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Abstract. We show that semigroups representable by triangular ma-
trices over a fixed finite field form a decidable pseudovariety and provide
a finite pseudoidentity basis for it.
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Background and motivation

The main results of this paper were motivated by one of the fundamental theo-
rems of Imre Simon, namely, by his elegant algebraic characterization of the class of
piecewise testable languages [21,22]. This celebrated theorem was one of the main
illuminating examples for the creation of the theory of pseudovarieties of finite
semigroups and varieties of recognizable languages. By now there are a number
of proofs [1, 11, 12, 23, 26] based on different approaches whose sources range from
fairly concrete calculations in finite transformation semigroups to highly abstract
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1 Departamento de Matemática Pura, Faculdade de Ciências, Universidade do Porto,
4169-007 Porto, Portugal; jalmeida@fc.up.pt
2 Department of Mathematics, Bar Ilan University, 52900 Ramat Gan, Israel;
margolis@math.biu.ac.il
3 Department of Mathematics and Mechanics, Ural State University, 620083 Ekaterinburg,
Russia; Mikhail.Volkov@usu.ru

c© EDP Sciences 2005



32 J. ALMEIDA, S.W. MARGOLIS AND M.V. VOLKOV

constructions of model theory or profinite topology and so it has become a cross-
ing where various profound ideas and techniques meet. Thus Simon’s theorem has
motivated a generation of researchers who have studied the relationship between
finite semigroup theory and theoretical computer science.

There are highly non-trivial purely algebraic consequences of Simon’s theorem.
Straubing [24] proved that a finite semigroup is J -trivial if and only if, for some n,
it divides the semigroup Un of all n × n upper triangular Boolean matrices with
all 1’s on the main diagonal. While it is easy to check that the semigroup Un is
J -trivial, it is very difficult to prove that conversely every finite J -trivial semi-
group divides Un for some n. The original proof in [24] uses Simon’s theorem in
a crucial way, and no straightforward algebraic proof of this simple to state result
is known so far.

A direct linear analogue of the semigroup Un is the group U∗
n(K) of all n × n

upper triangular matrices over a field K with all 1’s on the main diagonal. Such
groups have been studied intensely for more than 100 years. If K is a finite field of
characteristic p, then an elementary counting argument shows that in fact U∗

n(K)
is a p-group. It is a standard and classical fact that conversely every finite p-group
is isomorphic to a group of upper triangular matrices (of some size) with all 1’s on
the main diagonal over any finite field of characteristic p (see, e.g., [9], Th. 3.1.2).

Thus we see algebraically, that there is a deep connection between finite
J -trivial semigroups and finite p-groups. This analogy also shows up on the
language theoretic side. Whereas Simon’s theorem tells us that the languages rec-
ognized by finite J -trivial monoids are built from looking at the appearance or
non-appearance of subwords in a word, that is by doing counting over the two ele-
ment Boolean semiring, the languages recognized by finite p-groups correspond to
counting subwords modulo p. See [7], Sections VIII.9 and VIII.10, and also [28]
for a precise formulation of these results.

Pin and Straubing [18] proved that the monoid pseudovariety generated by the
monoid of all upper triangular Boolean matrices also has a natural language the-
oretic interpretation. Namely, the corresponding variety of languages is precisely
the languages of level 2 in the Straubing-Thérien hierarchy [25, 27]. (Recall that
the Straubing-Thérien hierarchy is the monoid counterpart of the dot-depth hier-
archy by Brzozowski [6]. See [17], Sect. V.2, for a discussion of the two hierarchies
and their relationship.) The monoids of level 1 in the Straubing-Thérien hierarchy
are precisely the J -trivial monoids, but as of today, the membership problem for
the pseudovariety of Straubing-Thérien level 2 remains one of the most important
open problems in finite semigroup theory.

This brings us to the subject of the present paper. We ask here what is the
mod-p analogue of the monoid of upper triangular Boolean matrices. Clearly
we need to look at the monoid of upper triangular matrices over a finite field of
characteristic p. Thus we are asking about what finite semigroups can be repre-
sented as semigroups of triangular matrices and we enter the world of the classical
problem of triangulating a set of matrices over a field. Indeed, the study of si-
multaneous triangularizability of families of matrices has been considered as an
important issue since the mid-19th century, and one can see that many classical



PSEUDOVARIETY OF SEMIGROUPS OF TRIANGULAR MATRICES 33

branches of algebra such as group, associative ring or Lie algebra theories have
offered their specific triangularizability conditions. Rather than trying to survey
this vast area, we refer the reader to the recent comprehensive monograph [19].
Not long ago Okniński [16], Section 4.4, found a deep triangularizability crite-
rion for semigroups of matrices. We show that being restricted to the realm of
finite semigroups Okniński’s criterion admits a fairly natural expression in terms
of pseudovariety theory. In particular, we prove that finite semigroups triangu-
larizable over a fixed finite field form a pseudovariety with decidable membership,
and moreover, provide a finite pseudoidentity basis for this pseudovariety. These
results imply several interesting corollaries of both an algebraic and a geometric
nature. The three authors along with Benjamin Steinberg are preparing a sepa-
rate paper devoted to further development of these results and their applications
to language theory and to the representation theory of finite semigroups.

