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EFFICIENT SIMULATION OF SYNCHRONOUS SYSTEMS
BY MULTI-SPEED SYSTEMS *
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Abstract. We consider systems consisting of finite automata com-
municating by exchanging messages and working on the same read-
only data. We investigate the situation in which the automata work
with constant but different speeds. We assume furthermore that the
automata are not aware of the speeds and they cannot measure them
directly. Nevertheless, the automata have to compute a correct output.
We call this model multi-speed systems of finite automata. Complexity
measure that we consider here is the number of messages sent by the
automata. The main result of this paper is that multi-speed systems
are as powerful as synchronous systems, in which all automata work
with the same speed.
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1. INTRODUCTION

It is a challenging question to understand capabilities of asynchronous comput-
ing. It turned out to be one of the hardest problems in distributed computing.
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In this paper we study this problem for low level processing units — finite state
machines. Once they operate on the same read-only input, it is still unclear what
is the influence of asynchrony on the computing power.

In this paper, we investigate one case, namely we assume that the speeds of
processing units need not to be equal, but remain constant during the computation.
The question that we address here is whether such a model is weaker than in the
case, when all processing units work with the same speed. Quite unexpectedly,
there is a communication efficient simulation of systems with all units working with
the same speed on systems where the speeds may differ by a bounded factor. On
the other hand, recall that fully asynchronous systems of finite automata recognize
only regular languages as long as o(n) messages are sent [6].

2. COMPUTATIONAL MODEL

Below we describe a system S consisting of finite automata Aq,..., Ag.
Let Q;, for ¢ < k, denote the (finite) set of states of A;, with a distinguished
state g3, which is the initial state of A;. There is a number of accepting and
rejecting states. An automaton reaching such a state sends a message that halts
the whole system S in an accepting or rejecting state, respectively. We assume
that the system works in a way that prevents sending a rejecting and an accepting
message during the same computation.

Since the number of automata is constant, we assume that the messages are
delivered to all automata — this does not change the number of messages by more
than a constant multiplicative factor. Each automaton has a number of buffers
of a constant size, each buffer corresponding to messages coming from a different
automaton. If the incoming messages fill the whole buffer and the next message
arrives, we may assume that either the message that does not fit into the buffer is
lost or that the buffer works as a shift register with the oldest messages removed.
For each of these settings, we get the same results.

The system S uses a read-only input tape. The input tape contains an input
word w embraced by special symbols $;, and $x called, respectively, the left and
the right end-marker. The symbols from the tape may be read by the automata.
Each automaton has exactly one reading head and determines its moves on the
tape. The role of the end-markers is to prevent the heads from leaving $;w$g.
Each automaton starts the computation on the left end-marker. During a step, an
automaton may write messages into buffers through which it communicates with
the other automata, and reads from its buffers storing messages from the other
automata. A transition function of an automaton depends on the current internal
state, the symbol seen on the tape by the head of the automaton, and the oldest
message in each buffer. Within a step, the automaton enters a new internal state,
moves the head by at most one position on the input tape, removes the oldest
message from each of the buffers (through which it receives messages from the
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other automata), and, depending on its new state, may send a message. More
formally, a single step of automaton A; is described by a transition function §;.
If ¥ is a finite input alphabet, A is a finite alphabet of messages, | is a special
symbol meaning “no message” or “no move”, then

it Qix (AU{LH)" ' x T — Qi x (AU{L}" ' x{L,R,1}.

Let the buffers of A; be denoted by B;1,...,Bii—1,Biit1 ... Bk, where By j is
devoted for messages coming from A; to A;.

A step of A; is executed as follows. Assume that A; reads a symbol u from the in-
put tape and the (oldest) messages from the buffers B; 1,...,B;i—1,Biit+1...Bik
are respectively fi1,..., fhi—1, fit+1,- - -, pg (if there is no message in a buffer B; ;,
then we put p; =1). If ¢ is the current internal state of A; and

5i(qa/~l/17" '7Mkau) = (ql7wla' "7wk77a)7

then:

A; changes its internal state to ¢';

the messages 1, ..., pug read from the buffers are removed;

for j # i, if ¢; #1, then A; sends ¢; to the buffer B ;;

the head of A; moves on the input tape one position to the left (if » = L),
or to the right (if » = R), or stands idle (if » =1).

