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Abstract. The recently announced Strong Perfect Graph Theorem
states that the class of perfect graphs coincides with the class of graphs
containing no induced odd cycle of length at least 5 or the complement
of such a cycle. A graph in this second class is called Berge. A bull
is a graph with five vertices x, a, b, c, d and five edges xa, xb, ab, ad, bc.
A graph is bull-reducible if no vertex is in two bulls. In this paper we
give a simple proof that every bull-reducible Berge graph is perfect.
Although this result follows directly from the Strong Perfect Graph
Theorem, our proof leads to a recognition algorithm for this new class
of perfect graphs whose complexity, O(n6), is much lower than that
announced for perfect graphs.
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1. Introduction

A graph is perfect if for every induced subgraph F of G the chromatic num-
ber χ(F ) of F is equal to its clique number ω(F ) (i.e., the size of the largest clique
contained in F ). It is possible to color a perfect graph optimally and in poly-
nomial time, thanks to the algorithm of Grötschel, Lovász and Schrijver [9], but
that algorithm, based on the ellipsoid method, is rather impractical. Polynomial-
time combinatorial algorithms, based on a structural analysis and decomposition
of perfect graphs are still being sought. Lovász’s Perfect Graph Theorem says that
the class of perfect graphs is self-complementary [14]. A hole is an induced cycle
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Figure 1. The bull B(c, bxa, d).

of length ≥5. Berge’s well known Strong Perfect Graph Conjecture states that the
class of perfect graphs coincides with the class of graphs containing no odd hole
or the complement of an odd hole. A graph in this second class is called Berge.
It is easy to see that every perfect graph is Berge so the Strong Perfect Graph
Conjecture actually states that every Berge graph is perfect. For partial results
on this conjecture see [1, 15]. The Strong Perfect Graph Conjecture is considered
a central problem in computational complexity, combinatorial optimization, and
graph theory.

In October 2002, Chudnovsky, Seymour, Robertson and Thomas announced
a proof of the Strong Perfect Graph Conjecture. The preliminary version of
their paper, consisting of 148 pages [4], is long and complex. The proposed de-
composition theorem that proves the Strong Perfect Graph Conjecture does not
lead to an efficient recognition algorithm, nor does it immediately imply that the
four optimization problems related to the definition of perfect graphs (maximum
clique, minimum colouring, maximum stable set, minimum clique cover) can be
solved efficiently for perfect graphs. Subsequently, polynomial-time algorithms
to recognize Berge graphs have been announced by Chudnovsky, Cornuejols, Liu,
Seymour and Vuskovic [3, 5, 13]; these algorithms have high complexities, O(n9),
and O(n20). Polynomial-time combinatorial algorithms for the four optimization
problems, based on a structural analysis and decomposition of perfect graphs are
still being sought.

The purpose of the present paper is to give a simple proof for the validity of the
Strong Perfect Graph Conjecture for a subclass of Berge Graphs. The proof of the
Strong Perfect Graph Conjecture proposed in [4] claims that every Berge Graph
can be decomposed by 2-join, M-join or skew partition decomposition into basic
perfect graphs: bipartite or complement of bipartite, line graph of bipartite or dou-
ble split. In this paper, we prove Theorem 3, a statement for bull-reducible graphs
stronger than the direct application of [4]. In addition, our proof of the Strong
Perfect Graph Conjecture for a subclass of Berge Graphs yields a polynomial-time
algorithm to recognize the corresponding subclass of perfect graphs in time O(n6).

Denote by B(c, bxa, d) the labelled graph depicted in Figure 1, a bull on five
vertices x, a, b, c, d and five edges xa, xb, ab, ad, bc. Vertex x is the nose of this
bull. Note that if x is the nose of a bull B(c, bxa, d) in G, then x is the nose of
a bull B(a, cxd, b) in G. The class of bull-free graphs is self-complementary and
generalizes the class of P4-free graphs.
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Chvátal and Sbihi [6] proved:

Theorem 1. Every bull-free Berge graph is perfect.

Since then others have studied bull-free Berge graphs; see [16] for a polynomial-
time recognition algorithm; [7, 8] for an alternative proof of perfection, and a
bipartite layout of bull-free Berge graphs; [11] for a proof of a conjecture of Chvátal.

We extend the result of Theorem 1 and prove that if no vertex in a Berge
graph G is in two bulls then G is perfect. We also provide a polynomial recognition
algorithm for such graphs, which we call bull-reducible Berge graphs (following the
definition of P4-reducible in Jamison and Olariu [12]).

The main tool we use is the star cutset. A star cutset in G is a vertex cutset X
such that for some vertex x of X , X ⊆ x∪N(x), where N(x) is the neighbourhood
of x. Note that N(x) does not include x. We say that vertex x sees vertex y, if
y ∈ N(x), and that vertex x misses vertex y, if y �∈ N(x).

Chvátal [2] proved:

Theorem 2. No minimal imperfect graph contains a star cutset.

In this paper, we prove:

Theorem 3. If G is a bull-reducible C5-free graph which is not bull-free, then G
or G contains a star cutset.

Combining our Theorem 3 with Theorems 1 and 2 yields:

Theorem 4. Every bull-reducible Berge graph is perfect.

Sbihi and Reed [16] presented a polynomial-time recognition algorithm for bull-
free Berge graphs. In this paper, we propose a polynomial-time algorithm that
reduces the recognition of bull-reducible Berge graphs to the recognition of bull-
free Berge graphs.

2. Neighbourhood of a hole

Call a graph unbreakable if neither G or G has a star cutset. The key to our
proof of Theorem 3 is an analysis of the possible intersections of the neigbourhood
of a vertex with a hole in an unbreakable bull-reducible graph.