The paper is structured as follows. In Section 1 we recall some basics of finite
semigroup theory and then formulate and discuss our main results. Section 2
collects a few properties of semigroups of triangular matrices and presents an
adaptation of Okniński’s triangularizability criterion for the case of finite semi-
groups. Section 3 provides the necessary preliminaries on groups. In Section 4 we
prove the main results, and Section 5 contains some interesting examples.

1. Main results

We assume the reader’s acquaintance with standard concepts of semigroup the-
ory (in particular, with the definition of Green’s relations). They all can be found
in the books [5, 14].

Recall that a semigroup pseudovariety is a class of finite semigroups closed under
forming finitary direct products and taking homomorphic images and subsemi-
groups. The following well-known pseudovarieties play a distinguished role in
this paper: the pseudovariety DS of all finite semigroups whose regular D-classes
are subsemigroups and the pseudovariety Gp of all finite p-groups where p is a
prime number. We also make use of an operator on pseudovarieties. For each
pseudovariety H of finite groups, H denotes the class of all finite semigroups whose
subgroups belong to H. It is known (cf. [7], Prop. B.V.10.4) and easy to see that H
is a pseudovariety.

Now we fix an arbitrary finite field F and denote its characteristic by p and its
order by q (so q is a power of p). By Tn(F) we denote the semigroup of all upper
triangular n×n matrices over F. A finite semigroup S is said to be triangularizable
over F if S embeds into Tn(F) for some n. Further, by UTn(F) we denote the
subsemigroup of Tn(F) consisting of all unitriangular matrices (that is, matrices
whose main diagonal entries are equal to either 0 or 1). A finite semigroup that
embeds into UTn(F) for some n is said to be unitriangularizable over F.

Our first result is the following.

Proposition 1.1. The class UTp of all finite semigroups unitriangularizable over
a given finite field of characteristic p is the pseudovariety Gp ∩ DS.
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Even though Proposition 1.1 is not the main result of the paper, let us discuss
it in detail because some of our comments also apply to more involved statements
below. First of all, observe that the pseudovariety UTp depends only on the
characteristic of the ground field and does not depend on its order. Moreover,
the fact that pseudovarieties come into play is somewhat unexpected. While it is
trivial that the class UTp is closed under taking subsemigroups and forming finitary
direct products, it is far from being obvious that every homomorphic image of a
unitriangularizable semigroup is again unitriangularizable. Finally, observe that
given a finite semigroup S (by its Cayley table, say), one can efficiently check
if the subgroups of S are p-groups and the regular D-classes of S are subsemi-
groups. (Here the word “efficiently” means that the tests can be performed in
time bounded by a polynomial of the size of S.) In other words, we may conclude
that the property of being unitriangularizable over a fixed finite field is decidable
in polynomial time.

Now we turn to the general case. In order to formulate a description of trian-
gularizable semigroups, let GpAbq−1 stand for the collection of all finite groups G
such that G is an extension of a p-group by an Abelian group of exponent dividing
q − 1. It is easy to verify that GpAbq−1 is a pseudovariety. We denote by EGp the
class of all finite semigroups whose idempotent-generated subsemigroups belong
to Gp. Again, EGp is easily seen to be a pseudovariety.

Theorem 1.2. The class Tq
p of all finite semigroups triangularizable over the field

of characteristic p and order q is the pseudovariety GpAbq−1 ∩ DS ∩ EGp.

Here, in contrast to Proposition 1.1, the answer depends on the order of the
ground field. However, it is easy to deduce from Theorem 1.2 a similar descrip-
tion of finite semigroups triangularizable over some finite field of characteristic p.
Let GpAb denote the pseudovariety of all extensions of a finite p-group by a finite
Abelian group. Then we have

Corollary 1.3. The class Tp of all finite semigroups triangularizable over a finite
field of characteristic p is the pseudovariety GpAb ∩ DS ∩ EGp.

Given the Cayley table of a finite semigroup S, one can construct the Cayley
table of the subsemigroup generated by the idempotents of S in O(|S|3) time.
Therefore Theorem 1.2 and Corollary 1.3 ensure that the properties of being tri-
angularizable over a fixed finite field or over some finite field of a fixed characteristic
are decidable in polynomial time.

Of course, using Corollary 1.3 one can easily decide if a given finite semigroup
is triangularizable over some finite field of some characteristic. However, the class
of all such finite semigroups is not a pseudovariety (it is not closed under finitary
direct products).
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Next we present a syntactic description of pseudovarieties of triangularizable
semigroups. Recall that there are two different ways to characterize semigroup
pseudovarieties syntactically, that is, by means of certain equations. The histor-
ically first approach, suggested by Eilenberg and Schützenberger [8], deals with
sequences of usual identities. Nowadays, however, another way for a syntactic
description of pseudovarieties seems to prevail, namely, the approach which is due
to Reiterman [20] and which is based on an extension of the notion of an iden-
tity to that of a pseudoidentity, that is, an equality between two elements of the
free profinite semigroup rather than of the usual free semigroup. The reader is
referred to the book [2] for a general theory of pseudoidentities. In the present
paper, however, we only deal with very special pseudoidentities, and the meaning
of these pseudoidentities can be explained in fairly elementary terms as follows.

Our pseudoidentities are formal equalities between two “ω-words” built up from
the variables x and y by means of the concatenation and raising to “profinite pow-
ers” containing a special symbol ω in their exponents. For instance, xpω

, (xy)ωx
or xω−1yω−1xy are typical ω-words that we repeatedly use below. If we want to
calculate the value of an ω-word under a certain evaluation of its variables in a
semigroup S with � elements we merely convert it into a usual word by substitut-
ing the symbol ω wherever it occurs by the number �! and then we evaluate the
resulting word in S. (Thus, the three typical ω-words above become xp�!

