
RAIRO-Inf. Theor. Appl. 39 (2005) 423-453

DOI: 10.1051/ita:2005026

DENOTATIONAL ASPECTS OF UNTYPED
NORMALIZATION BY EVALUATION ∗

Andrzej Filinski
1

and Henning Korsholm Rohde
2

Abstract. We show that the standard normalization-by-evaluation
construction for the simply-typed λβη-calculus has a natural counter-
part for the untyped λβ-calculus, with the central type-indexed logical
relation replaced by a “recursively defined” invariant relation, in the
style of Pitts. In fact, the construction can be seen as generalizing a
computational-adequacy argument for an untyped, call-by-name lan-
guage to normalization instead of evaluation.In the untyped setting,
not all terms have normal forms, so the normalization function is nec-
essarily partial. We establish its correctness in the senses of soundness
(the output term, if any, is in normal form and β-equivalent to the in-
put term); identification (β-equivalent terms are mapped to the same
result); and completeness (the function is defined for all terms that
do have normal forms). We also show how the semantic construction
enables a simple yet formal correctness proof for the normalization al-
gorithm, expressed as a functional program in an ML-like, call-by-value
language. Finally, we generalize the construction to produce an infini-
tary variant of normal forms, namely Böhm trees. We show that the
three-part characterization of correctness, as well as the proofs, extend
naturally to this generalization.

Mathematics Subject Classification. 03B40, 06B35, 68N18,
68Q55.

Keywords and phrases. Normalization by evaluation, untyped λ-calculus, denotational seman-
tics, functional programming, Böhm trees, computational adequacy.

∗ An earlier version of this article appeared in the proceedings of FOSSACS 2004 [6]. An
extended version, with detailed proofs, is available as a technical report [7].
1 DIKU, Department of Computer Science, University of Copenhagen, Universitetsparken 1,
DK-2100 Copenhagen, Denmark; andrzej@diku.dk
2 BRICS†, Department of Computer Science, University of Aarhus, IT-parken, Aabogade 34,
DK-8200 Aarhus N, Denmark; hense@brics.dk
† Basic Research in Computer Science (www.brics.dk), funded by the Danish National Re-

search Foundation.
c© EDP Sciences 2005

Article published by EDP Sciences and available at http://www.edpsciences.org/ita or http://dx.doi.org/10.1051/ita:2005026

http://www.edpsciences.org/ita
http://dx.doi.org/10.1051/ita:2005026

424 A. FILINSKI AND H.K. ROHDE

1. Introduction

1.1. Reduction-based and reduction-free normalization

Traditional accounts of term normalization are based on a directed notion of
reduction (such as β-reduction), which can be applied anywhere within a term.
A term is said to be a normal form if no reductions can be performed on it.
If the reduction relation is confluent, normal forms are uniquely determined, so
normalization is a (potentially partial) function on terms. Some terms (such as
Ω) may not have normal forms at all; or a particular reduction strategy (such as
normal-order reduction) may be required to guarantee arrival at a normal form
when one exists; such a strategy is called complete. There is a very large body of
work dealing with normalization in reduction-based settings.

However, in recent years, a rather different notion of normalization has emerged,
so-called reduction-free normalization. As the name suggests, it is not based on
a directed notion of reduction, but rather on an undirected notion of term equiv-
alence. Equivalence may be defined as simply the reflexive-transitive-symmetric
closure of an existing reduction relation, but it does not have to be: any congru-
ence relation on terms may be used. The task is then to define a normalization
function on terms, such that the output of the function is equivalent to the input,
and such that any two equivalent terms are mapped to identical outputs [4].

For some notions of equivalence (such as β-convertibility of untyped lambda-
terms), it is actually impossible to define a computable, total normalization func-
tion with both of these properties; we must thus accept that the normalization
function may be partial. However, even in that case, we can impose a complete-
ness constraint: if we have an independent syntactic characterization of acceptable
normal forms, we can require that the function both produce terms in this form
as output, and that it be defined on all terms equivalent to a normal form.

1.2. Normalization by evaluation

A particularly natural way of obtaining a reduction-free normalization function
is known as normalization by evaluation (NBE), based on the following idea: Sup-
pose we can construct a denotational model of the term syntax (i.e., such that
equivalent terms have the same denotation), with the property that a syntactic
representation of any normal-form term can be extracted from its denotation; such
a model is called residualizing. Then the normalization function can be expressed
simply as a compositional interpretation in the model, followed by extraction.

A priori, such a normalization function is not necessarily effectively computable.
It can be given a computational interpretation if the denotational model is con-
structed in intuitionistic set theory [4], but this gets somewhat complicated for
domain-theoretic models, especially those involving reflexive domains. In such
cases, it is often easier to establish that the constructions are effective by showing
that they can expressed as images of program terms in a language for which the
domain-theoretic semantics is already known to be computationally adequate.

DENOTATIONAL ASPECTS OF UNTYPED NBE 425

(It should be noted that the term NBE is also sometimes used for a related
concept, based on reducing – usually in a compositional way – the normalization
problem, which may in general involve open terms of higher type, to an evalua-
tion problem, which involves normalization of only closed terms of base type. The
required transformation is often syntactically related to the model-based construc-
tion above, but the model itself is not made explicit; and in fact, the subsequent
evaluation process may still be specified entirely in terms of reductions.)

1.3. The Berger-Schwichtenberg normalization algorithm

Perhaps the best-known NBE algorithm is due to Berger and Schwichtenberg [3].
It finds βη-long normal forms of simply-typed λ-terms. We present here its outline,
glossing over inessential details.

Types are of the form τ ::= b | τ1→τ2. A natural set-theoretic model interprets
each base type b as some set, and the function type as the set of all functions
between the interpretations of the types, i.e., [[τ1 → τ2]] = [[τ1]]→ [[τ2]]. For a type
assignment Γ, we also take [[Γ]] =

∏
x∈dom Γ[[Γ(x)]].

Let Λ be the set of syntactic λ-terms (written with explicit constructors for
emphasis) over a set of variables V. For a well-typed term Γ � m : τ , we can then
express its semantics [[m]] ∈ [[Γ]]→ [[τ]] as follows:

[[VAR(x)]] ρ = ρ(x)

[[LAM(xτ ,m0)]] ρ = λa[[τ]]. [[m0]] ρ[x �→ a]
[[APP(m1,m2)]] ρ = [[m1]] ρ ([[m2]] ρ).