Lemma 1 (domination lemma). If G is a bull-reducible, C5-free graph
and B(c, bxa, d) is a bull in G, then N(x) ⊂ N(a) ∪N(b).

Proof. Let y ∈ N(x). Suppose y /∈ N(a) ∪ N(b). If y sees both c and d, then
{y, c, b, a, d} induces a C5. Otherwise y misses c or d. If y misses c, then B(c, bax, y)
induces a bull, which contradicts G being bull-reducible. Similarly, if y misses d.
Therefore y ∈ N(a) ∪N(b). �
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Figure 2. N(v) ∩H consists of exactly four vertices.

Lemma 2 (neighbourhood lemma). Let G be a bull-reducible, C5-free graph.
Let H be a shortest hole in G. Let v be a vertex of G not in H. The neigh-
bourhood N(v) ∩H of v with respect to H satisfies one of the five properties:

(i) N(v) ∩H is a stable set;
(ii) N(v) ∩H is an edge;
(iii) N(v) ∩H consists of exactly three consecutive vertices of H;
(iv) N(v) ∩H consists of exactly four vertices of H, |H | = 6, and v plus the

vertices of H induce the graph in Figure 2;
(v) N(v) ∩H consists of all vertices of H.

Proof. Let the vertices of the hole H be labelled v1, v2, . . . , vn, such that vi is
adjacent to vi+1, with indices taken modulo n, and n = |H |. Suppose first that
N(v) ∩H is not a stable set. Hence, N(v) ∩H contains at least two consecutive
vertices (i.e., an edge) of H . Suppose N(v) ∩H contains two consecutive vertices
v1, v2, and a third vertex c.

Claim 2.1. N(v) ∩H contains three consecutive vertices.

Proof. Otherwise, let vn, v1, v2, v3 be consecutive in H and suppose that v misses
both vn and v3. Note that B(vn, v1vv2, v3) is a bull. Since |H | ≥ 6, we have
that c, a third vertex seen by v, misses vn or v3. Suppose c does not see vn. Now
B(vn, v1v2v, c) is a bull intersecting B(vn, v1vv2, v3), a contradiction. �
Claim 2.2. If N(v)∩H contains four consecutive vertices, then N(v)∩H consists
of all vertices of H.

Proof. Suppose v is adjacent to v1, v2, ..., vj , 4 ≤ j < n, but v is not adjacent
to vj+1 and vn. Now B(vn, v1v2v, v4) and B(vj−3, vvj−1vj , vj+1) are two distinct
bulls containing v. �

It remains to show that in case v sees at least three consecutive but not four
consecutive vertices, and v sees at least one more vertex in H , then N(v) ∩ H
consists of four vertices, |H | = 6, and v plus the vertices of H induce the graph in
Figure 2.

In order to establish that, assume that v sees v1, v2, v3, but v does not see vn, v4,
and v sees vj , with j �= 1, 2, 3, 4, n.

Let i be the smallest such index and let k be the largest such index. Since H
is a shortest hole in G, we have i = 5 and k = n − 1. Now, if n > 6, then
B(vn, v1v2v, v5) and B(vn−1, vv2v3, v4) induce two distinct bulls containing v. �
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We say that a graph G contains a homogeneous set O, if the vertex set V of G
admits a partition into three subsets O, A and N , such that O contains at least
two vertices, A∪N is nonempty, we have all edges between O and A, and we have
no edges between O and N . The concept of star cutset generalizes the concept of
homogeneous set in the following way:

Fact 1. If G contains a homogeneous set, then G or G contains a star cutset.

Lemma 3 (wheel lemma). Let G be a bull-reducible, C5-free graph, and x be
a vertex of G. If N(x) contains a hole of size at least 6, then G contains a
homogeneous set.

Proof. Suppose N(x) contains a hole H , |H | ≥ 6. Let the vertices of the hole H be
labelled v1, v2, . . . , vn, such that vi is adjacent to vi+1, with indices taken modulo n,
and n = |H |. Let A be the set of vertices that see all of H . By hypothesis, A is
nonempty since it contains vertex x. Let O be the connected component of G−A
that contains H .

We shall prove that O is a homogeneous set of G. It is enough to prove that
every vertex in A is adjacent to every vertex of O. Let a ∈ A, h ∈ O. We argue
by induction on d(h, H), the distance of h to the hole H .

Case 3.1. d(h, H) = 0.

If d(h, H) = 0, then h ∈ H and the definition of A implies that ah ∈ E.

Case 3.2. d(h, H) = 1.

Assume ha /∈ E. Without loss of generality, we assume that h sees vertex v1. Sup-
pose h does not see any edge of H , i.e., h does not see two consecutive vertices of H .
Now h has to see vertex v4, as otherwise B(v4, av2v1, h) and B(v4, avnv1, h) are in-
tersecting bulls. But this implies that h misses v3 and v5, and now B(h, v4v5a, v2)
and B(h, v4v3a, vn) are intersecting bulls. Therefore h does see at least one edge
of H .

Suppose h sees just the edge v1v2. Then we have intersecting bulls
B(vn, v1hv2, v3) and B(h, v2v3a, v5).

So, by the proof of Claim 2.1 of Lemma 2 (neighbourhood lemma), h sees at
least 3 consecutive vertices of H , say v1, v2, v3. Note that h cannot see v4 or vn,
as this, by the proof of Claim 2.2 of Lemma 2 would imply h ∈ A, a contradiction
to our hypothesis. But now we have two intersecting bulls B(h, v3v4a, vn) and
B(h, v1vna, v4), implying ah ∈ E.

Case 3.3. d(h, H) = 2.