, (xy)�!x
and x�!−1y�!−1xy if one needs evaluating them in a semigroup with � elements.) A
finite semigroup S satisfies the pseudoidentity π(x, y) = ρ(x, y) where both π(x, y)
and ρ(x, y) are ω-words if the values of π(x, y) and ρ(x, y) coincide under every
evaluation of x and y in S. We say that a pseudovariety P is defined by a system Σ
of pseudoidentities if P is precisely the class of all finite semigroups satisfying each
pseudoidentity in Σ (also Σ is said to be a pseudoidentity basis for P). For in-
stance, it is well known (cf. [2], Sect. 8.1) that the pseudovariety DS is defined by
the pseudoidentity

(
(xy)ω(yx)ω(xy)ω

)ω = (xy)ω . (1.1)

As yet another example, we mention that the pseudovariety Gp can be defined by
the pseudoidentities

xpω

y = yxpω

= y. (1.2)

Of course, the pseudoidentities (1.2) hold in a semigroup S if and only if S contains
an identity element that is the value of the ω-word xpω

under each of its evaluations
in S. It is a common convention to express this fact in the form of the single
pseudoidentity xpω

= 1; we will always use such shorthand notation when defining
pseudovarieties of groups.

We want to stress that the above simplified treatment of pseudoidentities in-
volving ω-words is nevertheless rigorous and completely consistent with the general
theory of pseudoidentities. The reader is referred to [3] and [4], Section 2, for var-
ious formal approaches to the concept of a profinite power.
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Now we return to our problem of a syntactic description of pseudovarieties of
triangularizable semigroups. It is known (see [4], Sect. 2) and easy to verify that
the pseudovariety Gp is defined by the pseudoidentity

xω = xω+pω

. (1.3)

Therefore Proposition 1.1 immediately implies

Corollary 1.4. The pseudovariety UTp of all finite semigroups that are unitri-
angularizable over a finite field of characteristic p is defined by the pseudoidenti-
ties (1.1) and (1.3).

The situation is much more complicated for the pseudovarieties Tq
p and Tp.

Recall that by Theorem 1.2 and Corollary 1.3, we have Tq
p = GpAbq−1 ∩DS∩EGp

and Tp = GpAb ∩ DS ∩ EGp. An equational description of the pseudovarieties
GpAbq−1 and GpAb makes no real problem in view of the results of [4], Section 3.
There it is shown how to transform any pseudoidentity system defining a given
group pseudovariety H within the class of all finite groups into a pseudoidentity
systems defining the pseudovariety H within the class of all finite semigroups so
that the two systems contain the same number of pseudoidentities and involve the
same variables. It is easy to see that the pseudovariety GpAbq−1 is defined within
the class of all finite groups by the pseudoidentities

(
xq−1yq−1

)pω

= 1, (1.4)
(
xω−1yω−1xy

)pω

= 1 (1.5)

while pseudovariety GpAb is defined by (1.5) and the following pseudoidentity

(
xpω−1ypω−1

)pω

= 1. (1.6)

(For the sake of completeness we provide a proof of these claims in Sect. 3.)
Thus, each of the pseudovarieties GpAbq−1 and GpAb can be defined by just two
pseudoidentities in two variables.

Since we know a single pseudoidentity in two variables that defines the pseu-
dovariety DS, our task seems to reduce to finding a syntactic description of the
pseudovariety EGp. However here we encounter a serious problem because the
latter pseudovariety cannot be defined by a finite number of pseudoidentities, and
moreover, by any system of pseudoidentities involving only finitely many variables.
This immediately follows from the main result of [29].

We thus see that the structural descriptions of the pseudovarieties Tq
p and Tp

provided by Theorem 1.2 and Corollary 1.3 do not translate well into syntactic
descriptions. In spite of this fact, we have found a single pseudoidentity in two
variables that defines the pseudovarieties Tq

p and Tp within the pseudovarieties
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GpAbq−1 ∩ DS and respectively GpAb ∩ DS. This is the pseudoidentity

((
(xy)ωx

)pω−1(
y(xy)ω

)pω−1
)pω+1

=
(
(xy)ωx

)pω−1(
y(xy)ω

)pω−1
. (1.7)

At first glance, the pseudoidentity looks complicated and perhaps somewhat mys-
terious but we show in Section 4 that it reflects the very core of Okniński’s tri-
angularizability criterion. In order to make it and other pseudoidentities look
more concise we let e denote the expression (xy)ω . With this convention we may
formulate our syntactic descriptions as follows:

Theorem 1.5. The pseudovariety Tq
p of all finite semigroups triangularizable over

the field of characteristic p and order q is defined by the pseudoidentities

(
(exe)q−1(eye)q−1

)pω

= e, (1.8)
(
(exe)ω−1(eye)ω−1exeye

)pω

= e, (1.9)
(
e(yx)ωe

)ω = e, (1.10)
(
(ex)pω−1(ye)pω−1

)pω+1 = (ex)pω−1(ye)pω−1. (1.11)

Corollary 1.6. The pseudovariety Tp of all finite semigroups triangularizable over
a finite field of characteristic p is defined by the pseudoidentities (1.9)–(1.11) and

(
(exe)pω−1(eye)pω−1

)pω

= e. (1.12)

All the pseudoidentities (1.8)–(1.12) depend on two variables. Clearly, if one eval-
uates the left hand side and the right hand side of such a pseudoidentity in a finite
semigroup S assigning the variables x and y some elements s, t ∈ S, then the
evaluation takes place in the subsemigroup of S generated by s and t. Therefore
we have the following corollary:

Corollary 1.7. A finite semigroup S is triangularizable over a given finite field
[over some finite field of a given characteristic] whenever each of its 2-generator
subsemigroups is so.