Multi-speed and asynchronous systems. The automaton A; needs time s; for
executing each step. The value v; = Si is called the speed of A;. In particular, if
s; = 1 for each 4, then we call the system synchronous. If s; can be changed by
an adversary at each step to an arbitrary value, we call the system asynchronous.
For a multi-speed system, the numbers s1, ..., s, might be arbitrary, but they

do not change during a computation and are not known in advance. Additionally,

max(s1,...,8%) < 2

we assume that they differ at most by a constant factor, that is, (1) =

where the parameter z is known to all automata.

Each computation must terminate in an accepting or in a rejecting state. Since
for the same input many communication patterns are possible, we say that the
system accepts language L if and only if for z € L every computation on = halts
in an accepting state, and for z ¢ L every computation on z halts in a rejecting
state. That is, a computation should yield a correct answer regardless of the
current speeds. Without loss of generality we can assume that every computation
begins and terminates by sending a message.

Message complexity. We consider the number of messages sent by a system as a
complexity measure of a computation. Since there are finitely many configurations
on which a message may depend, we may assume that each message has a constant
size. In this way, the number of messages corresponds roughly to the total volume
of communication.
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We consider the worst case complexity, that is, we say that a problem re-
quires f(n) messages, if for infinitely many n, there is at least one input of size n
for which f(n) messages are sent, and for each input of size n at most f(n) mes-
sages are sent.

3. SYNCHRONOUS wversus MULTI-SPEED SYSTEMS

Classical results on communication complexity are focused on the model in
which communication is the main measure of efficiency (ignoring time and space
complexity). There are relatively few results concerning the situation that other
resources are limited. Perhaps, the most prominent direction here was initiated in
[1,2], where tradeoffs between communication and space were found.

For systems of finite automata, the first results on communication complexity
can be found in [4,7,8]. However, these results concern only synchronous systems.
Asynchronous systems were investigated and compared with synchronous systems
in [6].

Message complexity for synchronous systems. For synchronous systems
even O(1) messages suffice to recognize some non-trivial languages. A simple
example is the language Liyice = {a*10%|k € N}: two synchronous automata can
recognize it with one message. It has been shown [4] that there is a dense hierarchy
of languages for message complexity between O(1) and O(n). Even for languages
requiring a constant number of messages, each additional message makes the class
of languages larger [4]. An interesting phenomenon is that there is no language
with message complexity w(1) and o(logloglogn) [3]. It has been also shown that
there is a tight hierarchy of functions which require w(n) messages for inputs of
size n (see [4]).

Message complexity for asynchronous systems. “Side-channel” information
such as the moment of sending a message is very useful for constructing algorithms
in synchronous systems — it allows to keep track about relative head positions on
the input tape. For a synchronous systems the sender of a message cannot move
its head until the new synchronous step, whereas in an asynchronous system the
sender may move its head arbitrarily far. So, several algorithmic tricks known for
synchronous systems are useless for asynchronous computations.

An asynchronous system can emulate a synchronous one by sending an extra
message from each automaton whenever any head moves. No automaton proceeds
until it receives such auxiliary messages from all other automata. This technique,
called step-by-step synchronization, requires §2(t) messages for simulating ¢ steps
of a synchronous system. So, even if a synchronous system is message efficient,
the asynchronous system constructed in this way may generate a lot of messages.

Inefficiency of step-by-step synchronization is not a coincidence. It was shown
that if an asynchronous system uses o(n) messages, then the language recognized
by the system is regular, so no communication is necessary at all [6,9]. Moreover,
weakness of asynchronous systems may be shown also for languages requiring Q(n)
messages. A good example is the language Liyans consisting of the words of the
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form U#UT, where UT denotes transposition of binary matrix U, and the matrices
are written row by row. It is easy to show that L¢,ans has message complexity O(n)
on synchronous systems. By applying step-by-step synchronization to this algo-
rithm, we see that one can recognize Liyans With O(n3/ 2) messages on an asyn-
chronous system. On the other hand, it was shown [6,9] that any asynchronous
system requires Q(n?/2/logn) messages to recognize Lirans.

