €
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C(SCpyr) and ~abb € I C C(SCpy), and by applying rp, T, we can generate
~(ab)"~2ababb =" (ab)"b.

Case 2. Suppose w = aa. We now show that cyclic(aa) = C(SCpy), for
SCpr = ({a},I,R) with I = {~a,~aaa} and R = {r,7}, r = (aaa,aa;aaca),
7 = (aa,aaa; 1). Notice that we have cyclic(aa) = (a?)*a.

Let us firstly show that C(SCpr) = U,>, 0" (I) C cyclic(aa), by using induction
on the minimal i such that ~w’ € ¢*(I). Clearly I C cyclic(aa). Since o*(I) =
o= 1(I) U o’(¢*"1(I)) and by using induction hypothesis, we can suppose that
there exist ~wq,~wy € o'~ 1(I) such that (~Ywi,~ws)F,7 ~w', for r,7 € R. Thus,
~wy,~we € C(SCpy) and, by using induction hypothesis, ~wy,~ws € cyclic(aa).
Then ~w; ="~ae = ~aaae € cyclic(aa) and ~wy =~a'¢ = ~aae’ € cyclic(aa).
Thus, we have € € (aa)*, € € (aa)*a and so ~w' ="eaaaae’ € cyclic(aa).

Vice wversa, let us prove that cyclic(aa) € C(SCpr) by using induction on
the length of ~w’ € cyclic(aa). If ~w' =~(aa)ia, with i € {0,1}, then w €
I. Suppose that the statement holds for every w’ €~(aa)'a, with 0 < i < n,
n > 1. Thus, ~ (aa)"ta € C(SCps) and we also have ~aaa € I C C(SCpy).
Consequently, starting from ~(aa)""'a and ~aaa, and by applying r,7, we can
generate ~(aa)"a. O

The results proved in this paper lead us to the conclusion that it is not easy
to characterize the regular Cp4 generated languages. These results also suggest
further investigation of the analogous problem of finding those regular circular
languages which are generated by Pixton circular splicing systems.
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