Let P = huv1 be a shortest path joining h to H . By induction, we have au ∈ E.
Suppose |H | > 6. In this case, we can find z, z′ ∈ H − {v1, v2, vn} such that

zu, z′u �∈ E. Now B(h, uv1a, z), B(h, uv1a, z′) are intersecting bulls, implying
ah ∈ E.

Suppose |H | = 6. In addition, suppose we cannot find z, z′ ∈ H − {v1, v2, v6}
such that zu, z′u �∈ E. The proof of Lemma 2 says that u sees v3, v5, besides v1,
and u does not see v2 and v6. But now we have intersecting bulls B(h, uv3a, v6)
and B(h, uv5a, v2), implying ah ∈ E.
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Figure 3. A cap.

Case 3.4. d(h, H) ≥ 3.

Let P = huw1w2...wk be a shortest path joining h to H , i.e., k ≥ 2; wk ∈ H ; and
h, u, w1, . . . , wk−1 /∈ H . Let z, z′ be two vertices missed by w1 in H . We have that
z, z′ are also missed by u, as d(h, H) ≥ 2. By induction, we have au, aw1 ∈ E.
Hence we have two intersecting bulls: B(z, aw1u, h) and B(z′, aw1u, h), implying
ah ∈ E.

This ends the proof of Lemma 3. �

A cap is a cycle on at least seven vertices having a single chord that forms a
triangle with two edges of the cycle. (See Fig. 3.)

Lemma 4 (cap lemma). Let G be bull-reducible, unbreakable, C5-free. Then G
contains no cap.

Proof. Suppose that G contains a cap. Let H be a hole of G. Let the vertices of
the hole H be labelled v1, v2, . . . , vn, such that vi is adjacent to vi+1, with indices
taken modulo n, and n = |H |. Call vertices v1, v2, v3 and vn by a, b, c and d,
respectively. Let x be a vertex of G−H such that N(x) ∩H is the edge ab of H
that is, x and H form a cap. Note that the hypothesis implies the bull B(d, axb, c).
By Lemma 1 (domination lemma), N(x) ⊂ N(a) ∪N(b).

Claim 4.1. N(x) ∩N(a) ∩N(b) = ∅.
Proof. Let t be a vertex in N(x) ∩N(a)∩N(b). Now, the bull B(d, atb, c) implies
td or tc. Vertex t cannot see both d and c, as otherwise by the proof of Claim 2.2
of Lemma 2 (neighbourhood lemma), t sees all of H and by Lemma 3 (Wheel
Lemma) we have a contradiction to G being unbreakable. Now, if t is adjacent to
only one vertex in {d, c}, say we have edge td, we have the bull B(d, txb, c). �

Hence N(x) can be partitioned into A = N(x) ∩N(a) and B = N(x) ∩N(b).

Claim 4.2. Every t ∈ A = N(x) ∩N(a) sees every z ∈ B = N(x) ∩N(b).

Proof. Let t ∈ A−{b}, and z ∈ B−{a}. Suppose t misses z. If z sees c = v3, then z
sees v4 as otherwise B(a, bzc, v4) is a bull. Now z does not see v5, as otherwise z
sees all of H . Now B(x, zcv4, v5) is a bull. Hence z misses c and by symmetry t
misses d. Now t sees c, as otherwise B(t, xzb, c) is a bull. And by symmetry, z
sees d. Finally, the bull B(c, tax, z) implies edge tz. �
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Now x∪N(x) is a star cutset in G separating A and B. This ends the proof of
Lemma 4. �

We are ready to state a revised version of Lemma 2. Note that in Lemma 5 the
hypothesis of H being shortest is not required.

Lemma 5 (neighbourhood lemma revisited). Let G be a bull-reducible, C5-free,
unbreakable graph. Let H be a hole in G. Let v be a vertex of G not in H. The
neighbourhood N(v)∩H of v with respect to H satisfies one of the three properties:

(i) N(v) ∩H is a stable set;
(ii) N(v) ∩H consists of exactly three consecutive vertices of H;
(iii) N(v) ∩H consists of exactly four vertices of H, |H | = 6, and v plus the

vertices of H induce the graph in Figure 2.

Proof. Apply Lemma 2, Fact 1, Lemmas 3 and 4. �

3. Proof of Theorem 3

To prove Theorem 3, we consider a graph G which is C5-free, bull-reducible
but not bull-free and let x be the nose of some bull of G. We suppose further
that G is unbreakable and derive a contradiction. We recall the following result of
Hayward [10].

Theorem 5. For every vertex v of an unbreakable graph G either:
(i) v is contained in a hole in G, or
(ii) v is contained in a hole in G.

Note that the hypotheses on G allow us to take H a hole of size |H | ≥ 6 con-
taining x the nose of a bull B(c, bxa, d). (See Fig. 1.) Let the vertices of the hole
H be labelled v1, v2, . . . , vn, with v1 = x, such that vi is adjacent to vi+1, with
indices taken modulo n, and n = |H |. We apply Lemma 5 (neighbourhood lemma
revisited) to H and some vertex v of B(c, bxa, d).

To prove Theorem 3, we distinguish a number of cases according to the other
vertices a, b, c, d of the bull B(c, bxa, d) being in the hole H or not. We give below
the complete list of the cases considered. In order to derive a contradiction in each
case different tools are employed: reductions from one case to another, definition
of a homogeneous set, or definition of a star cutset.

Case 1. Vertex a belongs to H.
Note that this implies that vertex b does not belong to H . Assume x = v1 and
a = v2. We further distinguish four subcases according to the adjacencies of c
and d in H .