Message complexity of multi-speed systems. Fixed velocities of automata in
multi-speed systems, even though they can be different in each run of the system,
allow to store some information by the distances between the end-markers and
the heads of the automata. This technique was used [5] to show that certain
non-regular languages can be efficiently recognized by multi-speed systems with
a sublinear number of messages, whereas every fully asynchronous system needs
at least a linear number of messages. It was also proved [5] that the language
Lyow = {0 : y/n € N} can be recognized by a multi-speed system of finite
automata with O(\/ﬁ) messages, just as in the case of synchronous automata.

New results. The main result of this paper is the equivalence of synchronous
and multi-speed systems: with a linear overhead in the number of messages any
synchronous system can be simulated by a multi-speed system:

Theorem 3.1. Let L be a language and M be a synchronous system consisting
of m automata recognizing L using at most f(n) messages for inputs of size n.
Then, there exists a multi-speed system M’ consisting of 3m + 2 automata that
recognizes L using at most O(m - f(n)) messages regardless of the speeds of the
automata as long as they differ at most by a multiplicative factor z, where z is a
constant.

4. GENERAL TECHNIQUES FOR MULTI-SPEED SYSTEMS

In this section we present a couple of tricks that are used in the simulation of
synchronous systems. Some of these techniques were introduced in [5].

One of the main tasks in a simulation of a synchronous system by a multi-speed
system is to keep track of the head positions. Our approach is to store information
about head positions of a synchronous system by head positions of the automata of
the multi-speed system. However, “storing” and “retrieving” must be performed
in a special way, so that it works in a multi-speed system (and does not require
many messages). The storing procedure, quite obvious for synchronous systems,
requires some technicalities in the multi-speed case.

Storing a head position. Let X be an automaton of a multi-speed system which
head position is to be stored by the head position of an auxiliary automaton B. The
following procedure, called dump, achieves this goal. For clearness of exposition we
assume that X is faster than B. This can be checked as follows: X sends a special
message to B in its two consecutive steps, B responds with a message confirming
arrival of the first message from X; if X gets the response before sending the
second message then it is slower. Note that if B is too fast, we may slow it down
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X Stage 1 and 2: B goes to the position
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S

FIGURE 1. Stages of storing a head position.

artificially k = [z] times: one step of the procedure is executed in every k steps
of B.

dump X — B: (see Fig. 1)

1. automaton X sends a message mgy and waits for a response from
automaton B;

2. after receiving mg from X, automaton B goes to the left end-marker
and confirms its arrival there by sending a message m;;

3. after receiving the confirmation mi, X starts moving to the left end-
marker; simultaneously B goes to the right; one move is made per
step;

4. as soon as X reaches the left end-marker, it sends a message that
makes the automaton B stop, the message sent by X encodes the
number of symbols encountered by X on the way to the left end-
marker modulo some constant ¢ (an appropriate choice of ¢ will be
discussed later). B stores this message in its internal state.

For short input words the above protocol may not work properly, but then a single
automaton can be used to accept or reject.

Note that after executing the store operation, the distance between the left end-
marker and the head position of B need not to be equal to the original distance be-
tween the head of X and the left end-marker. However it is almost proportional
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to this distance. Counting modulo c is necessary, since there are some small inac-
curacies due, among other reasons, to the fact that the distances are integers and
the speed ratio need not to be an integer.

