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SOME DECISION PROBLEMS ON INTEGER MATRICES *

CHRISTIAN CHOFFRUT! AND JUHANI KARHUMAKI?

Abstract. Given a finite set of matrices with integer entries, consider
the question of determining whether the semigroup they generated 1) is
free; 2) contains the identity matrix; 3) contains the null matrix or 4) is
a group. Even for matrices of dimension 3, questions 1) and 3) are
undecidable. For dimension 2, they are still open as far as we know.
Here we prove that problems 2) and 4) are decidable by proving more
generally that it is recursively decidable whether or not a given non
singular matrix belongs to a given finitely generated semigroup.

Mathematics Subject Classification. 20MO05, 68R15.

1. INTRODUCTION

The purpose of this work is to tackle a few issues on semigroup of matrices
over the integers Z. Very natural and simple questions are already undecidable
for low dimensions. F.g., it has long been observed that given a finite set of
matrices of dimension 3 with entries in Z, it is undecidable whether or not they
generate the zero matrix, (the mortality problem [16]). More recently, it was
proved that it is recursively undecidable whether or not such a finite set generates
a free monoid [10]. The case of dimension 2 is still unsettled and apparently simple
examples let us think that even this restriction is not easy. The dual problem of
trying to determine a matrix representation for a given semigroup was considered
in [3] where all trace monoids admitting a faithful representation as 2 x 2-matrices
with non-negative integer entries were characterized.

There seems to be little space for decidable issues. Here we show the decidabil-
ity of a few questions concerning matrices of dimension 2. Indeed, given a finite
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set of matrices of dimension 2 with integer entries, we prove that it can be de-
cided whether or not the semigroup they generate contains the identity and more
generally whether or not it contains a given non singular matrix. To our knowl-
edge, for higher dimensions the problem is open. Observe that as a consequence,
the property of being a group is also decidable. These results rely on the simple
structure of the group of unimodular matrices of dimension 2 which allows us to
reformulate the problem in terms of pure automata theory.

2. PRELIMINARIES

In order to give a reasonable limit to our ambition, we recall some results to
be found in the literature concerning integer matrices. We do not discuss the
well-known problem of the finiteness of a semigroup of matrices (the “Burnside
problem”). The reader is referred to [8,13].

When working with decision procedures for matrices, the case of dimension 3
is already difficult. The main reason is that a direct product of two free monoids
has a faithful representation in the multiplicative semigroup N3*? (which extends
naturally that of a free monoid in the multiplicative semigroup of N2*2). This
allows us to encode Post Correspondence Problem and therefore to establish the
undecidabibility of certain problems, see [16], also [10], [2] or [7]. E.g., the freeness
of the subsemigroup of a finite number of matrices can be shown to be undecidable
when one observes that the “uniquely decipherability property” in A* x B* is
undecidable, [4]. Thus, we restrict ourselves to matrices of dimension 2. For a
mathematical motivation of studying these matrices we refer to [12], Section 8.

2.1. GENERAL DECISION PROBLEMS

Though we are mainly interested in the case of the semiring Z, we pose the
following general problems for an arbitrary finite subset E of n X n-matrices with
coefficients in an integral ring K, see [6,9].

IDENTITY PROBLEM
Does the subsemigroup generated by E contain the identity matrix I?

GROUP PROBLEM
Is the subsemigroup generated by F a group?

INVERSE PROBLEM
Given X € F does it have an inverse in the monoid generated by E?

MEMBERSHIP PROBLEM
Given X € K"*" does it belong to the monoid generated by E7

As a particular case of the latter we have

MORTALITY PROBLEM
Does the set E generate the null matrix 07
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Observe that the semigroup generated by E contains the identity if and only
if it contains the inverse of some element of E and that it is a group if and only
if it contains the inverse of all elements of E. In other words, decidability of the
Inverse Problem yields decidability of both the Identity and the Group Problems.
Also the decidabilty of the Membership Problem entails the decidability of the
remaining problems. The Membership Problem is also known as the generalized
word problem: if M is a monoid with a recursive presentation (A|R) (R C A*x A*),
the generalized word problem asks whether or not there exists an algorithm which
given a word w € A* and a submonoid N C M, decides if w belongs to N.

2.2. RATIONAL SUBSETS OF A MONOID

We assume the reader familiar with the elementary theory of finite automata
and rational subsets of a monoid. Numerous textbooks give a thorough presenta-
tion of the topic, (e.g., [1,5]).

Given a monoid M, the family of rational subsets of M is the least family F
of subsets of M containing the empty set () and all finite subsets and which is
closed under set union (X,Y € F implies X UY € F), subset product (X,Y € F
implies X - Y = {ay | z € X,y € Y} € F) and Kleene product (X € F implies
X*=U,s0 X" €F).