As was pointed out to the authors by one of the referees, this corollary can be
also obtained by combining the fact (following from Th. 1.2 and Cor. 1.3) that tri-
angularizability of a semigroup over a finite field only depends on its isomorphism
class with a classical result of Guralnick [10].

The proofs in this paper are designed to be self-contained; in particular, we
do not assume the reader’s acquaintance with the representation theory of finite
semigroups or with the theory of linear groups using arguments from elementary
linear algebra instead. In fact, a reader having such a background may observe
that some of the proofs can be shortened by representation-theoretical arguments.
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2. Preliminaries on matrix semigroups

We fix a (not necessarily finite) field K and denote by Mn(K) the semigroup of
all n×n matrices over K. Let Tn(K) denote the semigroup of all upper triangular
matrices from Mn(K), and let UTn(K) stand for its subsemigroup consisting of
unitriangular matrices. The next proposition collects some properties of the reg-
ular D-classes and the maximal subgroups of Tn(K); it plays a crucial role in the
proof of the “only if” part of Proposition 1.1 and Theorem 1.2. For proofs of all
these properties the reader is referred to [16], Section 3.2, Example 2. Of course,
in this paper we are especially interested in the case of a finite field; for this special
case, direct and elementary proofs of most of the claims of the proposition may be
found in [30].

Proposition 2.1. In the semigroup Tn(K) every regular D-class consists of all
matrices of rank j, 0 ≤ j ≤ n, whose main diagonals have exactly j non-zero en-
tries and the same pattern of zero entries. Each such regular D-class is a subsemi-
group and hence the union of its maximal subgroups. Each maximal subgroup H
of a regular D-class whose matrices have rank j is isomorphic to the group T ∗

j (K)
of all invertible matrices of Tj(K), and the group H ∩ UTn(K) is isomorphic to
the group UT ∗

j (K) of all invertible matrices of UTj(K).

Our proofs of the “if” part of Theorem 1.2 and of Theorem 1.5 depend heavily
on Okniński’s triangularizability criterion [16], Section 4.4, or, more precisely, on
its restriction to the case of finite matrix semigroups (over an arbitrary field). Its
formulation requires a few definitions.

We say that two subsemigroups S and T of Mn(K) are conjugate if there exists
an invertible matrix g ∈ Mn(K) such that g−1Sg = T . A matrix is called unipotent
if all its eigenvalues belong to the set {0, 1}.

Proposition 2.2. A finite subsemigroup S ⊆ Mn(K) is conjugate to a subsemi-
group in Tn(K) if and only if every maximal subgroup of S is conjugate to a
subgroup in Tn(K), every regular D-class D of S is a subsemigroup of S, and the
subsemigroup of D generated by its idempotents consists of unipotent matrices.

Okniński’s triangularizability criterion [16], Theorem 4.31, for an arbitrary ma-
trix semigroup is formulated in a similar way; the only difference is that instead
of regular D-classes Okniński uses a more general notion of a uniform component
of a matrix semigroup. However it easily follows from [16], Section 3.2, Remark v,
that the uniform components of a finite semigroup S are just the regular D-classes
of S.

We also make use of the following classic result by Kolchin [13], Section 1:

Proposition 2.3. Every subgroup in Mn(K) consisting of unipotent matrices is
conjugate to a subgroup in Tn(K).
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Combining Propositions 2.2 and 2.3 one immediately gets the following corollary
which is a restriction of [16], Corollary 4.33, to the finite case:

Corollary 2.4. A finite subsemigroup S ⊆ Mn(K) consisting of unipotent matri-
ces is conjugate to a subsemigroup of Tn(K) if and only if the regular D-classes
of S are subsemigroups.

In order to apply Proposition 2.2 or Corollary 2.4 to an abstract semigroup S
we have to faithfully represent S by matrices over the given finite field. The reader
may think that this makes no real problem because it is well known that every fi-
nite semigroup admits a faithful linear representation over any field K. (It suffices
to span a K-vector space by the set S1 and then extend the regular representa-
tion of S to this space.) A difficulty still remains because in Proposition 2.2 and
Corollary 2.4 the notion of unipotency refers to a property of a given linear repre-
sentation of S rather than semigroup properties of S. However, the results of the
present paper show that triangularizability of a matrix semigroup over a finite field
depends only on abstract properties of the semigroup. The key observation here
is the following easy lemma that, for a matrix a over a finite field, expresses the
property of being unipotent as a property of the period of the cyclic subsemigroup
a generates.

Lemma 2.5. A matrix a over a finite field of characteristic p is unipotent if and
only if ak = ak+p�

for some positive integers k and �.