It is easy to check that such a model is sound for conversion, i.e., that when
m↔βη m

′, then [[m]] = [[m′]].
Consider now a model where all base types are interpreted as the set of (open)

syntactic λ-terms, i.e., [[b]] = Λ for all b. In this model, we can define a pair of type-
indexed function families – reification, ↓τ : [[τ]] → Λ, and reflection, ↑τ : Λ → [[τ]]
– by mutual induction on the type index τ :

↓b l = l ↓τ1→τ2 f = LAM(xτ1 , ↓τ2 (f(↑τ1 VAR(x)))) (x “fresh”)

↑b l = l ↑τ1→τ2 l = λa[[τ1]]. ↑τ2 (APP(l, ↓τ1 a)).

For simplicity, let us only consider normal forms of closed terms. Then reification
can serve directly as the extraction function: one can check that, for a term
� m : τ in βη-long normal form, ↓τ ([[m]] ∅) ↔α m. Hence, by soundness of the
model, for any term m′ with m′ ↔βη m, ↓τ ([[m′]] ∅) = ↓τ ([[m]] ∅) ↔α m ↔βη m

′.
Alternatively, one can show the latter property directly, for an arbitrarym′. Either
way, the typical proof ultimately involves a logical-relations argument, even if this
argument is pushed entirely into a standard result about the syntax (namely, that
every well-typed term has a βη-long normal form). The latter approach, however,
generalizes better, especially to systems where not all terms have normal forms.

426 A. FILINSKI AND H.K. ROHDE

1.4. A tentative algorithm for untyped terms

In an untyped (or, more accurately, unityped) setting, we may hope to get a
residualizing model by interpreting the single type of terms as a domain D =
Λ + (D → D). (Again, we gloss over domain-theoretic subtleties for expository
purposes.) We can then define variants of reification, ↓ : D → Λ, and reflection,
↑ : Λ→D, roughly analogous to the simply-typed case:

↓ d = case d of
{
in1(l) → l
in2(f)→ LAM(x, ↓ (f(↑VAR(x)))) (x “fresh”)

↑ l = in1(l).

Note that reification is now defined by general recursion, rather than induction.
We can also construct an interpretation, [[m]] ∈ (V→D)→D, by

[[VAR(x)]] ρ = ρ(x)
[[LAM(x,m0)]] ρ = in2(λd. [[m0]] ρ[x �→ d])

[[APP(m1,m2)]] ρ = case [[m1]] ρ of
{
in1(l) → ↑ (APP(l, ↓ ([[m2]] ρ)))
in2(f)→ f ([[m2]] ρ).

Here, reflection is performed “on demand”: when application needs a semantic
function, but [[m1]]ρ is a piece of syntax, it is reflected just enough to allow the
application to be performed.

Again, it can be checked that β-convertible terms have the same denotation. It
is also fairly easy to verify that, for a closed m in β-normal form, ↓ ([[m]] ∅) ↔α m.
What is not obvious at all, however, is that when ↓ ([[m′]] ∅) = m for a general m′,
then m′ must be syntactically β-convertible to a normal form. Indeed, the problem
is a generalization of the usual computational-adequacy problem for a denotational
semantics of a functional language: if the denotation of a closed term is not ⊥
(undefined), must the term then evaluate to a value?

For a simply typed language, PCF, adequacy of the natural domain-theoretic
semantics was shown by Plotkin, using a logical-relations argument [13]. Pitts
showed that essentially the same argument applies to an untyped language, except
that the central relation is no longer constructed by induction on types, but as a
solution of a more general “relation equation”; he also showed a general method
for solving such equations, yielding invariant relations [11].

In this paper, we first formalize the construction of the normalization function
from above, addressing especially the issues of potential divergence and generation
of fresh variable names (Sect. 2). We then show correctness of this function by a
generalized computational-adequacy construction (Sect. 3), and how the domain-
theoretic analysis directly validates a functional program implementing the con-
struction (Sect. 4). Finally, we show how the construction can be generalized
naturally to Böhm trees (Sect. 5).

DENOTATIONAL ASPECTS OF UNTYPED NBE 427

1.5. Related work

The closest related work to ours is probably the NBE-based (in the alter-
nate, reduction-oriented sense) algorithm for untyped β-normalization proposed by
Aehlig and Joachimski [1]. However, while the functional programs ultimately de-
rived from the analyses are quite similar, the correctness arguments are completely
different: theirs are based on syntactic concepts and results from higher-order
rewriting theory, rather than on the domain-theoretic constructions underlying
ours.

We believe that the domain-theoretic approach enables a more direct and pre-
cise correctness proof for the normalizer, as actually implemented. In Aehlig
and Joachimski’s work, the abstract algorithm is expressed as a small-step op-
erational semantics for a specialized, two-level λ-calculus with named bound vari-
ables; whereas the actual normalization program is formulated as a compositional
interpreter in Haskell, using de Bruijn indices for bound variables, and a reflex-
ive type for the meanings of higher-typed terms. It thus remains a potentially
significant task to verify that the concrete Haskell program correctly implements
the abstract algorithm. On the other hand, formally relating the domain-theoretic
constructions in the model-based normalizer to the functional terms implementing
them, is completely straightforward.

An untyped, reduction-based NBE-like algorithm can also be found in disguise
in Grégoire and Leroy’s work [8], whose focus is on compilation. Their concrete
algorithm of strong reduction (i.e., β-normalization) by iterated symbolic weak
reduction (akin to ↑ and [[·]]) and readback (akin to ↓) is ultimately quite sim-
ilar to ours. Their algorithm also handles several language extensions, such as
inductive datatypes and guarded fixpoints. However, as they consider only a
strongly-normalizing fragment of the λ-calculus, establishing correctness becomes
significantly simpler. Their implementation takes the form of an abstract machine,
whose (5000-line) correctness proof is mechanically checked using a proof assistant.
They do not mention how the abstract machine is actually implemented.

Many of the constructions in the present paper are inspired by the first author’s
work on type-directed partial evaluation [5]. Apart from the obvious differences
arising from typed vs. untyped languages, a significant change is also that the
TDPE work considered equivalence defined semantically (equality of denotations,
under all interpretations of “dynamic” constants), while here we consider syntactic
β-convertibility. Accordingly, the central invariant relation ties denotations to
syntactic terms, rather than to denotations in another semantics.