Case 1.1. Vertices c, d do not belong to H.
This subcase is reduced to case 1.2 as follows. By Lemma 1, we have bvn ∈ E
and vertex b sees three consecutive vertices vn, v1 and v2 of H . Now B(c, bxa, v3)
implies cv3 ∈ E. Now xc, ac �∈ E implies cvn �∈ E, as otherwise we have a C5
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in G. Now B(c, bxvn, vn−1) implies cvn−1 ∈ E. Finally, vertices c, v3, a, x, vn,
vn−1 induce a hole for case 1.2.

Case 1.2. Vertex c belongs to H, vertex d does not belong to H.
Since b sees edge xa and vertex c in H , Lemma 5 says |H | = 6. Suppose first b
sees x(= v1), a(= v2), v3 and c(= v5). Now Lemma 1 implies av6 or bv6, and a
contradiction. Hence we may assume that b sees v6, x(= v1), a(= v2) and c(= v4).

Now a star cutset with center b is found. Let S be the subset of vertices
{s : a, v6 ∈ N(s); d, v5, c, v3 �∈ N(s)} of G. Let S∗ be the connected component of
the subgraph of G induced by S containing x. If b+N(b)−S∗ is not a star cutset,
then there exists s ∈ S∗ such that s sees z �∈ {b} ∪N(b)∪ S∗. Let P be a shortest
path from b to s in S∗ + b. We argue by induction on the size of P that no such
vertex s exists.

Let P = bs. Lemma 1 implies za. If zv6 �∈ E, then B(z, sv6b, c) implies zc ∈ E,
and now B(v6, saz, c) is a contradiction. So far we have: z sees a, v6; and z misses
v3, v5. It remains to show z misses d and c to establish a contradiction. Lemma 5
says dv3 �∈ E. If zd ∈ E, then B(v3, adz, v6) implies dv6 ∈ E, and now B(c, bsv6, d)
is a contradiction. If zc ∈ E, then B(d, asz, c) is a contradiction.

Let P = bxs. Note vertices s, x, b, c induce a P4, which implies zc �∈ E. If
za �∈ E, then B(d, axs, z) implies zd ∈ E. Note dv6 �∈ E, as B(d, v6xb, c) is a
contradiction. This in turn implies dv5 �∈ E. Now zv6 ∈ E gives the contradic-
tion B(d, zsv6, b), and zv6, zv5 �∈ E imply B(z, sxv6, v5). Hence, za �∈ E implies
zd, zv5 ∈ E and now vertices d, a, b, c, v5, z induce a C6 which together with x
is a cap and a contradiction. If zv6 �∈ E, then B(z, sxv6, v5) implies zv5 ∈ E, and
now vertices z, a, x, v6, v5 induce a C5 and a contradiction. Now Lemma 5 says
if z sees a, v6 and z misses x, c, then z misses v3, v5. Finally, if zd ∈ E, then
B(d, zsv6, b) is a contradiction.

Let P = bxx∗s. If zc ∈ E, then vertices c, b, x, x∗, s and z induce a hole,
with respect to which N(a) contradicts Lemma 5. So, we have zc �∈ E, which
by the same argument implies zv5, zv3 �∈ E. If za �∈ E, then B(b, ax∗s, z) is a
contradiction. If zv6 �∈ E, then B(b, v6x

∗s, z) is a contradiction. If zd ∈ E, then
B(d, zsv6, b) is a contradiction. Therefore we have: z sees a, v6; and z misses c,
d, v3, v5 which establish a contradiction. Note the same argument applies to a
longer path P .

Case 1.3. Vertex d belongs to H, vertex c does not belong to H.
Vertex d = v3 and Lemma 1 implies bvn. B(vn−1, vnxb, c) implies cvn−1 or cvn ∈ E.
Suppose cvn ∈ E. Now B(vn−1, vncb, a) implies cvn−1 ∈ E, hence we conclude we
must have cvn−1 ∈ E. Now suppose cvn−1, cvn ∈ E. Lemma 5 implies cvn−2 ∈ E.
Now B(vn−2, cvnb, a) implies bvn−2 ∈ E, and |H | = 6. But now B(d, vn−2cb, x)
gives a contradiction and we conclude that cvn �∈ E and cvn−1 ∈ E. Now suppose
cvn−2 ∈ E. Lemma 5 implies |H | > 6, b sees precisely vn, x = v1, a = v2; c sees
precisely vn−1, vn−2, vn−3. But now B(b, cvn−2vn−3, vn−4) gives a contradiction
and we conclude that cvn−2 �∈ E. Let j be the smallest index such that cvj ∈ E.
The hole induced by c, b, a, d, v4, . . ., vj , together with x defines a cap unless b
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is adjacent to a fourth vertex of H which means |H | = 6. Hence we may assume
that b sees v6, x = v1, a = v2 and v4, and that d = v3.

Now, analogously to case 1.2, a star cutset with center b is found as follows.
Let R be the subset of vertices {r : a, v6 ∈ N(r); d, v5, c �∈ N(r)} of G. Let R∗

be the connected component of the subgraph of G induced by R containing x.
If b + N(b) − R∗ is not a star cutset, then there exists r ∈ R∗ such that r sees
z �∈ {b}∪N(b)∪R∗. Let P be a shortest path from b to r in R∗ + b. We argue by
induction on the size of P that no such vertex r exists.

Let P = br. Lemma 1 implies za. If zv6 �∈ E, then B(z, rv6b, c) implies zc ∈ E,
and now B(v6, raz, c) is a contradiction. So far we have: z sees a, v6; and z misses
d, v5. It remains to show z misses c to establish a contradiction. If zc ∈ E, then
B(c, zra, d) is a contradiction.