Proof. For the “only if” part, consider a triangular conjugate t of the matrix a (it
exists because the eigenvalues of a belong to the ground field). Then t is a uni-
triangular matrix, and a straightforward calculation shows that any unitriangular
matrix over a finite field of characteristic p satisfies tk = tk+p�

for some k and �.
For the “if” part, let K be the splitting field of the characteristic polynomial of

a and λ ∈ L an eigenvalue of a. Then λ satisfies the equation λk = λk+p�

. Thus,

0 = λk+p� − λk = λk(λp� − 1) = λk(λ − 1)p�

since p is the characteristic of the field K. We conclude that either λ = 0 or λ = 1,
that is, a is a unipotent matrix. �

3. Preliminaries on groups

We need a few facts about finite groups that all are slight variations of well
known results (see, e.g., [9], Chap. 3). It appears however that no source in the
vast group-theoretic literature contains these facts in a form suitable for use in
the present paper. Therefore, for the sake of being reasonably self-contained and
for the reader’s convenience, we provide their detailed formulations supplied with
elementary proofs.

We start with justifying the pseudoidentity bases for the pseudovarieties
GpAbq−1 and GpAb presented in Section 1.
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Lemma 3.1. The pseudovariety GpAbq−1 is defined within the class of all finite
groups by the pseudoidentities (1.4) and (1.5). The pseudovariety GpAb is defined
within the class of all finite groups by the pseudoidentities (1.6) and (1.5).

Proof. First we prove that every group G ∈ GpAbq−1 satisfies the pseudoidenti-
ties (1.4) and (1.5). By the definition of GpAbq−1, such G is an extension of a
p-subgroup H by an Abelian group of exponent q− 1. Therefore for any x, y ∈ G,
we have xq−1yq−1 ∈ H and x−1y−1xy ∈ H . If |G| = �, then g�! = 1 for all
g ∈ G whence g−1 = g�!−1. Further, hp�!

= 1 for all h ∈ H . Combining all these
observations, we conclude that G satisfies

(
xq−1yq−1

)p�!

= 1 and
(
x�!−1y�!−1xy

)p�!

= 1.

By our interpretation of ω-words, this means that G satisfies (1.4) and (1.5).
Now take G ∈ GpAb. Clearly, the above proof applies to show that G sat-

isfies (1.5). By the definition of GpAb, the commutator subgroup G′ of G is a
p-group. Every p-subgroup of G is contained in a Sylow p-subgroup but since sub-
groups containing G′ are all normal in G, we conclude that G has a unique Sylow
p-subgroup H which is normal in G. The quotient G/H is an Abelian group whose
order r is relatively prime with p. Then by Euler’s theorem, r divides pm − 1 for a
suitable m < r. If |G| = �, then m divides �! whence pm − 1 divides p�! − 1 and we
have xp�!−1yp�!−1 ∈ H for all x, y ∈ G. As in the previous paragraph, we conclude
that G satisfies

(
xp�!−1yp�!−1

)p�!

= 1

and hence G satisfies the pseudoidentity (1.6).
Now suppose that G is a group of order � satisfying (1.4) and (1.5). According

to our convention, the ω-words
(
xq−1yq−1

)pω

and
(
xω−1yω−1xy

)pω

interpret in G

as
(
xq−1yq−1

)p�!

and respectively
(
x�!−1y�!−1xy

)p�!

. In particular, G satisfies the
identity

(
xq−1yq−1

)p�!

= 1.

Recall that q is a power of p, and therefore, the numbers q−1 and p�! are relatively
prime. It is known (cf. [15], Ex. 34.25) and easy to verify that in every group
satisfying the identity (xsys)r = 1 for some relatively prime numbers s and r
the elements of order dividing r form a normal subgroup. We see that G has a
normal p-subgroup H such that the quotient group G/H satisfies xq−1 = 1 and
x�!−1y�!−1xy = 1. Since the exponent of any group of order ≤ � divides �!, we
have x�! = 1 in G/H whence x�!−1 = x−1 and the expression x�!−1y�!−1xy is
nothing but the usual group commutator of the elements x and y. Thus, we have
G/H ∈ Abq−1 and G ∈ GpAbq−1, as required.

The same proof with p�! in the role of q shows that every finite group satisfy-
ing (1.6) and (1.5) belongs to the pseudovariety GpAb. �
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We notice that the proof of Lemma 3.1 also justifies the following formula:

GpAb =
⋃

m

GpAbpm−1. (3.1)

Now we aim to verify that every subgroup of Mn(F) that belongs to the pseudova-
riety GpAbq−1 is conjugate to a subgroup in Tn(F). We start with a reduction
which, though it is not essential, allows us to simplify the notation. Let G be a
subgroup in Mn(F) and let e be the identity element of G. It is well known (and
easy to verify) that the semigroup eMn(F)e is isomorphic to Mk(F) where k is the
rank of the matrix e. The group G ⊆ eMn(F)e is then isomorphic to a subgroup
of the group GLk(F) of all invertible matrices in Mk(F). In other words, we may
(and will) assume that groups under consideration consist of invertible matrices.

Given a subgroup G ⊆ GLn(F), we denote by C(G) the following subspace of
the vector space F

n:

C(G) = {v ∈ F
n | vg1g2 = vg2g1 for all g1, g2 ∈ G}.

Lemma 3.2. The subspace C(G) is G-invariant.