Essentially the same program as in Section 4, but expressed in FreshML, appears
in a recent paper by Shinwell et al. [14], Figure 7. However, the focus there is on
a practical application of fresh-name generation, rather than on normalization as
such. Indeed, the underlying algorithm (informally attributed to Coquand) is not
supported by a formal correctness argument. In our variant, generation of fresh
names is handled explicitly: since constructed output terms are never subsequently
analyzed by pattern-matching, using a general framework such as FreshML, or

428 A. FILINSKI AND H.K. ROHDE

higher-order abstract syntax, is probably overkill. However, we anticipate that a
different “back end” for output generation could be used, and have deliberately
tried to keep the constructions and proofs modular with respect to the term-
generation operations. We thus expect that essentially the same arguments –
perhaps even a little simplified – could be used to verify correctness of the FreshML
variant of the normalizer as well.

2. A semantic normalization construction

2.1. Syntax and semantics of the untyped λ-calculus

2.1.1. Syntax

Let V = {x, y, . . .} be a countably infinite set of (object) variables, with x and
v ranging over V. The set of λ-terms m is then the least set Λ such that

Λ = {VAR(x) | x ∈ V} ∪ {LAM(x,m0) | x ∈ V,m0 ∈ Λ} ∪
{APP(m1,m2) | m1 ∈ Λ,m2 ∈ Λ} .

Note that we do not identify α-equivalent terms at the level of syntax. The set of
free variables of a term, FV (m), is defined in the usual way. For any finite set of
variables ∆, we write Λ∆ for the set of λ-terms over ∆, i.e.,

Λ∆ = {m ∈ Λ | FV (m) ⊆ ∆} .

2.1.2. Substitutions

For technical reasons, we take simultaneous (as opposed to single-variable),
capture-avoiding substitution as the basic concept. Accordingly, we say that a
substitution θ is a finite partial function from variables to terms. We take FV (θ) =⋃

x∈dom θ FV (θ(x)), and define the action of θ on a term m in the usual way, by
structural induction on m:

VAR(x)[θ] =
{
θ(x) if x ∈ dom θ
VAR(x) otherwise

LAM(x,m0)[θ] = LAM(x′,m0[θ[x �→ VAR(x′)]])
where x′ �∈ FV (θ) ∪ (FV (m0) \ {x})

APP(m1,m2)[θ] = APP(m1[θ],m2[θ])

where f [a �→b] is function extension: f [a �→b](a′) = b if a′ = a, and f(a′) otherwise.
To keep the substitution operation deterministic, we assume that the x′ in the
LAM-clause is picked as some arbitrary but fixed function of the (finite) set of
variables it needs to avoid. As a special case, we use the standard notationm[m′/x]
to mean m[∅[x �→m′]].

DENOTATIONAL ASPECTS OF UNTYPED NBE 429

2.1.3. Convertibility and normalization

We define convertibility between λ-terms, written m ↔ m′, by the axiom
schemas for α- and β-conversion,

LAM(x,m) ↔ LAM(x′,m[x′/x]) (x′ �∈ FV (m) \ {x})
APP(LAM(x,m),m′) ↔ m[m′/x],

together with the standard equivalence and compatibility rules, making ↔ into a
congruence relation on terms.

We further define atomic (also known as neutral) and normal forms, as follows:

�at VAR(x)
�at m1 �nf m2

�at APP(m1,m2)
�at m
�nf m

�nf m0

�nf LAM(x,m0)
·

For s ∈ {nf, at}, we take Ns = {m | �s m}, i.e., the set of terms that can be
shown to be of syntactic form s by a finite number of rule applications.

We then expect a normalization function on terms to satisfy that the output, if
any, is in normal form and convertible to the input (soundness); convertible terms
either give the same output, or neither one does (identification); and if a term has
a normal form at all, the normalization function will return one (completeness).

2.1.4. Semantics

A natural way of defining a denotational model of convertibility is in terms of
a reflexive pointed cpo D. Reflexivity means that the continuous-function space
[D→D] is a retract of D, i.e., that there exist continuous functions

φ : [D → D]→ D and ψ : D → [D → D] ,

with ψ ◦φ = id[D→D]. The induced interpretation, [[m]] ∈ [[V → D]→ D], is then:

[[VAR(x)]] ρ = ρ(x)

[[LAM(x,m0)]] ρ = φ(λdD. [[m0]] ρ[x �→ d])
[[APP(m1,m2)]] ρ = ψ([[m1]] ρ) ([[m2]] ρ).

Lemma 1. The interpretation has two expectable properties:
(a) If ∀x ∈ FV (m). ρ(x) = ρ′(x), then [[m]] ρ = [[m]] ρ′.
(b) Let θ = [x1 �→m1, . . . , xn �→mn] be a substitution.

Then [[m[θ]]] ρ = [[m]] ρ[x1 �→ [[m1]] ρ, . . . , xn �→ [[mn]] ρ].

Proof. Part (a) is a straightforward induction on the structure of m. Part (b)
follows by induction on the structure of m, using part (a) in the LAM-case. �
Lemma 2 (model soundness). If m↔ m′ then [[m]] = [[m′]].

Proof. By induction on the derivation of m ↔ m′, using Lemma 1 for α- and
β-conversion, and using that ψ ◦ φ = id[D→D] for β-conversion. �

430 A. FILINSKI AND H.K. ROHDE

2.2. Output-term generation

We want to account rigorously for the generation of fresh names, and do so in a
modular manner. We will therefore construct a pointed cpo Λ̂ (dependent on the
name generation scheme) with elements denoted by l, together with continuous
wrapper functions,

V̂AR : V → Λ̂ L̂AM : [V → Λ̂]→ Λ̂ ÂPP : Λ̂× Λ̂ → Λ̂ ,

where, in particular, L̂AM provides a fresh name to be used in constructing the
body of the λ-abstraction.

Let N be a set (discrete cpo) containing at least the natural numbers, with an
operation · + 1 : N → N, agreeing with the successor operation on naturals. Let
G = {g0, g1, ...} be a countably infinite subset of V, such that gi = gj implies
i = j, and let gen : N→ V be such that gen(n) = gn when n ∈ ω.

We write �·� for the inclusion from A to A⊥; and for f : A→B with B pointed,
we write · � f for f ’s strict extension to A⊥, i.e., ⊥ � f = ⊥B and �a� � f = f(a).
(As is conventional in functional-programming syntax, function application by
juxtaposition binds tighter than all explicit infix operators, including �.)