Let P = bxr. Note vertices r, x, b, c induce a P4, which implies zc �∈ E. If
za �∈ E, then B(d, axr, z) implies zd ∈ E, and now zv6 ∈ E gives the contradiction
B(d, zrv6, b), and zv6, zv5 �∈ E imply B(z, rxv6, v5). Hence, za �∈ E implies zv6 �∈ E
and zd, zv5 ∈ E. Now vertices d, a, b, c, v5, z induce a C6 which together with x
is a cap and a contradiction. If zv6 �∈ E, then B(z, rxv6, v5) implies zv5 ∈ E,
and now vertices a, x, v6, v5, z induce a C5, a contradiction. If zd ∈ E, then
B(d, zrv6, b) is a contradiction. If zv5 ∈ E, then B(b, arz, v5) is a contradiction.
Therefore we have: z sees a, v6; and z misses c, d, v5.

Let P = bxx∗r. If zc ∈ E, then vertices c, b, x, x∗, r and z induce a hole, with
respect to which N(a) contradicts Lemma 5. So, we have zc �∈ E, which by the
same argument implies zv5 �∈ E. If za �∈ E, then B(b, ax∗r, z) is a contradiction.
If zv6 �∈ E, then B(b, v6x

∗r, z) is a contradiction. If zd ∈ E, then B(d, zrv6, b)
is a contradiction. Therefore we have: z sees a, v6; and z misses c, d, v5 which
establish a contradiction. Note the same argument applies to a longer path P .

Case 1.4. Vertices c, d belong to H.
Clearly the hypothesis lead to a contradiction as follows. Since b sees edge xa and
vertex c in H , Lemma 5 says |H | = 6. Since d is adjacent to a, we have d = v3.
Since b is not adjacent to d, we have that b sees v6, x = v1, a = v2 and c = v4.
Now cd ∈ E is a contradiction.

Case 2. Vertices a, b do not belong to H.
The key property used in case 2 is: since a, b do not belong to H , we may apply
Lemma 1 to both v2 and vn, neighbours of nose x. Hence, vertex v2 is adjacent
to a or b, and vertex vn is adjacent to a or b. This in turn implies that vertex a
or vertex b see three consecutive vertices of hole H . We further distinguish three
subcases according to the adjacencies of c and d in H . Note that in case 1, we did
not have symmetry in a and b. For the present case, we have just three subcases
as we have symmetry in a and b.

Case 2.1. Vertices c, d do not belong to H.
Suppose a sees vn but not v2, and b sees v2 but not vn. Either we get a different
hole for case 1 by replacing a vertex of H by a or b; or both a and b see a fourth
vertex in H , |H | = 6, and B(vn, abv3, v4) is a contradiction. Hence, we may
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assume a sees vn and v2. Suppose d misses vn and v2. Hence B(d, axvn, vn−1),
B(d, axv2, v3) imply dvn−1, dv3 ∈ E. Now vertices d, vn−1, vn, x, v2, v3 induce a
C6 for case 2.2. Now, by symmetry, we assume d sees vn. B(d, axv2, v3) implies
dv2 or dv3. Now we must have dv2 ∈ E, as otherwise, vertices d, vn, x, v2,
v3 induce a C5, a contradiction. Now Lemma 5 says d misses vn−1 or v3, by
symmetry we may assume d misses vn−1. Now B(vn−1, vnad, v3) says d also misses
v3. Now bvn−1 �∈ E, as otherwise B(vn−1, bxa, d) is a contradiction. Now bvn ∈ E,
as otherwise B(vn−1, vnda, b) is a contradiction. Now Lemma 5 says bv2 ∈ E,
bv3 �∈ E. Analogously, cvn, cv2 ∈ E; cvn−1, cv3 �∈ E.

Consider the set B = {s : svn, sv2 ∈ E; sz �∈ E, z ∈ H − {x, vn, v2}}. We shall
exhibit a homogeneous set B′ contained in B which establishes a contradiction.

First, note that B contains vertices x, a, b, c, d. We have shown that x, a, b, c, d
see vn, v2, miss vn−1, v3. We have to show that x, a, b, c, d miss vj , 4 ≤ j ≤ n− 2.
This clearly holds for x. Vertices a and b see three consecutive vertices in H : vn,
x and v2. In case a or b see another vertex of H , we have H = C6 and this extra
vertex is v4. Now av4 and B(v4, axv2, c) imply cv4; bv4 and B(v4, bxv6, d) imply
dv4. Now cv4 implies bv4 �∈ E, as otherwise B(v3, v4cb, x) is a contradiction; dv4

implies av4 �∈ E, as otherwise B(v5, v4da, x) is a contradiction. Suppose bv4 ∈ E.
This implies H = C6 and dv4 ∈ E, av4 �∈ E, cv4 �∈ E. Now B(v4, dav6, c) is
a contradiction, and we may conclude: bv4 �∈ E, and symmetrically av4 �∈ E.
Suppose cvj ∈ E, 4 ≤ j ≤ n − 2. This implies dvj �∈ E. Now B(vj , cbvn, d)
is a contradiction and we may conclude cvj �∈ E, and symmetrically dvj �∈ E,
4 ≤ j ≤ n− 2.

Let B′ be a maximal subset of B containing vertices x, a, b, c, d such that the
subgraphs induced by B′ in G and in G are connected. If B′ is not a homogeneous
set, there exists w ∈ V \ B′ which disagrees on B′, i.e., w is such that w has a
neighbour in B′ and a nonneighbour in B′. Note that such a vertex w must in fact
belong to V \B by the maximality property satisfied by B′. In addition, w must
disagree on an edge b1b2 ∈ E, with b1, b2 ∈ B′. For let b′, b′′ be such that wb′ ∈ E,
wb′′ �∈ E. Since B′ is connected, take a b′b′′-path P inside B′ and consider the first
b∗ ∈ P such that wb∗ �∈ E. Similarly, w must disagree on a non edge b1b2 �∈ E,
with b1, b2 ∈ B′.