Assume the monoid M has a finite monoid presentation, i.e., it is isomorphic
to a quotient of a finitely generated free monoid by some finitely generated con-
gruence =. Then an arbitry rational subset H of M is defined by some finite
automaton A in the following sense. Each word recognized by A is a representa-
tive of an element of H and conversely, each element of H is represented by some
word recognized by the automaton. Equivalently, if |.4| denotes the set of words
recognized by A, this automaton represents the subset |A|/= of M.

The following particular case plays a special role in the rest of the paper.

Proposition 1. Given a rational subset of a free product of finite cyclic groups
G2 Z/;mZx*...x7/p,Z defined by some finite automaton as explained above, it
is recursively decidable whether or not it contains the unit of G.

Proof. The group G has the monoid presentation (a1, as, ..., ayla]* = ab? = =

abr = 1), i.e., it is given as the quotient of the free monoid {as,as,...,a,}* b
the (monoid) congruence generated by the relators af* =1, ..., aP» = 1. Tt is
well-known that each word is equivalent to a unique reduced word, i.e., a word
containing no occurrence of a!* for ¢ = 1,...,n. Such a word is obtained by
applying the reduction rules a!* — 1 deleting all occurrences of a?*, one after
the other in any possible order. Let A be a finite automaton defining a rational
subset H of G. It suffices to show that the set of reduced words congruent to the
words accepted by A is also recognized by a finite automaton. The idea consists of
augmenting A with transitions which do not modify |.4|/ = but which add words
obtained by reduction. It then suffices to select the reduced words by intersecting
the subset with all reduced words, which is a rational set of words.
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More technically, the procedure does the following: add an empty transition,
i.e., draw a transition labelled by the empty word between state ¢ and ¢’ whenever
there is a path labelled by a for i = 1,...,n between state ¢ and ¢’ and stop

whenever no new empty transition can be added. Let L C {a1,aq,...,a,}* be
the subset recognized by the modified automaton (L/ == |A|/ =). Then the
subset of reduced words is the rational subset L — {a1,as,...,a,}*(a]* + ... +
agr)Ln){alaa%"'aan}*' O

3. DECIDABLE PROPERTIES IN Z2*2

The main ingredient of our proof is the following well-known result on the group
GL(2,7Z) of invertible matrices in the monoid Z?*2. The subgroup consisting of
unimodular matrices (i.e., with determinant equal to 1) is the special linear group
SL(2,Z). This group is generated by the two matrices

0 -1 0 1
()= h)
Furthermore, the quotient of SL(2,Z) by its center £I, which is the projective

special linear group PSL(2,7Z), has a finite presentation as a free product of two
finite cyclic groups

PSL(2,Z) = 7,/27 x 7./ 3Z. (1)

A morphism of SL(2,Z) onto the group Z/27 * Z,/37 presented by (a, bla?, b?) is
obtained by assigning a to the matrix A and b to the matrix B, cf., e.g., [17],
Exercise 11.24.

The following theorem implies that the membership problem for finitely sub-
semigroups of GL(2,Z) is recursively decidable. Now, substitute the term sub-
group for subsemigroup. A theorem of Mikhailova, [11], p. 193, says that the
direct product of two free finitely generated groups may have unsolvable member-
ship problem. Since the group GL(4,Z) of invertible 4 x 4-matrices with entries
in Z has a subgroup which is a direct product of two copies of GL(2,Z) and since
each copy has a subgroup which is freely generated by an arbitrary number of gen-
erators, the membership problem for GL(4,Z) is recursively unsolvable, see also
[14]. The case of GL(3,Z) remains open, see [15].

Theorem 1. Given a rational subset of matrices in Z>*? and a non singular
matriz Y € Z2*2, it is recursively decidable whether or not Y belongs to this
rational subset.

Proof. We reformulate the problem as follows. We are given a rational expression
R(X1,...,X,) over the set of symbols X;, i = 1,...,n defining a set of words over
these symbols. Furthermore, we are given a substitution ¢ which assigns a matrix
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in Z2*2 to each symbol X;. We are asked, for a given matrix Y with Det(Y) = £1
wether or not the condition

Y € o(R(X1,...,Xn)) (2)

holds. We shall proceed by successive simplifications until reducing the problem
to determining whether or not the unit matrix belongs to a rational set of the
group PSL(2,7Z).

Claim 1. Without loss of generality we may assume Y = I. Indeed, let X be a
new symbol, consider the rational expression X - R(Xq,..., X, ) and extend ¢ by
defining ¢(X) = Y 1. Then the condition Y € ¢(R(X1, ..., X)) is equivalent to
the condition I € ¢(X - R(X1,...,X,)).