Definition 1. We take Λ̂ = [N → Λ⊥] and define wrapper functions for construct-
ing λ-terms using de Bruijn-level (not -index!) naming as follows:

V̂AR(v) = λnN. �VAR(v)�
L̂AM(f) = λnN. f (gen(n)) (n+ 1) � λmΛ

0 . �LAM(gen(n),m0)�
ÂPP(l1, l2) = λnN. l1 n � λm

Λ
1 . l2 n � λm

Λ
2 . �APP(m1,m2)�.

Note 1. If we took freshness as a primitive concept, like in FreshML, we could
simply use Λ̂ = Λ⊥; V̂AR(v) = �VAR(v)�; L̂AM(f) = f x � λm0. �LAM(x,m0)�,
with x fresh for f ; and ÂPP(l1, l2) = l1 � λm1. l2 � λm2. �APP(m1,m2)�.

2.3. A residualizing model

From standard domain-theoretic results (e.g., Pitts [11]), we know that there
exists a pointed cpo Dr, together with an isomorphism

iD : Dr
∼=→ (Λ̂ + [Dr → Dr])⊥.

We write

tm(l) = i−1
D (�in1(l)�) fun(f) = i−1

D (�in2(f)�) ⊥Dr = i−1
D (⊥) .

Then any element of Dr can be uniquely written as one of tm(l), fun(f), or ⊥Dr .

DENOTATIONAL ASPECTS OF UNTYPED NBE 431

Moreover, the standard domain-theoretic solution is in fact a so-called minimal
invariant [11], which we will exploit in the correctness proof. (In the specific case
of Dr, the minimal-invariant condition says that the following “copy function”
e : Dr →Dr, recursively defined in the least-fixed-point sense,

e(d) = case d of






tm(l) → tm(l)
fun(f)→ fun(e ◦ f ◦ e)
⊥Dr → ⊥Dr

is in fact the identity function on Dr.)
We can now define the reification function, ↓ : Dr → Λ̂, and the reflection

function, ↑ : Λ̂ → Dr, as follows:

↓ d = case d of






tm(l) → l

fun(f)→ L̂AM(λxV. ↓ (f(↑ V̂AR(x))))
⊥Dr → ⊥Λ̂

↑ l = tm(l),

where the recursive definition of ↓ is again interpreted as the least fixed point.
Using these, we construct appropriate functions φr : [Dr → Dr] → Dr and ψr :
Dr → [Dr →Dr]:

φr(f) = fun(f)

ψr(d) = case d of






tm(l) → λd′Dr . ↑ ÂPP(l, ↓ d′)
fun(f)→ f
⊥Dr → ⊥[Dr→Dr].

Clearly, we have that ψr ◦ φr = id[Dr→Dr], since iD was an isomorphism. The
induced interpretation is denoted by [[·]]r.

We can now define a putative normalization function:

Definition 2. For any ∆, let �∆ = max ({n+ 1 | gn ∈ ∆} ∪ {0}) (i.e., the least
n such that ∀n′ ≥ n. gn′ �∈ ∆). We then define the function norm∆ : Λ∆ → Λ⊥ by

norm∆(m) = ↓ ([[m]]r (λxV . ↑ V̂AR(x))) �∆ .

We also define the general function norm : Λ→Λ⊥ like above, but with �∆ replaced
by 0. Then for any ∆ such that ∆ ∩G = ∅, and m ∈ Λ∆, norm(m) = norm∆(m).

432 A. FILINSKI AND H.K. ROHDE

3. Correctness of the construction

3.1. Correctness of the wrappers

We first define what it means for an element of Λ̂ to represent a λ-term with
some additional properties:

Definition 3. For l ∈ Λ̂, ∆ ⊆fin V, s ∈ {at, nf}, and m ∈ Λ∆, we define the
representation relation � by

l �∆
s m iff ∀n ≥ �∆. l n = ⊥ ∨ ∃m′ ∈ Λ∆. l n = �m′� ∧m′ ↔ m ∧m′ ∈ Ns .

That is, as long as we avoid clashes with generated bound-variable names, any
concrete term generated from l has only free variables in ∆, is convertible to m,
and is of syntactic form s. Note, however, that we only capture a notion of partial
correctness here: if l does not generate a term at all, the conditions are vacuously
satisfied.

Lemma 3. For fixed ∆, s, and m, the predicate P = {l | l �∆
s m} is pointed (i.e.,

⊥Λ̂ ∈ P) and inclusive (i.e., closed under limits of ω-chains).

Proof. Straightforward, noting that � is expressed as an intersection of inverse
images by a continuous function (application to n) of a (necessarily inclusive)
predicate on the flat domain Λ⊥. �

Lemma 4. The representation relation is closed under weakening and conversion:

(a) If l �∆
s m and ∆ ⊆ ∆′, then also l �∆′

s m.

(b) If l �∆
s m and m′ ∈ Λ∆ with m↔ m′, then also l �∆

s m′.

Proof. Both parts are immediate from the definition. �

Lemma 5. Representations of terms behave much like the terms themselves:

(a) If v ∈ ∆, then V̂AR(v) �∆
at VAR(v).

(b) If l1 �∆
at m1 and l2 �∆

nf m2, then ÂPP(l1, l2) �∆
at APP(m1,m2).

(c) If l �∆
at m, then also l �∆

nf m.

(d) Let f ∈ [V → Λ̂] and m ∈ Λ∆∪{x}. If ∀v /∈ ∆.fv �∆∪{v}
nf m[VAR(v)/x],

then L̂AM(f) �∆
nf LAM(x,m).

Proof. All parts are relatively straightforward. (b) and (d) exploit that ↔ is
a congruence relation. For (d), the assumption about m’s free variables is also
essential. �

The constructions and results in the next section rely only on those properties
of the wrappers from Definition 1 and the relation � from Definition 3 that were
established in Lemmas 3–5, not on the definitions themselves.

DENOTATIONAL ASPECTS OF UNTYPED NBE 433

3.2. Adequacy of the residualizing model

To construct the central relation between terms and their residualizing denota-
tions, we first state an abstract version of a result due to Pitts [11]:

Theorem 1 (existence of invariant relations). Let A be a cpo, and let i : D ∼=→ (A+
[D→D])⊥ be a minimal invariant. Let T be a set, and let predicates P1 ⊆ A×T ,
P2 ⊆ T , and P3 ⊆ T × T × T be given, such that {a | P1(a, t)} is inclusive for
every t ∈ T . Then there exists a relation � ⊆ D × T , with {d | d � t} inclusive
for every t ∈ T , such that, for all d ∈ D and t ∈ T ,

d � t iff







d = ⊥D ∨
∃a. d = i−1(�in1(a)�) ∧ P1(a, t) ∨
∃f. d = i−1(�in2(f)�) ∧ P2(t) ∧
∀d′ ∈ D; t′, t′′ ∈ T. P3(t, t′, t′′) ∧ d′ � t′ ⇒ f(d′) � t′′





 .