Suppose w sees vn and misses v2. Let u, v ∈ B′ be such that wu ∈ E, wv �∈ E.
Consider two holes: H1 induced by vn−1, vn, u, v2, v3, . . ., vn−2; H2 induced by
vn−1, vn, v, v2, v3, . . ., vn−2 and the neighbourhood of w with respect to these
two holes. Since w is adjacent to u and vn, by considering H1 we have wvn−1 ∈ E.
Now considering H2 and that w sees vn, vn−1 and misses v, we have wvn−2 ∈ E,
and the neighbourhood of w with respect to H1 is a contradiction.

Suppose w sees vn and v2. Let r be a vertex of B′ such that rw ∈ E. Consider
the hole Hr induced by vn−1, vn, r, v2, v3, . . ., vn−2 and the neighbourhood of w
with respect to Hr. We have that w misses both vn−1 and v3. Now w has to see a
vertex z ∈ H \ {vn−1, vn, x, v2, v3} as otherwise w ∈ B. Now consider a non edge
uv �∈ E, with u, v ∈ B′ with respect to which w disagrees: wu ∈ E, wv �∈ E. Now
B(z, wuvn, v), B(z, wuv2, v) are contradictions.
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Finally suppose w misses vn and v2. Let uv ∈ E (u, v ∈ B′), be an edge with re-
spect to which w disagrees: wu ∈ E, wv �∈ E. The contradiction B(vn−1, vnvu, w)
implies wvn−1 ∈ E, and the contradiction B(v3, v2vu, w) implies wv3 ∈ E. By the
maximality condition on B′, we may consider π a total order on B′ with respect to
which the vertices of B are selected to be in B′ as follows: π = d, a, b, c, x, b1, b2, . . .,
such that each subgraph Gi induced by d, a, b, c, x, b1, b2, . . . , bi in G is connected
and has its complement connected. Now with respect to π, let u be the first vertex
such that w sees all vertices before u, and w misses u. In case u is equal to or
greater than b, there is an edge zz′ ∈ E, such that z, z′ are before u, on which u
disagrees. Now B(vn−1, wzz′, u), B(v3, wzz′, u) are contradictions. In case u = a,
the contradiction B(w, duvn, c) implies wc ∈ E which in turn implies wb ∈ E. Now
B(vn−1, wcb, a) and B(v3, wcb, a) are contradictions. In case u = d, if w misses b
and sees c, then B(w, cbv2, d) is a contradiction. If w misses c and sees b, then
B(w, bcv2, d) is a contradiction. If w sees b and c, and misses a, then B(vn−1, wcb, a)
is a contradiction. If w sees a, and misses b and c, then B(w, adv2, c) is a con-
tradiction. If w sees a and b, then B(vn−1, wba, d) is a contradiction. If w misses
a, b and c, let u∗ be the first vertex seen by w, and let e, h be two nonadjacent
vertices before u∗ such that u∗e �∈ E, u∗h ∈ E, to get the final contradiction
B(w, u∗hv2, e).

Case 2.2. Vertex c belongs to H, vertex d does not belong to H.
This subcase is first reduced to |H | = 6, with a or b seeing precisely four vertices
of H as in Figure 2 as follows. We know that a or b see three consecutive vertices
of H . Suppose b sees three consecutive vertices of H . Either b sees precisely four
vertices of H and |H | = 6, or b sees precisely three consecutive vertices of H .
Now, in the latter case, since c, x ∈ H , and x = v1, we may assume b sees precisely
x(= v1), v2 and c(= v3) in H , which by replacing v2 by b in H , gives a hole H ′

for case 1. Now suppose that a sees three consecutive vertices of H but b does
not see three consecutive vertices of H . Either a sees precisely four vertices of
H and |H | = 6, or a sees precisely three consecutive vertices of H . In the latter
case, either we get a hole H ′ for case 1 by replacing a vertex of H by a, or a
sees precisely vn, x(= v1) and v2. In addition, b sees c in H . So either we get a
different hole for case 1 by replacing a vertex of H by b, or b misses vn and v2,
and b sees v3 and vn−1. Now B(vn−1, bxa, d) implies dvn−1 ∈ E, and B(v3, bxa, d)
implies dv3 ∈ E, which in turn imply dvn, dv2 �∈ E. Now vertices d, vn−1, vn,
x, v2, v3 induce a C6, with respect to which a sees precisely four vertices: v6,
x(= v1), v2 and d(= v4), as required. Note that this latter C6 contains x and d,
and does not contain a, b, and c. Note further that the neighbourhood of a with
respect to this C6 says it corresponds to the third subcase considered below. Now
we consider four subcases.

• Vertex b sees precisely four vertices: v3, v4, v5 and x(= v1) in H.
This implies that a sees v2 and v6, and misses v3 and v5. Suppose a sees v4. This
implies c �= v4 and we may assume c = v3. Now B(d, axb, v5) implies dv5 ∈ E and
B(v3, v2xa, d) implies v2d ∈ E, which in turn implies that d sees v4, v5, v6 and v2

in H . Now B(c, v2ad, v5) is a contradiction and we conclude that a misses v4. If d
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disagrees on v3, v4, v5 then the set {v3, v4, v5, b, x, d} contains a bull: either d sees
v4, which implies d misses v3 or v5, which implies a bull on vertices d, v4, b, x and
vertex v3 or v5, or d misses v4, which implies d sees v3 or v5, which again implies a
bull on vertices d, v4, b, x and vertex v3 or v5. So d agrees on v3, v4, v5 and since
d misses c, we conclude that d also misses v3, v4, and v5. But now vertices d, b, a,
x and any choice of a fifth vertex chosen in {v3, v4, v5} give a contradiction.