Proof. Take an arbitrary vector v ∈ C(G) and an arbitrary matrix h ∈ G. Then
for all g1, g2 ∈ G we have

(vh)g1g2 = vh(g1g2) = vg1g2h = vg2g1h = vh(g2g1) = (vh)g2g1

whence vh ∈ C(G). �

Lemma 3.3. If a subgroup G ⊆ GLn(F) belongs to the pseudovariety GpAb, then
C(G) �= 0.

Proof. By Lemma 2.5 the commutator subgroup G′ of G consists of unipotent
matrices. Since G ⊆ GLn(F), the only eigenvalue for all matrices in G′ is 1. By
Proposition 2.3 (Kolchin’s theorem) all matrices in G′ possess a common eigen-
vector v �= 0, so vh = v for every h ∈ G′. Now for all g1, g2 ∈ G we have
g1g2g

−1
1 g−1

2 ∈ G′ whence

vg1g2 = v(g1g2g
−1
1 g−1

2 )g2g1 = vg2g1.

We see that v ∈ C(G), and hence, C(G) �= 0. �

Proposition 3.4. If a subgroup G ⊆ GLn(F) belongs to the pseudovariety GpAb,
then there exists a chain of G-invariant subspaces

0 = C0 ⊂ C1 ⊂ · · · ⊂ Ck−1 ⊂ Ck = F
n (3.2)

such that for each i = 1, . . . , k, the group Gi of invertible linear transformations
induced by G on the quotient space Ci/Ci−1 is Abelian.
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Proof. We build the chain (3.2) inductively. Suppose the subspace Ci−1 is already
defined and consider the quotient space F

n/Ci−1. Since Ci−1 is a G-invariant
subspace, the group G induces a group Hi of invertible linear transformations of
the space F

n/Ci−1. Clearly, Hi is a homomorphic image of G, and therefore, Hi

belongs to the pseudovariety GpAb. By Lemma 3.3 the subspace C(Hi) of F
n/Ci−1

is not equal to 0 and by Lemma 3.2 it is Hi-invariant. Now let Ci be the pull-
back of C(Hi) in F

n. Then Ci−1 ⊂ Ci and Ci is a G-invariant subspace. By the
definition of the subspace C(Hi), the group Gi formed by the restrictions of the
transformations of Hi to this subspace is Abelian. The second isomorphism theo-
rem implies that Gi is isomorphic to the group of invertible linear transformations
induced by G on the quotient space Ci/Ci−1. �

A matrix form of Proposition 3.4 is provided by the following

Corollary 3.5. If a subgroup of GLn(F) lies in the pseudovariety GpAb, then it
is conjugate to a group G of the form









Gk ∗ . . . ∗ ∗
0 Gk−1 . . . ∗ ∗
...

...
. . .

...
...

0 0 . . . G2 ∗
0 0 . . . 0 G1









.

Here each Gi (i = 1, . . . , k) is an Abelian group of ni × ni matrices where n1 +
· · · + nk = n.

Proof. It suffices to choose a basis v1, . . . , vn for the space F
n according to the

chain (3.2), i.e. choose it so that v1, . . . , vn1 is a basis of C1, vn1+1+C1, . . . , vn1+n2+
C1 is a basis of C2/C1, etc. �

Recall that q stands for the order of the field F.

Proposition 3.6. If a subgroup G ⊂ Mn(F) belongs to the pseudovariety GpAbq−1,
then G is conjugate to a subgroup of Tn(F).

Proof. If we take G in the block-triangular form of Corollary 3.5, it remains to
verify that each diagonal group Gi is conjugate to a subgroup of Tni(F). In other
words, we may assume that G is Abelian.

Now take an arbitrary matrix g ∈ G, let K ⊇ F be the splitting field of the
characteristic polynomial of g and let λ ∈ K be an arbitrary eigenvalue of g.
Since G satisfies the pseudoidentity (1.4), g(q−1)p�!

= 1 where � = |G|. Hence λ

satisfies the equation λ(q−1)p�!
= 1. On the other hand, λqm−1 = 1 where qm is

the order of the field K. Since q is a power of p, the greatest common divisor of
(q−1)p�! and qm−1 = (q−1)(qm−1+ · · ·+q+1) is equal to q−1. Thus, λq−1 = 1,
and this means that λ (as a solution to the equation xq = x over K) belongs to
the field F.
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It remains to recall the following elementary exercise in linear algebra: every
finite family of commuting matrices whose eigenvalues lie in the ground field is
simultaneously triangularizable over that field. �

From Proposition 3.6 and the formula (3.1) we immediately obtain

Corollary 3.7. Every group G in the pseudovariety GpAb is triangularizable over
a suitable finite field of characteristic p.

4. Proofs of the main results

We start by proving Theorem 1.2. Recall that it claims that the class Tq
p of all

finite semigroups triangularizable over the field F of characteristic p and order q

is the pseudovariety GpAbq−1 ∩ DS ∩ EGp.

Necessity. It suffices to verify that for each n the semigroup Tn(F) belongs to
GpAbq−1 ∩ DS ∩ EGp. The fact that Tn(F) ∈ DS is a part of Proposition 2.1.