Proof. The proof proceeds almost exactly as in Pitts’s paper: we separate positive
and negative occurrences of � in its defining equation, then use the Knaster-
Tarski fixed-point theorem to construct a pair of relations �+ and �−, bounding
the desired one. Finally, using the minimal-invariant property of D, we show that
�+ = �−. �

We can recover Pitts’s original result as follows. Let ΛZ be an extension of
Λ with PCF-style integer arithmetic, and let ⇓ be the usual big-step, call-by-
name evaluation relation on Λ∅

Z
. We then take A as Z, T as Λ∅

Z
, P1(n,m) as

m ⇓ n, P2(m) as ∃x,m0.m ⇓ LAM(x,m0), and P3(m,m′,m′′) as ∀x,m0.m ⇓
LAM(x,m0) ⇒ m′′ = m0[m′/x]. Note that, by determinacy of ⇓, the x and m0

are uniquely determined when they exist, so P2 and P3 would naturally be joined
into a single condition.

The computational-adequacy proof for evaluation then shows, by a straightfor-
ward structural induction on m, that if ρ : V→D and θ : V ⇀ Λ∅

Z
are such that

∀x ∈ FV (m). ρ(x) � θ(x), then [[m]]ρ � m[θ]. For the special case when m is
itself a closed term, we then immediately read off that if [[m]]∅ �= ⊥D then m must
evaluate to a value.

When generalizing to normalization, there are two complications. First, we
consider symmetric equivalence, not directed evaluation, so the relation d � −
must be closed under arbitrary β-conversions, not just head-β-expansions as be-
fore. Second, since we also normalize under lambdas, we must in general consider
substitutions that replace variables with open terms. Accordingly, we replace the
fixed set of closed terms, Λ∅, with a Kripke-style family of term sets, indexed by
their allowed free variables, Λ∆. Somewhat surprisingly, Pitts’s result – although
in the generalized formulation – accounts directly for these adaptations:

434 A. FILINSKI AND H.K. ROHDE

Lemma 6. There exists a relation � such that for all ∆, d ∈ Dr and m ∈ Λ∆,

d �∆ m iff









d = ⊥Dr ∨
∃l. d = tm(l) ∧ l �∆

at m ∨
∃f. d = fun(f) ∧ (∃x ∈ V,m0 ∈ Λ∆∪{x}.LAM(x,m0) ↔ m)
∧ ∀∆′ ⊇ ∆, d′ ∈ Dr,m

′ ∈ Λ∆′
,m1 ∈ Λ∆′

.

m↔ m1 ∧ d′ �∆′
m′ ⇒ f(d′) �∆′

APP(m1,m
′)








.

Proof. By Theorem 1, taking A = Λ̂ and T = {(∆,m) | ∆ ⊆fin V∧m ∈ Λ∆}, with
the predicates chosen as

P1 = {(l, (∆,m)) | l �∆
at m}

P2 = {(∆,m) | ∃x ∈ V,m0 ∈ Λ∆∪{x}.LAM(x,m0)↔ m}
P3 = {((∆,m), (∆′,m′), (∆′′,m′′)) |

∆ ⊆ ∆′ = ∆′′ ∧ ∃m1 ∈ Λ∆′
.m↔ m1 ∧m′′ = APP(m1,m

′)}

using the equivalence [∀x.(∃y.P (x, y)) ⇒ Q(x)] ⇔ [∀x.∀y.P (x, y) ⇒ Q(x)]. P1

is inclusive in its first argument by Lemma 3. We write d �∆ m instead of
d � (∆,m). �

Note how, in the function case, we require that f andm can also be meaningfully
applied to arguments from later worlds ∆′, much like in a conventional, type-
indexed Kripke logical relation [10], p. 590.

Lemma 7. The relation � shares two key properties with �:

(a) If d �∆ m and ∆ ⊆ ∆′, then also d �∆′
m.

(b) If d �∆ m and m′ ∈ Λ∆ with m↔ m′, then also d �∆ m′.

Proof. We proceed according to the cases for d �∆ m in Lemma 6. Both parts
are straightforward, given Lemma 4, and noting the transitivity of ⊆ and ↔. �

The following two lemmas will combine to establish adequacy of our semantics:

Lemma 8. For all l ∈ Λ̂, d ∈ Dr, and m ∈ Λ∆,
(a) If l �∆

at m, then ↑ l �∆ m.
(b) If d �∆ m, then ↓ d �∆

nf m.

Proof. Part (a) follows immediately from the definition of ↑ . Part (b) exploits
↓’s definition as a least fixed point, and proceeds by fixed-point induction on the
pointed and inclusive (by Lem. 3) predicate,

R = {ϕ ∈ [Dr → Λ̂] | ∀d,∆,m ∈ Λ∆. d �∆ m⇒ ϕ(d) �∆
nf m}.

The verification is straightforward, given the previous lemmas: the case d = tm(l)
is immediate by Lemma 5c, while d = fun(f) uses Lemma 5(a,d), and that both
� and � are closed under conversion (Lems. 4b and 7b). �

DENOTATIONAL ASPECTS OF UNTYPED NBE 435

Lemma 9. Let m ∈ ΛΓ, and for all x ∈ Γ, let θ(x) ∈ Λ∆ (in particular, Γ ⊆
dom θ). If ∀x ∈ Γ. ρ(x) �∆ θ(x) then [[m]]r ρ �∆ m[θ].

Proof. By structural induction on m. The case for variables is immediate. For
abstractions, like in a standard Kripke-logical-relations proof, monotonicity of �
(Lem. 7a) ensures that the environment and substitution remain related in the later
world ∆′; also, closure under conversion (Lem. 7b) in particular implies closure
under β-expansion. Both parts of Lemma 8, as well as Lemma 5b, are used in the
non-standard subcase for applications. �

3.3. Correctness of the normalization function

For showing completeness of the normalizer, we first establish that, for a term al-
ready in normal form, reifying its residualizing denotation gives an always-defined
term generator.