The procedure dump can be generalized so that the position of the head of X
is stored by many automata. The procedure below describes storing the head
position of X so that each of the automata A;,,...,A;,, encodes this position
for a later retrieval (for clearness of exposition we assume that X is the fastest
automaton):

dump X — A4;,,..., A

1. the automaton X sends the message my and waits for the responses
from automata A;,,..., A ;

2. after receiving mg from X, the automata A4;,,..., A;,, go to the left
end-marker and confirm the arrival there by sending a message m;
to X and all of A4;,,...,4;,,;

3. after receiving the last message m confirming the arrival, 4;,,..., A; ,
start moving to the right, with X going simultaneously to the left
end-marker, one move is made per step by each automaton;

4. as soon as X reaches the left end-marker, it sends a message mo that
makes the automata A;,,..., A;,, stop, the message mq, called cor-
recting information, encodes the number of symbols encountered on
the way to the left end-marker modulo some constant c; the automata
Ai,, ..., A,;, store this message in their states.

T *

Tm

Restoring a head position. To restore the original head position of X we
use almost the same protocol, but the roles of automata are reversed. Only one
automaton is necessary for retrieving the original position of X, the other automata
involved in the dump operation can be retained for a later use:

restore X «— B:

1. automaton B sends a message m( and waits for a response from
automaton X;

2. after receiving my, from B, automaton X goes to the left end-marker
and informs about its arrival there by sending a message m/;

3. after receiving message m} from X, automaton B starts moving to
the left end-marker, simultaneously X goes to the right, one move is
made per step by each automaton;

4. as soon as B reaches the left end-marker, it sends a message that
makes the automaton X stop, the message sent by B encodes the
correcting information obtained by B during the dump operation; X
uses this information to adjust its head position to the correct one:
less than ¢ moves are made.

Now, let us discuss in detail the role of correcting information. Let the value stored
(i.e. the original distance between the head of X and the left end-marker) be dy. If
we assume that automata X and B start moving at the same moment, then after
performing the dump operation the distance between the left end-marker and the
position of the head of B equals [dp L’—fﬂ, where vp and vy denote the speeds
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of B and X. This distance is not the same as dy and we shall be able to use it
only with connection to X. If we take into account the fact that there might be
a small delay 75 < % of starting automaton B, the correct expression for the
distance mentioned is ((f—i —7B)-VB|.

As we have seen, the operation of storing a distance through dump operation
is not precise (75 = 0 only for synchronous systems). However, we cope with
this problem by a careful use of the dump and restore operations. The key point
is that they have the following important property: the value restored by the
automaton X (without the final adjustment) differs from the original value at
most by a constant additive factor. It allows the system to store and restore the
original value without loosing precision, since a constant can be kept in the internal
memory of the automata.

Lemma 4.1. Let the speeds of automata X and B be equal, respectively, vx
and vg, with vx < vp. Suppose that the original distance between the head
of X and the left end-marker is dy. Then after the operations dump X — B
and restore X «— B without the final adjustment, the distance between the head
of X and the left end-marker is a number da such that |dg — do| < z+ 1.

Proof. Let d; be the distance between the head of automaton B and the left
end-marker after the operation dump X — B. We have:

[y

with 7 < 7%, and
B

with 7/ < -. So
vx

d d
dy < (—1)-UX+1<(—O-UB+1)-”—X+1:dO+U—X+1ng+z+1.
vp vx v vp

The last inequality follows from the fact that Z—); < z, because vy is faster than vp.
Similarly,

d
ng(—lT/>~vx>d1~v—X1
UB UB

d
><—0-v31)-”—x1d0”—x1
vx B VB

Zdo—z—l. O

Lemma 4.1 suggests the following method of “adjustment” which will guarantee
that the positions of the head of X before dump X — B and after restore X «— B
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are equal. During the execution of the 4th step of dump X — B (after reaching the
endmarker), in message m) automaton X encodes a value d, which is its position
at the beginning of dump X — B modulo 2(z + 1) + 1. Further, B encodes this
value d in its state. Then, B sends back d to X at step 4 of restore X «— B.
Finally, X changes its position at the end of restore X « B, to the nearest
position congruent with d modulo 2(z + 1) + 1. As we know by Lemma 4.1, the
position of X at the end of restore X « B differs from its original position by
at most z 4+ 1, so we ensure the correct location of X at the end of the procedure
restore.