By the same proposition the maximal subgroups of Tn(F) are of the form T ∗
j (F)

for some j ≤ n. The mapping that sends every matrix of the group T ∗
j (F) to

the diagonal matrix with the same diagonal elements is a homomorphism whose
kernel is UT ∗

j (F) and whose image (that is, the group of all invertible diagonal
j× j matrices) is isomorphic to the direct product of j copies of the multiplicative
group of the field F. The group UT ∗

j (F) is easily seen to be a p-group (indeed,

the subgroup contains q
j(j−1)

2 elements, and this number is a power of p). Thus,
T ∗

j (F) is an extension of a p-group by an Abelian group of exponent q− 1. We see
that every subgroup of the semigroup Tn(F) belongs to the pseudovariety GpAbq−1

whence the semigroup itself lies in GpAbq−1.
Clearly, the idempotents of Tn(F) belong to the semigroup UTn(F) which lies in

the pseudovariety Gp since its maximal subgroups are p-groups, see Proposition 2.1.
Therefore Tn(F) ∈ EGp.

Sufficiency. Take a finite semigroup S ∈ GpAbq−1 ∩ DS ∩ EGp. As discussed in
Section 2, we may assume that S ⊆ Mn(F) for some n. Now we aim to show
that S satisfies the conditions of Proposition 2.2.

The fact that every maximal subgroup of S is conjugate to a subgroup in Tn(F)
follows from Proposition 3.6. Since S ∈ DS, each regular D-class D is a subsemi-
group of S and it remains to check that the subsemigroup of D generated by
its idempotents consists of unipotent matrices. But, since S lies in EGp, the
idempotents of S (and, in particular, the idempotents of D) generate a subsemi-
group that belongs to Gp. By Lemma 2.5 this subsemigroup consists of unipotent
matrices. �

Now it is easy to prove Proposition 1.1. We recall its assertion: the class UTp of
all finite semigroups unitriangularizable over a given finite field of characteristic p
coincides with Gp ∩ DS.
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Necessity follows from Proposition 2.1.
Sufficiency follows from Corollary 2.4 and from the above proof of the “if” part of
Theorem 1.2. In order to see that all elements of the semigroup are unipotent, one
should take into account the pseudoidentity (1.3) defining the pseudovariety Gp

and use Lemma 2.5. �

In order to obtain Corollary 1.3, one repeats the proof of Theorem 1.2 using
Corollary 3.7 instead of Proposition 3.6.

Next we prove Theorem 1.5 that claims that the pseudovariety Tq
p can be defined

by the pseudoidentities (1.8)–(1.11). First we show that Tq
p satisfies these 4 pseu-

doidentities. To this aim it suffices to verify that they hold in the semigroup Tn(F)
for each n.

Clearly, Tn(F) satisfies the pseudoidentity (1.10) because this pseudoidentity
defines the pseudovariety DS and Tn(F) belongs to DS by Proposition 2.1.

Now we take two arbitrary matrices x, y ∈ Tn(F) and let � = |Tn(F)|. The
ω-word (xy)ω interprets in Tn(F) as (xy)�!, and this is an idempotent in Tn(F).
Slightly abusing notation, we denote the idempotent by e. Then the matrices ex
and ye belong to the same regular D-class D of S: indeed, one readily sees that
the element ex is R-related to the idempotent e while the element ye is L -related
to the same idempotent. Since D is a subsemigroup, we have exe, eye ∈ D.
The idempotent e is the identity for both exe and eye whence the two elements
belong to the H -class of e which is a group. Subgroups of Tn(F) belong to the
pseudovariety GpAbq−1 by Theorem 1.2. By Lemma 3.1 this pseudovariety satisfies
the pseudoidentities (1.4) and (1.5). Thus we have that the equalities

(
(exe)q−1(eye)q−1

)p�!

= e,

((exe)�!−1(eye)�!−1exeye
)p�!

= e

hold in Tn(F) for an arbitrary choice of the elements x and y.
Further, by Proposition 2.1 the matrices ex and ye are of the same rank j, say,

and their main diagonals have exactly j non-zero entries and the same pattern of
zero entries. Since q is a power of p and q ≤ �, the number q − 1 divides p�! − 1
and the non-zero diagonal entries of the matrices (ex)p�!−1 and (ye)p�!−1 are equal
to 1. The product z of the two matrices belongs to D (since D is a subsemigroup),
and therefore, z is a group element (since D is a union of its maximal subgroups).
At the same time z is a unitriangular matrix. We already have observed that
subgroups of UTn(F) are p-groups whence z belongs to a p-group of order ≤ � and
thus satisfies zp�!+1 = z.

By our interpretation of ω-words, this means that Tn(F) satisfies (1.8), (1.9)
and (1.11).

For the converse, we have to prove that if a finite semigroup S satisfies the
pseudoidentities (1.8)–(1.11), then S belongs to the pseudovariety Tq

p, that is, S is
triangularizable over the field F. As in the proof of the “if” part of Theorem 1.2,
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we may assume that S ⊆ Mn(F) for some n. We then have to show that S satisfies
the conditions of Proposition 2.2.

First, let G be a subgroup of S and x, y ∈ G. Then the ω-word e = (xy)ω

interprets in S as the identity element of G whence exe and eye interpret as
respectively x and y. Therefore the fact that S satisfies the pseudoidentities (1.8)
and (1.9) implies that G satisfies the pseudoidentities (1.4) and respectively (1.5).
By Lemma 3.1 the latter pseudoidentities define the pseudovariety GpAbq−1 and
so G lies in this pseudovariety. By Proposition 3.6 G is conjugate to a subgroup
in Tn(F).

The fact that every regular D-class of S is a subsemigroup is ensured since S
satisfies the pseudoidentity (1.10).