Definition 4. For any l ∈ Λ̂, we define the uniform definedness predicate def(l)
by def(l)⇔ ∀n ∈ ω. l n �= ⊥.

Lemma 10. The wrapper functions preserve definedness:

(a) For all v ∈ V, def(V̂AR(v)).

(b) If for all v ∈ V, def(f v), then def(L̂AM(f)).

(c) If def(l1) and def(l2), then def(ÂPP(l1, l2)).

Proof. Straightforward verification in each case. �
Lemma 11. Let m ∈ Λ and ρ ∈ [V → Dr] be such that for all x ∈ FV (m), there
exists an l with ρ(x) = ↑ l and def(l). Then,

(a) If m ∈ Nat, then ∃l ∈ Λ̂. [[m]]r ρ = ↑ l ∧ def(l).
(b) If m ∈ Nnf , then def(↓ ([[m]]r ρ)).

Proof. By simultaneous rule induction on �at · and �nf ·, relying on Lemma 10. �
Theorem 2 (semantic correctness). norm∆ from Definition 2 is a normalization
function on Λ∆, i.e.,

(a) (soundness) If norm∆(m) = �m′�, then m′ ∈ Λ∆, m′ ↔ m, and m′ ∈ Nnf .
(b) (identification) If m↔ m′, then norm∆(m) = norm∆(m′).
(c) (completeness) If for some m′ ∈ Nnf , m′ ↔ m, then norm∆(m) �= ⊥.

Proof. (Soundness) Let ρ0 = λxV. ↑ V̂AR(x), and let θ0 be the substitution map-
ping every x in ∆ to VAR(x). By Lemma 5a, for every x ∈ ∆, V̂AR(x) �∆

at

VAR(x) = θ0(x), and hence by Lemma 8a, ρ0(x) �∆ θ0(x). By Lemma 9, we
then get that [[m]]r ρ0 �∆ m[θ0]↔ m, and thus, by Lemma 8b, ↓ ([[m]]r ρ0) �∆

nf m.
Assume now that norm∆(m) = ↓ ([[m]]r ρ0) �∆ = �m′�. Taking n = �∆ in Defini-
tion 3, we can then immediately read off that m′ has the required properties.

(Identification) This follows directly from model soundness (Lem. 2), since the
residualizing model is indeed a model.

436 A. FILINSKI AND H.K. ROHDE

(Completeness) Using Lemma 10a, we see that ρ0 satisfies the condition
on ρ in Lemma 11. Hence, by part (b) of the latter lemma and Definition 4,
↓ ([[m′]]r ρ0) �∆ �= ⊥. And thus, again by model soundness, also norm∆(m) =
↓ ([[m]]r ρ0) �∆ �= ⊥. �

Note that the correctness theorem does not completely pin down the behavior
of the normalizer: the soundness specification allows it to return any valid α-
variant of the normal form, including normalizing LAM(x,LAM(y,VAR(y))) to
LAM(g0,LAM(g0,VAR(g0))). Conversely, completeness says only that if a term
has a β-normal form, the normalizer will also find one, though not necessarily the
same one.

It would also be possible to adopt a “tight” specification of normal forms,
requiring them to also be α-normal, such as the current de Bruijn-level naming.
Then, a term can have at most one normal form, and the normalizer will in fact
find exactly that one when it exists – which would allow us to combine soundness
and completeness into a single statement.

4. An implementation of the construction

4.1. Syntax and semantics of an ML-like call-by-value language

As our implementation language, we take a small fragment of Standard ML [9].
We deliberately choose an eager language, whose finer control over lifting allows us
to mirror all the semantic constructions almost exactly (i.e., up to isomorphism).
Any necessary laziness can be easily added by explicit thunking. On the other
hand, working in an inherently lazy language, such as Haskell, would make it
harder to work with, e.g., the set of λ-terms as a datatype, without also including
spurious infinite and partially-defined elements.

4.1.1. Syntax

The fragment is parameterized by a sequence of recursive datatype declarations,
each of the form

datatype dti = In i
1 of τ i

11 * · · · * τ i
1n1

| · · · | In i
k of τ i

k1 * · · · * τ i
knk

,

where ML types τ are given by the grammar,

τ ::= unit | int | bool | string | τ1 -> τ2 | dti .

The datatypes cannot be mutually recursive, but may be cumulative, i.e., later
declarations may refer to earlier ones. We say that a type is ground if it does not
contain – directly, or indirectly (through a datatype declaration) – any function
spaces. For notational simplicity, we assume that the set of λ-term variable names,
V, is identified with the set of ML character strings.

DENOTATIONAL ASPECTS OF UNTYPED NBE 437

The syntax of ML expressions is then

e ::= x | n | "v" | () | e1 + e2 | e1 = e2 | "g"^Int.toString e |
fn () => e | fn x => e | e1 e2 | In i

j(e1,. . .,en) |
case e of In i

1(x11,. . .,x1n1) => e1 | · · · | In i
k(xk1,. . .,xknk

) => ek

if e1 then e2 else e3 | let fun f (x:τ1):τ2 = e1 in e2 end

where x and f range over ML variable names.

4.1.2. Typing

We only consider well-typed ML expressions, as captured by the judgement
x1 : τ1, . . . , xn : τn � e : τ , asserting that e is of type τ , with free variables x1, . . . , xn

of types τ1, . . . , τn. It is defined in the usual way by inference rules. The only rule
worth remarking on, is that = is restricted to comparing values of ground types.

4.1.3. Denotational semantics

For the meaning of ML types, we take

[[unit]]ml = 1 = {∗} [[int]]ml = Z [[bool]]ml = B [[string]]ml = V
[[τ1 -> τ2]]ml = [[[τ1]]ml → [[τ2]]ml

⊥] [[dti]]ml = Si,

where, for each dti,

idti : Si ∼=→ ([[τ i
11]]

ml × · · · × [[τ i
1n1

]]ml) + · · ·+ ([[τ i
k1]]

ml × · · · × [[τ i
knk

]]ml)

is a minimal-invariant solution to the evident predomain equation. We write

ιIn i
j
(a1, . . . , an) = i−1

dti(inj(a1, . . . , an))

for the constructor functions. Any element of Si can thus be uniquely written as
the image of a constructor function.

When all the τ i
·· (and hence also dti) are ground, the least solution Si will

again be a set (discrete cpo), and could be constructed using standard set-theoretic
methods. In the general case, one must use, e.g., the domain-theoretic inverse-limit
construction, straightforwardly adapted to predomains.