The command restore X « B, introduced above, has a disadvantage that B
does not retain the value that is “loaded” into X. It is a problem, if we would like
to use the value encoded by position of the head of B many times. The following
command solves this problem:

restore X «— B(B’):

1. do in parallel:

{ restore X « B | dump B — B’ }

2. restore B «— B’.
The first line of the procedure restore X « B(B’) describes the same execution as
for restore X « B, but additionally an auxiliary automaton B’ keeps track of the
value encoded by B. In fact, the execution of restore X «— B and dump B — B’
is the same from the point of view of B, so we can do it in parallel. Then, in line 2
automaton B’ is used to recover the original position of B.

Comparing values

Now we consider the second important task. Having stored many values in head
positions of auxiliary automata, we would like to compute the minimum of them.
In a synchronous system this is not a problem: the heads of automata encoding
the values mentioned start moving to the left. The first head which reaches the
left end-marker corresponds to the minimum value. In the case of a multi-speed
system the situation is a little bit more complicated.

Let Ay,..., Ay store head positions of the same automaton A (may be, from
different moments) in the sense that operations dump X — Aj,..., dump X — Ay
have been executed. Our aim is to “implement” a following simple procedure that
determines and stores by X the minimum of numbers Ay, ..., Ag:

1. X «— A}, Y « X (Y is a current minimum);

2. for i+ 2 to k;

3. X —X—-A;

4. if (X < 0) then X « Y

5. else X «— A; and Y «— X.
To implement the above procedure we have to perform subtracting. For computing
X — A we can use a modification of operation restore X « A, such that the
automaton X will not start from the left end-marker, but from its original position;
and it is going to the left instead of right. Automaton X cannot cross the end-
marker in the case that the value subtracted is bigger than the value of A. We deal
with negative values by storing an appropriate information in the internal state.
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We use the notation < restorenodge X < A > for modified operation restore with
the following options:

mode | behavior

1 R | X makes no move at the beginning of the protocol and then goes
to the right (for implementing addition)

1 L | X makes no move at the beginning of the protocol and then goes
to the left (for implementing subtraction)

The following procedure X « minimum(A;,...,Ay) finds the minimum of the
values stored by Ay,..., Ag:
1.  restore X «— A;(A))
2. dump X — YY"
3. restore X « Y”
/* the current minimum is A; */
4. for i+ 2 to k do
/* subtracting value from the current minimumx*/

5. restore ; X «— A;(A))

6. if (X is positive) /* a new minimum */

7. { restore X «— A;(A))

8. dump X — Y'Y

9. restore X «— Y}

10. else /* restoring the previous minimum */
11. { restore X <« Y'(Y") }

12. endfor

Observe that the number of messages required by each of procedures dump, restore
and minimum is independent of the size of the input, i.e. bounded by a constant
(dependent only on the size of the original synchronous system).

4.1. FORMAL DESCRIPTION OF THE ALGORITHM

We have described basic procedures like dump and restore. Such procedures
can be combined in branches, loops or sequences by using standard techniques for
automata systems provided that a constant number of states is used.

Formal descriptions of systems of finite automata (by transition functions) are
very hard to read (similarly as programs for Turing machines, for example). That
is why we started with informal descriptions. Although it is intuitively clear that
one can run them using multi-speed systems of finite automata, we present as an
example definitions of the transition for the procedure dump X — A;,,..., A, ..
Example 4.2 (Transition function for dump X — A;,,...,A;, ). For the sake
of simplicity of notation we describe dump A, 11 — A1,..., Am. Let ¢ = 224 3,
where z is a maximal ratio between speeds of the fastest and the slowest automaton
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of the system. Further, let

Qstart € Qz for s {1,,m+1},

Quwait2,V € Qm+1 for Ve {Oa 1}m

q5t21V7q;t2,V € Q; for ie{1,....m}Ve{0,1}"
qst3 € Qi for ie{1,...,m},

qst3,1 € Qmy1 for 1€{0,...,c—1}

qc, e Q@ for ie{l,...,m}1e€{0,....,c—1},

Gend; Qready € Qm+1

and mg, mq, finished, Cy,...,Co._1 € A.