• Vertex b sees precisely four vertices: v3, v5, v6 and x(= v1) in H.
Note that c ∈ {v3, v5}. Lemma 1 says av2 ∈ E, which implies av3 ∈ E or av6 ∈ E.
Suppose av3 ∈ E. Either we have x, a on a C6 for case 1, or we have av5 ∈ E
which contradicts c ∈ H . We conclude that a misses v3 and v5, and a sees v6, Now
B(d, axv2, v3) implies dv2 ∈ E or dv3 ∈ E, and B(d, axv6, v5) implies dv6 ∈ E or
dv5 ∈ E. Suppose dv3 ∈ E. This implies c = v5 and that d misses v5, which in
turn implies dv6 ∈ E. Since d sees v3 and v6, and misses v1 and v5, we have that d
also sees both v2 and v4. Now B(c, v4v3d, a) implies av4 ∈ E, and the contradiction
B(x, adv4, c). We conclude that d misses v3 and that d sees v2. Since d has to see
v5 or v6, and vertices v2 and v5 are antipodals with respect to H , we have that d
sees v6 and B(d, v6xb, v3) is now a contradiction.

• Vertex b sees precisely four vertices: v2, v4, v6 and x = v1 in H.
Note that c = v4. If dv6 ∈ E, then B(c, bxv6, d) is a contradiction, and similarly
if dv2 ∈ E. So dv6 �∈ E, dv2 �∈ E. In addition, since both v3 and v5 are adjacent
to c, we have dv5 ∈ E implies av5 ∈ E, and dv3 ∈ E implies av3 ∈ E. Now the
contradictions B(c, v5da, x) and B(c, v3da, x) say dv3 �∈ E, dv5 �∈ E. In particular,
the conclusion is that d does not see H . Now, if av6 ∈ E, then av2 ∈ E or av5 ∈ E.
If av5 ∈ E, then B(c, v5v6a, d) implies dv5 ∈ E, which is a contradiction. So
av5 �∈ E, and now B(v5, v6xa, d) is a contradiction. So av6 �∈ E, and symmetrically,
av2 �∈ E.

We shall find a star cutset as follows. Let S be the set of vertices {s : a, v2, v6 ∈
N(s); d, v5, c, v3 �∈ N(s)} of G. Let S∗ be the connected component of the subgraph
of G induced by S containing x. If b + N(b)− S∗ is not a star cutset, then there
exists s ∈ S∗ such that s sees z �∈ {b}∪N(b)∪S∗. Let P be a shortest path from b
to s in S∗ + b. We argue by induction on the size of P that no such vertex s exists.

Let P = bs. Lemma 1 implies za ∈ E. Suppose zv6 �∈ E. Then B(c, bv6s, z)
implies zc ∈ E which implies B(c, zax, v6) is a contradiction. So zv6 ∈ E, and sym-
metrically zv2 ∈ E, which implies zv5 �∈ E, zv3 �∈ E. If zd ∈ E, then B(d, zxv6, v5)
is a contradiction. Now, if zc ∈ E, then B(d, axz, c) is a contradiction.

Let P = bxs. Note that vertices c, b, x, s induce a P4 which implies zc �∈ E.
Now za �∈ E or B(z, axb, c) is a contradiction. Now zd ∈ E or B(d, axs, z) is a
contradiction. Now zv6 �∈ E or vertices z, v6, x, a, d induce a C5, and zv2 �∈ E or
vertices z, v2, x, a, d induce a C5. Now zv5 ∈ E or B(v5, v6xs, z) is a contradiction,
and zv3 ∈ E or B(v3, v2xs, z) is a contradiction. Now vertices c, b, x, s, z, v5 induce
a C6 through x, b for case 1.

Let P = bxx∗s. B(c, bxa, s) is a contradiction and note the same argument
applies to a longer path P .
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• Vertex a sees precisely four vertices in H but b does not see precisely four vertices
in H.
Since b is adjacent to x and c, two non consecutive vertices of H , the hypothesis
implies that x and c are not antipodals with respect to H . In addition, vertex
c is not adjacent to a. So we may assume x = v1, c = v5, and that vertex a
sees precisely v2, v4, v6 and x(= v1). Now B(c, v6xa, d) implies v6d ∈ E and
B(c, v6da, v2) implies dv2 ∈ E. Now b sees v3, as otherwise vertices c, b, x, v2, v3, v4

induce a C6 for case 1. Now b misses v6, as otherwise b sees four vertices in H .
Now B(b, v3v2d, v6) implies dv3 �∈ E and finally B(v3, bxa, d) is a contradiction.

Case 2.3. Vertices c, d belong to H.
Without loss of generality, suppose a sees three consecutive vertices of hole H . If
a sees vn, x(= v1) and v2, then Lemma 5 says d = vj , with j �= 1, 2, 3, n − 1, n;
and |H | = 6. Now this contradicts c ∈ H . Otherwise, we have a sees x(= v1), v2

and v3; b sees vn−1, vn, and x(= v1). This implies c = vn−1 and d = v3, vertex b
sees precisely three consecutive vertices: c(= vn−1), vn, and x(= v1); vertex a sees
precisely three consecutive vertices: x(= v1), v2, v3(= d) in H . Now we have the
bull B(vn−2, cvnb, a) intersecting B(c, bxa, d), and a contradiction.

4. Recognition algorithm

The proposed polynomial-time algorithm for recognizing bull-reducible Berge
graphs is based on the following decomposition by homogeneous sets:

Fact 2. If G contains a homogeneous set O and h is any vertex of O, then G is
Berge if and only if G− (O − h) and the subgraph induced by O are Berge.