The meaning of ML expressions is defined by induction on the typing deriva-
tion; for conciseness we write only the expressions themselves. The semantics is
structured such that if Γ � e : τ and for all (xi : τi) ∈ Γ, ξ(xi) ∈ [[τi]]ml, then
[[e]]ml ξ ∈ [[τ]]ml

⊥ . The full semantics is shown in Figure 1.
For notational convenience in the following, we will assume that all function

names f in a program are distinct. For a fixed program, we can then unambigu-
ously use θf = fix(Θf) to refer to the denotation of f in the let fun-construct.

438 A. FILINSKI AND H.K. ROHDE

[[x]]ml ξ = �ξ(x)� [[n]]ml ξ = �n� [["v"]]ml ξ = �v� [[()]]ml ξ = �∗�
[[e1 + e2]]ml ξ = [[e1]]ml ξ � λnZ

1 . [[e2]]ml ξ � λnZ

2 . �n1 + n2�
[[e1 = e2]]ml ξ = [[e1]]ml ξ � λa

[[τ]]ml

1 . [[e2]]ml ξ � λa
[[τ]]ml

2 . �a1 = a2�
[["g"^Int.toString e]]ml ξ = [[e]]ml ξ � λnZ. �gn�

[[fn () => e]]ml ξ = �λu1.[[e]]ml ξ� [[fn x => e]]ml ξ = �λa[[τ1]]
ml
.[[e]]ml ξ[x �→ a]�

[[e1 e2]]ml ξ = [[e1]]ml ξ � λf [[[τ1]]
ml→[[τ2]]

ml
⊥]. [[e2]]ml ξ � λa[[τ1]]

ml
. f a

[[In i
j(e1,. . .,en)]]ml ξ =

[[e1]]ml ξ � λa
[[τ i

j1]]
ml

1 . · · · .[[en]]ml ξ � λa
[[τ i

jn]]ml

n . �ιIn i
j
(a1, . . . , an)�

[[case e of In i
1(x11,. . .,x1n1) => e1 | · · · | In i

k(xk1,. . .,xknk
) => ek]]ml ξ =

[[e]]ml ξ � λsSi

. case s of






ιIn i
1
(a1, . . . , an1) → [[e1]]ml ξ[x11 �→ a1, . . . , x1n1 �→ an1]

...
ιIn i

k
(a1, . . . , ank

) → [[ek]]ml ξ[xk1 �→ a1, . . . , xknk
�→ ank

]

[[if e1 then e2 else e3]]ml ξ = [[e1]]ml ξ � λbB. case b of
{

tt → [[e2]]ml ξ
ff → [[e3]]ml ξ

[[let fun f (x:τ1):τ2 = e1 in e2 end]]ml ξ =
[[e2]]ml ξ[f �→ fix(λθ[[[τ1]]

ml→[[τ2]]
ml
⊥].λa[[τ1]]

ml
.[[e1]]ml ξ[f �→ θ, x �→ a]

︸ ︷︷ ︸
Θf

)]

Figure 1. Denotational semantics of the ML fragment.

4.1.4. Evaluation semantics

We say that a complete program is a closed expression of type τ1 -> τ2 -> · · · ->
τn -> τ0 (n ≥ 0), where each τi is a ground type. For such types, let Cτ = [[τ]]ml

denote the set of values underlying τ , e.g., Cint = Z. A complete program e :
τ1 -> τ2 -> · · · -> τn -> τ0 then determines a computable partial function e • (·) :
Cτ1 × · · · × Cτn ⇀ Cτ0 , given, e.g., by

e • (c1, . . . , cn) = c0 iff (e c1 · · · cn) ⇓ml c0 ,

where ⇓ml is the usual big-step operational semantics of expressions, and c denotes
the syntactic representation of the value c.

Theorem 3 (computational adequacy of denotational semantics). For a complete
ML program e, e • (c1, . . . , cn) = c0 iff [[e]]ml∅ � λf1. f1 c1 � · · · � λfn.fn cn = �c0�.
Proof. Modulo trivial syntactic differences, an equivalent formulation of the se-
mantics in terms of strict functions between pointed cpos, rather than general

DENOTATIONAL ASPECTS OF UNTYPED NBE 439

datatype term = VAR of string | LAM of string*term | APP of term*term

datatype sem = TM of int -> term | FUN of (unit -> sem) -> sem;

let fun down (s:sem):int->term = fn n =>

(case s of

TM l => l n

| FUN f => LAM("g"^Int.toString n,

down (f (fn () => TM(fn n’ => VAR("g"^Int.toString n)))) (n+1)))

in let fun eval (m:term):(string->sem)->sem = fn p =>

(case m of

VAR x => p x

| LAM(x,m0) => FUN(fn d => eval m0

(fn x’ => if x = x’ then d () else p x’))

| APP(m1,m2) => (case (eval m1 p) of

TM l => TM(fn n => APP(l n,down (eval m2 p) n))

| FUN f => f (fn () => eval m2 p)))

in let fun norm (m:term):term =

down (eval m (fn x => TM(fn n => VAR(x)))) 0

in norm end end end

Figure 2. The normalization algorithm, NORM .

ones between cpos, and the obvious generalization to multiple (non-mutually re-
cursive) datatypes, this is shown in, e.g., [12], Section 5. The primary difficulty is,
of course, the definition of the logical relation at types dti, which is again achieved
by exploiting the minimal-invariant properties of the (Si, idti). �

4.2. The normalization algorithm

The concrete representation of the normalization algorithm, with many of the
auxiliary definitions inlined, is shown in Figure 2. We have taken dt1 = term
with three constructors In1

1 = VAR, In1
2 = LAM, and In1

3 = APP. Note that
term is a ground type. To keep the notation concise, we assume that the chosen
predomain-equation solution coincides exactly with our representation of terms,
i.e., [[term]]ml = Λ, ιLAM(v,m) = LAM(v,m), etc. Similarly, we have instantiated
dt2 as the type sem, with constructors TM and FUN. We write S = [[sem]]ml, but
here we do not a priori require that S⊥ = Dr.

Since ML is a call-by-value language, we must simulate the implicit call-by-name
nature of the residualizing semantics using thunking. We have defined sem so that
[[sem]]ml

⊥ ∼= Dr; then semantic functions with codomain Dr can be represented
directly as ML functions into sem, while functions with domain Dr are represented
as ML functions with source type unit -> sem. As an optimization, however, the
strict function ↓ : Dr → Λ̂ is represented as simply an ML function on sem.