Assume that each of automata Ajp,..., A, 41 starts to execute dump X —
Aiyy...,A;, in the state gsiare. Further, this state does not belong to the set
of states of automata A; for ¢ > m + 1, these automata do not change their states
and positions until the message finished is sent by A,,+1 (i.e. they wait).

We assume also that all states of automata used in the description presented
below do not occur during any other (than dump X — A;,,..., 4, ) part of com-
putation of the system. Next, we assume that each of the automata Aq,..., A,
is not faster than A,,; (we have presented a method of ensuring this condition
in the discussion before the description of dump X — B).

In order to simplify the description assume that each automaton has k buffers,
the ith buffer for the messages sent by A; (so, each automaton may also send
messages to itself, what naturally does not change the computational power of
the model). Further, each time the transition function is undefined for states of
automata used below, we assume that the automaton does not change the state
nor the head position in this step of computation.

A vector V' € {0,1}™ stored in states is used to remember which automata of
Ajq,..., A, has already reached the left endmarker.

Transitions describing step 1 of the procedure
The automaton X = A,, 11 sends the message to other automata:

i 5m+1(Qsta7‘t7 J—iv a) = (Qwait2,V; (mO)m Lk—m, L) for each a € ¥, V = 0.

Transitions describing step 2 of the procedure
Transitions of the automaton A; for i € {1,...,m}:

o Si(qstart, M1, ..., My, mo, LF"™71 a) = (qsia,v, LF, L) fora # 8., V; =1
iff M; #1 for j = 1,...,m (the automaton A; starts moving left and
collecting information which of Ay, ..., A,, have already reached $1);

. 5i(‘]st2,V7 My, ..., My, J_kfm, a) = (QStQ,VH J_k, L) for a 7é $L, V, V' e
{0,1ym, Vi = V; if My =1 and V] = 1 if M; #1, (A; is moving left
and collects information which of Ay, ..., A,, have already reached $1);

 0i(qetz,v s M, .o My, L™ 8 1) = (qlyg ypr,mi* T, LE-m=1 L) for V, V' €
{0,1}y™, V] =V if My =1 and V] = 1if M; #1, (A; reaches $1 and
informs about it by sending the message m;);
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L4 51'(‘1;1527\/7 Mla et Mma J—kima $L) - (QLtQ,V’a J—ka J—) fOI' ‘/7 V/ € {07 1}m’
V#1" VI=V;ift My =1 and V] = 1if M; #1, (A; stays at $1, and
waits until all of A;,..., A, reach $1);

® 6i(qero v 1%.$7) = (qst3, LF, R) for V = 1™ (A, starts step 3, because all
automata Aj, ..., A, have already finished step 2).

Transitions of X = A,,41:

L4 5m+1(Qwait2,V; M, ..., My, kam, a) = (QwaitQ,VH J—k7 J—) for a € %,
Vv,V e {0,1}™, V # 1™, Vj’ =V; if M; =1 and Vj’ =1if M; #1
(the automaton X = A,,+1 does not move its head until all automata
Aq,..., A, reach $;, it collects information which of Ai,...,A,, have
already reached $);

® S5mt1(Quaitz,v, LF,a) = (gstz0, L5, L) for V.= 1™ (A,,41 starts step 3,
because each automaton has reached $;, already).

Transitions describing step 3 of the procedure
o 0i(qst3, L¥, a) = (qst3, L*, R) for a € ¥, i € {1,...,m} (automaton A;
moves right during step 3);
L 5m+1(‘]st3,l; J—k; a) = (q$t3,(l+1) mod ¢ J—ka L) for a 7& $L7 le {Oa s, C— 1}
(A1 moves left during step 3 and counts its position modulo ¢).