Claim 2. Without loss of generality we may assume that the determinant of
all X;’s is equal to 1 or —1. Indeed, let J be the subset of integers 1 < i < n for
which the determinant of X; is equal to 1 or —1. Then Condition 2 is equivalent
to the condition I € ¢ ((R(X1,...,X,) N{X; |i€ J}*).

Claim 3. Without loss of generality we may assume that the determinant of
all X;’s is equal to 1. Indeed, first we may assume that in all the words defined by
the expression R(X7, ..., X, ), the number of occurrences of symbols X; for which
the determinant is equal to —1 is even: let J be the subset of integers 1 < < n
for which the determinant of X; is equal to —1. Then Condition 2 is equivalent to
the condition

Ie¢(R(Xy,... . Xn) N({Xi i ¢ J}{Xi i€ TN {X;|i¢ J})

where the expression under the function ¢ is equivalent to a rational expression, by
Kleene’s Theorem. Now we observe that for all X;, i € J and all X, k ¢ J there
exists a unique matrix Y;, with determinant equal to 1 such that ¢(X;)Y;r =
d(Xk)p(X;) holds. Let X, 1 be a new symbol for i € J and k ¢ J and extend ¢
by posing ¢(X; ) = Yiy for all the new symbols thus introduced. Let 7 be
the mapping which transforms every word defined by the rational expression R
as follows. Consider, if they exist, the leftmost two symbols X; and X, 4,7 €
J, i < j in the word and replace the factor X; X, ;... X;_1X; by the factor
Xiit1 .- X;j—1X;X;. Proceed in this way until exhausting all symbols X; with
i€ J. Eg, for n = 4, J = {2,4} and the word W = X3X2X1X3X4X3X4X1X2
we would have 7(W) = X3X5 1 X2 3X2X4X35X,41X4X5. The function 7 is rational
and there exists a rational expression R’ over the symbols X;, i = 1,...,n and
the symbols X, ¢ € J, k ¢ J which defines exactly the images of the words
defined by R in the transformation 7. Observe that in the words defined by R/,
the symbols X; with ¢ € J appear in consecutive positions. We group them by
creating a new symbol Z;; for all factors X;X;, i,k € J. This yields a new
equivalent rational expression R” where the symboles are the X;’s with ¢ ¢ J, the
Xix's fori € J, k ¢ J and the symbols Z, i, i,k € J. A final extension of ¢ is
obtained by posing ¢(Z; 1) = ¢(X;)#(Xk). This completes the proof of the third

claim.
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The previous three claims prove that we can start up from a rational expres-
sion R and a morphism ¢ assigning a matrix in SL(2,Z) to each symbol X;, in
other words, that ¢(R) is a rational subset of SL(2,Z). The mapping ¢ which
identifies each matrix of SL(2,7Z) with its opposite, maps ¢(R) onto the rational
subset of t(¢p(R)) of PSL(2,Z) for which we can apply Proposition 1 and find out
whether I or its opposite belongs to ¢(R). If it does, in order to lift the ambiguity
between I and —I, we consider the morphism 6 which assigns to every matrix
of SL(2,Z) the matrix in the finite group (Z/3Z)%*? obtained by considering its
entries modulo the integer 3. Intersect R with the set of all products whose image
in the morphism 6 is the identity matrix of (Z/3Z)?*? which we simply denote
by 1

R =RO{W e {Xy,.... Xu}" | 0(6(W)) = 1}.

This intersection is again rational, and we have the condition I € ¢(R’) if and
only if «(I) € t(¢p(R’)) and we may conclude wvia Proposition 1.

Now, we apply the previous considerations. Assume a non-singular matrix Y
belongs to the semigroup generated by a finite set E of matrices: Y = Z;...Z,.
Consider the set of increasing indices corresponding to the matrices with determi-
nant different from 1 or —1 in this product.

{0 <i1 <ig<...ip<n}={0<i<n|Det(Z;)# £1}. (3)
For every matrix X € E with Det(X) = 41, we define the sequence

X0 =x 7z, x=xWz ZiZiy. . Zi X =XVZ, Ziy .. Z; .

Lseees
For k = 1,...,p, define E®) as the submonoid generated by the finite set of
matrices X *). Compute the matrix M = Y(Z;, ... Zip)_l. Then M belongs to
the rational subset of SL(2, Z)

Ot gl

Conversely, if M belongs to this subset, then Y can be expressed by a product
Y =7 ... Z, with the condition (3), which we proved to be recursively decidable
in the first part. Finally, in order to verify whether or not Y is generated by E, we
test all possible sequences Z;,, ..., Z;, with p < [log, |Det(Y')|]. This completes
the proof. O

As a corollary we get

Theorem 2. Given a finite set of matrices in Z**?, the IDENTITY, the GROUP
and the INVERSE problem are recursively decidable.
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