To complete the proof we need to show that, for every regular D-class D of S,
the subsemigroup of D generated by its idempotents consists of unipotent matrices.

Let � = |S| and let g ∈ D be a unipotent matrix. Since D is a union of groups,
g belongs to a subgroup whence the cyclic subsemigroup generated by g is in fact a
subgroup. By Lemma 2.5 the cyclic subgroup is in fact a p-subgroup whose identity
element can be then written as gp�!

. Hence the inverse ḡ of g in the subgroup is
equal to gp�!−1. Therefore g = ḡp�!−1. Now let h ∈ D be another unipotent
matrix and h̄ its inverse in the corresponding subgroup of D. It is well-known that
the pseudovariety of all finite simple semigroups is defined by the pseudoidentity
(xy)ωx = x. Hence, as a finite simple semigroup of order at most �, D satisfies
the identity (xy)�!x = x. Thus, (ḡh̄)�!ḡ = ḡ and h̄(ḡh̄)�! = h̄ whence

(
(ḡh̄)�!ḡ

)p�!−1(
h̄(ḡh̄)�!

)p�!−1 = gh.

In view of the pseudoidentity (1.7) we get gh = (gh)p�!+1 and by Lemma 2.5 gh is
a unipotent matrix. Thus, we have proved that the product of any two unipotent
matrices from a regular D-class is again a unipotent matrix from the same D-class.

Since it is clear that every idempotent matrix is unipotent, it follows from the
previous paragraph by a straightforward induction that the idempotent-generated
subsemigroup of D consists of unipotent matrices, and this completes the proof of
Theorem 1.5. �

The proof of Corollary 1.6 is completely analogous to the above proof of Theo-
rem 1.5.

5. An example

In order to illustrate some subtleties, we analyze an easy but rather peculiar
example in which three 24-element simple semigroups sharing the same structure
group behave in a completely different manner with respect to triangularizability
over a finite field.
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Let Z6 = 〈c | c7 = c〉 stand for the cyclic group of order 6, and let e = c6 be
the identity of this group. Now consider the following three matrices over Z6:

P1 =
(

e e
e c

)
, P2 =

(
e e
e c2

)
, P3 =

(
e e
e c3

)
.

Example 5.1. Let M(Z6, Pi) (i = 1, 2, 3) be the Rees matrix semigroup over Z6

with the sandwich matrix Pi.

(i) The semigroup M(Z6, P1) is triangularizable over no finite field.
(ii) The semigroup M(Z6, P2) is triangularizable over a finite field if and only

if the field has characteristic 3.
(iii) The semigroup M(Z6, P3) is triangularizable over a finite field if and only

if the field consists of 4m elements.

Proof. It is easy to calculate (and also follows from some general properties of Rees
matrix semigroups) that the maximal subgroups of the subsemigroup generated by
the idempotents of M(Z6, Pi) are isomorphic to the subgroup Hi of Z6 generated
by the element ci, i = 1, 2, 3. For i = 1, the group H1 = Z6 is not a p-group for
any prime p. Therefore there is no prime p such that M(Z6, P1) can belong to EGp

and by Theorem 1.2 the semigroup cannot be faithfully represented by triangular
matrices over any finite field.

For i = 2, the group H2 has order 3 whence M(Z6, P2) belongs to EG3. Since
the semigroup obviously lies in DS and its maximal subgroup Z6 can be treated as
an extension of a 3-group by an Abelian group of exponent 2 = 3−1, Theorem 1.2
applies with p = q = 3. We see that M(Z6, P2) is triangularizable over the 3-
element field and hence over any finite field of characteristic 3 (but over no finite
field of other characteristic).

If i = 3, then the group H3 has order 2. Thus, M(Z6, P3) belongs to EG2 ∩DS.
This time we should treat Z6 as an extension of a 2-group by an Abelian group
of exponent 3 = 4 − 1. By Theorem 1.2 (with p = 2, q = 4) the semigroup
M(Z6, P3) is triangularizable over the 4-element field and hence over any field
with 4m elements. On the other hand, if a finite field F does not contain the
4-element field, then either its characteristic is not 2 or its multiplicative group has
no elements of order 3, and therefore, M(Z6, P3) is not triangularizable over F. �

The following “egg-box picture” demonstrates a concrete faithful representation
of the semigroup M(Z6, P2) by 3×3 triangular matrices of the 3-element field Z/3Z

(this representation is in fact of the minimum possible degree). We have filled only
in the upper triangle of the matrices; all blank positions are assumed to be filled
with zeros.
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


1 0 0

0 0
1








1 0 1

0 0
1








1 0 2

0 0
1








1 1 0

0 0
1








1 1 1

0 0
1








1 1 2

0 0
1








2 0 0

0 0
2








2 0 2

0 0
2








2 0 1

0 0
2








2 2 0

0 0
2








2 2 2

0 0
2








2 2 1

0 0
2








1 0 0

0 1
1








1 0 1

0 1
1








1 0 2

0 1
1








1 1 2

0 1
1








1 1 0

0 1
1








1 1 1

0 1
1








2 0 0

0 2
2








2 0 2

0 2
2








2 0 1

0 2
2








2 2 1

0 2
2








2 2 0

0 2
2








2 2 2

0 2
2





A similar minimum representation by 3×3 triangular matrices of the 4-element
field can be constructed for the semigroup M(Z6, P3).
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