Transitions describing step 4 of the procedure

L4 5m+1(Qst3,l;J—ka$L) = (Qendamgn;lkimaj—)a where mo = Cl; l e {Oa ceey
¢ — 1}, (Apm41 has reached the left endmarker, it sends a message mo
containing [, its original position modulo ¢ to Ay, ..., Ay;

o 5i(qsez, L™, Cy, LF=m71 a) = (g, L%, 1) for i € {1,....,m}, 1 € {0,...,
c¢—1} (after reaching the message from A1, automaton A; finishes step 3
and stores in a state the correcting information C; sent by A,,41);

® Omi1(Gena, L%, $1) = (qready,ﬁnishedk, 1) (Ap41 sends a unique mes-
sage finished to all automata, which encodes the fact that dump X —
Aiy, ..., A, is finished).

T
5. SIMULATING SYNCHRONOUS SYSTEMS

In this section we prove Theorem 3.1.

Outline of the simulation. Let M be a synchronous system consisting of au-
tomata A, ..., A,. Between receiving consecutive messages each automaton A;
behaves like a finite automaton. So we divide the computation of M into silent
stages, i.e. periods during which all automata work and no message is sent, and
communication stages, i.e. single steps during which at least one automaton sends
a message. Both stages interlace. Since automata in a silent stage do not interact,
a silent stage can be simulated independently for each automaton.

We will simulate the computation of M stage by stage. The main technical
problem of the simulation of M is keeping track of the head positions at the be-
ginning and the end of each stage. We solve this problem by storing and restoring
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the head positions of each automaton by the head positions of the auxiliary au-
tomata. The next problem is that the end of a silent stage cannot be recognized
directly during the simulation of a single automaton, since in many cases we would
have to know when a message arrives from another automaton. For this reason,
during this phase of the simulation (of a stage), called preprocessing, each automa-
ton is simulated up to the moment, when it sends a message or halts waiting for
a message. Let d; be the number of steps to the first message sent by A; without
receiving any message from other automata (if such an event does not occur, we
put d; = 0o0). Having this done for all automata of M, we check which simulation
took the shortest time and terminated with a message being sent, i.e. we look for
t = min{d;|i = 1..k}. Obviously, ¢ determines duration of the silent stage. So the
simulation can be outlined as follows:

for 5 =0,1,...do
x preprocessing of the jth silent stage;
* determine ¢, the duration of the jth silent stage;
* simulate the jth silent stage for ¢; steps; further;
simulate the step in which a message (or messages) is sent
immediately after the silent stage.

There are some technical problems to be solved. It may happen that an automa-
ton enters a loop without receiving a message, and therefore the simulation (of a
computation of such automaton in the silent stage) would last forever. Detecting
a loop by checking that an automaton enters the same state of the memory with
the same head position would be difficult — it is hard to see that the head is at
the same position (using only a finite memory). We use here an easy but effective
solution: every simulation is assisted by an automaton which counts steps. If the
number of steps is A\-z-n, where A bounds from above the number of states of A;, z
is a maximal ratio between speeds of the fastest and the slowest automaton, and n
is the length of input, then A; loops for sure. So we let the counting automaton
start from the left end-marker, making one move per A - z steps. If it arrives at
the right end-marker, then it sends a special message to terminate the simulation.

Technical details. We define a multi-speed system M’ simulating M. The
system M’ consists of 3m~+2 automata X,Y, B1,...,Bn, By,...,Bl,,D1,...,Dp,.
Their roles are the following;:

e X simulates behavior of each A; during a silent stage and stores the in-
ternal states of A; and current messages sent by automata of M. The
simulation is sequential, that is, first X simulates A;, then A5 and so on;

e By,...,B,, store the current positions of the heads of automata A1, ..., A,
during the simulated computation. The second group of automata con-
sisting of BY, ..., B}, is used to store the same information as By, ..., By;
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A silent stage - automaton A; from
a synchronous system

7777777777777 Part 1: X gets the initial position
stored by B,
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X X' position of B,.