A simple proof of Fact 2 follows from the definitions of homogeneous sets and
Berge graphs. Lovász [14] has shown in his proof of the Perfect Graph Theorem
that G is perfect if and only if G − (O − h) and the subgraph induced by O are
perfect. In a homogeneous set decomposition tree each internal node corresponds
to a graph G containing a homogeneous set O and has two children corresponding
to G− (O − h) and to the subgraph induced by O.

Fact 3. A homogeneous set decomposition tree rooted on a graph G(V, E) with
|V | = n has O(n) nodes.

A simple proof of Fact 3 uses that if G(V, E) with |V | = n is an internal node,
then its children G1(V1, E1) = G− (O− h) and G2(V2, E2), the subgraph induced
by O, satisfy: |V1| + |V2| = n + 1 and is presented in [16] where a homogeneous
set decomposition tree is also built, this time for the recognition of bull-free Berge
graphs.

The proposed recognition algorithm reduces in polynomial time the recogni-
tionof bull-reducible Berge graphs to the recognition of bull-free Berge graphs by
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performing another reduction operation which also preserves the property of being
Berge:

Lemma 6. Let G be a C5-free, bull-reducible and homogeneous set-free graph.
Let x be the nose of a bull in G. Then G − x is odd hole free if and only if G is
odd hole free.

Proof. Let H be an odd hole in G containing x, the nose of the bull B(c, bxa, d).
Let the vertices of the hole H be labelled v1, v2, . . . , vn, with x = v1, such that vi

is adjacent to vi+1, with indices taken modulo n, and n = |H |. We distinguish
two cases:

Case 6.1. Neither a nor b belong to H.

If b sees both v2 and vn, then by Lemma 5 (neighbourhood lemma revisited) b
and x are twins with respect to H . Hence we have another hole H ′ = H − x + b
induced by b, v2, . . . , vn in G− x, as required. Similarly if a sees both v2 and vn.

By Lemma 1 (Domination Lemma) N(x) ⊆ N(a) ∪ N(b), which implies v2,
vn ∈ N(a)∪N(b). We may assume the edges bvn, av2. Now x sees four consecutive
vertices vn, b, a, v2 on the cycle induced by v2, v3, . . ., vn−1, vn, b, a which implies
that a or b see more vertices of the hole H . Without loss of generality assume a
sees another vertex of H besides x and v2. Lemma 5 implies that a sees precisely
x = v1, v2 and v3. Now we have a bull B(b, av2v3, v4) and a contradiction.

Case 6.2. a belongs to H.

Note that this implies b does not belong to H . Say a = v2. Now, vn ∈ N(x) and
Lemma 1 imply vn ∈ N(a) ∪ N(b), which in turn implies edge vnb. Again, by
Lemma 5, we have another hole H ′′ = H − x+ b induced by b, v2, . . . , vn in G− x,
as required.

The analysis of these two cases proves Lemma 6. �

Theorem 6. Algorithm 1 correctly identifies in polynomial time whether G is a
bull-reducible Berge graph.

Proof. Algorithm 1 builds a decomposition tree whose internal nodes correspond to
graphs having a homogeneous set, while the leaves correspond to indecomposable
graphs, i.e., graphs with no homogeneous set. By Lemma 6, we know that every
time Algorithm 1 removes a nose x from a graph F , we have F −x is odd hole free
if and only if F is odd hole free. The properties of being C5-free, bull-reducible,
homogeneous set-free, and x being the nose of a bull are satisfied by F if and only
if they are also satisfied by F . Hence we actually have: F − x is odd hole free if
and only if F is odd hole free, and therefore: F − x is Berge if and only if F is
Berge. So this property and Fact 2 imply that the input graph G is Berge if and
only if the indecomposable graphs in L2 are Berge. This proves that Algorithm 1
correctly reduces the recognition of bull-reducible Berge graphs to the recognition
of bull-free Berge graphs.

Algorithm 1 runs in polynomial time because its complexity is dominated by the
complexity of an Algorithm 2 for bull-free Berge graph recognition multiplied by
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Algorithm 1. Recognizing bull-reducible Berge graphs.

Input: A graph G
Output: YES, if G is bull-reducible and Berge, and NO otherwise

if G is not bull-reducible, or contains a C5 then
return NO

else
L1 ← G, L2 ← ∅;
while L1 �= ∅ do

remove a graph F from L1

if F contains a homogeneous set O then
choose h ∈ O, add F − (O − h) and the subgraph induced by O to L1

else
if F contains no bull then

add F to L2

else
find a bull with nose x and add F − x to L1

if all the graphs in L2 are bull-free Berge then
return YES

else
return NO

the number of calls for this Algorithm 2. In [16], bull-free Berge graph recognition
is done in time O(n5). Fact 3 implies that the number of calls for bull-free Berge
graph recognition is O(n). Therefore Algorithm 1 runs in time O(n6). �

5. Open problems

Several interesting open problems remain: Can we find a more efficient recog-
nition algorithm? Can we find a decomposition theorem for this class of Berge
graphs? Can we find efficient algorithms for the optimization problems clique
number and minimum coloring for this new class of perfect graphs, or even for the
more restricted class of bull-free perfect graphs?

The proposed proof of the Strong Perfect Graph Conjecture [4] still leaves a
lot of questions open. Since the proposed decomposition obtained in the proof
does not imply a nice composition procedure by which we can build all perfect
graphs starting from the basic classes (because the skew cutset decomposition
is not perfection preserving), it is still worth to continue trying to understand
perfect graphs through different other means. Polynomial-time algorithms to rec-
ognize Berge graphs have subsequently been announced [3,5,13]. Polynomial-time
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combinatorial algorithms for the four optimization problems, based on a structural
analysis and decomposition of perfect graphs are still being sought.
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