Part 2: X simulates
behaviour of A,

5, 8
L P
/ T -
| o
B, ~—" " p
777777777777777 @ i ) .
Part 3: X stores the final position p'
‘\/ in the position of B,
5, S
A
I/ P
¢« ~
X' X

FIGURE 2. Basic steps of a silent stage. The p; is the position
at the beginning of the stage, pj is a position at the end of stage.
Dashed-line marks the movements.

e Dy,...,D,, are used as auxiliary counters. The value stored in the position
of the head of D; encodes the number of steps performed by automaton A;
during the computation simulated during the preprocessing phase. These
values are used to calculate the number of steps of the silent stage.
Now let us describe the simulation in detail. We split the description in two parts:
first we describe computations informally, then we give the corresponding pseudo-
code (see also Fig. 2).

for j =0,1,..., until the halting message is sent, do

I Perform preprocessing for the jth silent stage:
For each automaton A; the following steps are performed. The head
of X is moved to the position of the head of A; at the end of the previous
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stage. This position is restored from the head position of B;. The state
of A; at the end of the previous stage, which was stored in the internal
state of B;, gets stored in the internal state of X. The counter D; is set
to zero.

X simulates behavior of A; — until A; sends a message. At the same
time automaton D; moves to the right from the left end-marker, making
one move per Az steps. D; measures time used by X for the current sim-
ulation. The message from X stops the movement of D;: the number of
steps executed by X is stored by the head position of D; and a state of
D;. (The state encodes a correcting information, similarly as in proce-
dures dump and restore.) Also, the automaton D; sends a message when
it reaches the right end-marker. This is an evidence that A; loops.

II Determine t;, the duration of the jth silent stage: The minimal time from
values stored by {D1,...,Dp} is computed.

We execute the command minimum introduced in the previous section.
For the sake of exposition in the third part we assume that A, is the au-
tomaton that sends a message, i.e. D, stores the minimal value.

III Simulate the jth silent stage for t; steps and perform the next step when
a message 1S sent:
The duration of the silent stage, obtained in the previous step, is en-
coded in the head position of X. Two copies are made: one copy (held
by position of automaton Y') is used for a currently simulated automaton,
another copy (held by Y”) is kept for other automata.
fori=1,...,m the following simulation is executed in two separate loops:
1. automaton X restores the head position of 4; encoded by B} and sim-
ulates behavior of A; for ¢; steps; this is possible by using automata
Y, Y’ storing duration of the silent stage;

2. the communication step after the silent stage is simulated; the posi-
tion of the head of A; after the communication step is updated and
stored by X again in the head positions of automata B;, B].

end for stage j

for stage j =0,1,..., until the halting message is sent, do

I Perform preprocessing for the jth silent stage

1. for ¢+ 1 to mdo

2. begin

3. restore X «— B;

4 D; go to $, then it sends a message

) do in parallel till a message is sent by X or D;:
{D; counts steps | X simulates 4;}

6. endfor
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II
7. X «—minimum(Dy,...,Dy,)
111
8. dump X — Y)Y’
9. for i+ 1 to mdo
begin
10. restore X «— B
11. do in parallel till a message from X or Y:
{Ygo to $., then it sends a message | X simulates A;}
12. X adjusts its head position
13. dump X — B;, B}
14. restore Y — Y/(Y")

endfor
15. for ¢+ 1 to m do
16. begin

restore X «— B;
X performs one step of A;
dump X « B;, B!

endfor

end for stage j

Complexity of simulation. It follows from the construction that each silent
stage of system M is simulated by M’ using O(m) messages. Then a step of M
in which messages are sent is simulated using O(m) messages. Thus, if the origi-
nal synchronous system uses O(f(n)) messages, the new multi-speed system uses
O(m - f(n)) messages. Since the number of automata in the system M is con-
stant, the number of messages during the simulation increases only by a constant
multiplicative factor m.

6. CONCLUSIONS

We have shown that fully synchronous systems of finite automata may be sim-
ulated by multi-speed systems with the same asymptotic message complexity, as-
suming that the ratio between the speed of the fastest and the slowest automaton
is bounded by a (known) constant.

The simulation presented in this paper requires that there is a constant bound
on the ratio between the speed of the fastest and the slowest automaton and this
bound is known in advance. It is an open problem whether analogous result is
possible when this ratio is bounded and unknown or unbounded. However we
expect that the answer is negative what possibly can be shown using techniques
from [6].
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