It is easy to check that the top-level expression, NORM : term -> term, is a
well-typed complete program in our sense.

440 A. FILINSKI AND H.K. ROHDE

Examples. The following examples illustrate how the program behaves. Let SA ≡
LAM(x,APP(VAR(x),VAR(x))) and Omega ≡ APP(SA,SA).

(a) NORM • (Omega) diverges.
(b) NORM • (APP(LAM(x,LAM(x,VAR(x))),Omega)) = LAM(g0,VAR(g0)).
(c) NORM • (LAM(y,LAM(g4,VAR(z)))) = LAM(g0,LAM(g1,VAR(z))).

Let us now formally relate the abstract and concrete constructions. To obtain a
perfect correspondence between semantic term generators and their implementa-
tion, we choose N = Z, with gen(n) = gn = gn when n ≥ 0, e.g., gen(13) = g13;
then [[int -> term]]ml = Λ̂. Recall that we had Dr

∼= (Λ̂ + [Dr → Dr])⊥, while
[[sem]]ml = S ∼= Λ̂ + [[1→ S⊥]→ S⊥]. We can then show:

Lemma 12. There exists an isomorphism iDS : Dr
∼=→ S⊥, satisfying

(a) For all l ∈ Λ̂, iDS (tm(l)) = �ιTM(l)�.
(b) For all f ∈ [Dr → Dr], iDS (fun(f)) = �ιFUN(λt[1→S⊥]. iDS (f(i−1

DS (t ∗))))�.
(c) iDS (⊥Dr) = ⊥S⊥.

Proof. The function pair (iDS , i
−1
DS) is constructed by mutual recursion (as usual,

interpreted as a least-fixed-point construction):

iDS (d) = case d of






tm(l) → �ιTM(l)�
fun(f)→ �ιFUN(λt[1→S⊥]. iDS (f(i−1

DS (t ∗))))�
⊥Dr → ⊥S⊥

i−1
DS (s′) = s′ � λs. case s of

{
ιTM(l) → tm(l)
ιFUN(g)→ fun(λd.i−1

DS (g(λu1.iDS (d)))).

That iDS and i−1
DS are actually two-sided inverses, follows from the minimal-

invariant characterizations of Dr and S. Properties (a–c) can then be read off
directly from the defining equation for iDS . �

We can also state three lemmas, relating the central domain-theoretic functions
to the denotations of their syntactic counterparts:

Lemma 13. For all d ∈ Dr and n ∈ Z, ↓ dn = iDS (d) � λsS . θdown s � λl
Λ̂. l n.

Proof. By simultaneous fixed-point induction wrt. the relation R = {(ϕ, θ) ∈
[Dr → Λ̂] × [S → Λ̂⊥] | ∀d ∈ Dr, n ∈ Z. ϕ d n = iDS (d) � λsS .θ s � λlΛ̂.l n}.
The inductive step proceeds by analysis of the three cases for d; they all follow
straightforwardly, using Lemma 12. �

Lemma 14. For all m ∈ Λ, ρ ∈ [V → Dr], and � ∈ [V → S⊥], satisfying that
∀x ∈ FV (m). iDS (ρ(x)) = �(x), iDS ([[m]]r ρ) = θevalm � λg. g �.

Proof. By structural induction on m, using the fixed-point equation for fix(Θeval)
in the inductive steps, Lemma 12 throughout, and Lemma 13 in the non-standard
subcase for application. �

DENOTATIONAL ASPECTS OF UNTYPED NBE 441

Lemma 15. For all m ∈ Λ, norm(m) = θnorm m.

Proof. Follows easily from the definition of θnorm, using Lemmas 12–14. �

Theorem 4 (implementation correctness). The program NORM satisfies that for
all m,m′ ∈ Λ, NORM • (m) = m′ ⇔ norm(m) = �m′�.
Proof. A direct consequence of Lemma 15 and Theorem 3, since [[NORM]]ml ∅ =
�θnorm�. �

Together with semantic correctness (Th. 2) and Definition 2 of norm, this tells
us that NORM correctly computes the normal form of all λ-terms without free
occurrences of gi-variables (including, in particular, all closed terms).

5. A generalization to Böhm trees

Recall that the correctness of our normalization algorithm was expressed in
terms of simple conditionals. Soundness was, essentially, “if the algorithm returns
a result, that result is correct”; and completeness, “if a correct result exists, the
algorithm will find one”. We now set out to extend these statements to a more
general notion of normal forms, effectively replacing “if” with “to the extent that”.

5.1. From λ-terms to λ-trees

We adopt a new view of normalization results, generalizing the flat domain Λ⊥
of lifted λ-terms to a more elaborate domain of lazy λ-trees, which will allow us to
talk formally about partial and infinite terms. The intended reading of a λ-tree
result is that the finitely reachable, defined parts of the tree represent committed
output from the normalizer.

5.1.1. Syntax

Let Λ be the cpo of λ-trees M , defined as a minimal-invariant solution to the
recursive domain equation

iΛ : Λ ∼=→ (V + V× Λ + Λ× Λ)⊥ ,

with the constructors for Λ-elements given by:

� = i−1
Λ (⊥)

VAR(x) = i−1
Λ (�in1(x)�)

LAM(x,M0) = i−1
Λ (�in2(x,M0)�)

APP(M1,M2) = i−1
Λ (�in3(M1,M2)�).

Again, any element of Λ can be uniquely written as one of these four forms.
We also have a natural interpretation of the domain-theoretic ordering on Λ:

M �M ′ precisely when M ′ can be obtained by replacing some occurrences of � in
M with suitable subtrees. Note that, since Λ is a cpo, it necessarily also contains
infinite trees, such as

⊔
n∈ω LAM(x1, · · ·LAM(xn,�)) = LAM(x1,LAM(x2, · · ·)).

442 A. FILINSKI AND H.K. ROHDE

We define the cut function |·|· : Λ× ω → Λ by induction on k:

|M |0 = � |�|k+1 = � |VAR(x)|k+1 = VAR(x)
|LAM(x,M0)|k+1 = LAM(x, |M0|k) |APP(M1,M2)|k+1 = APP(|M1|k, |M2|k).

That is, |M |k replaces all parts of the tree M above height k with �. As we would
expect, every tree is the limit of its finite cuts:

Lemma 16. For any M ∈ Λ, M =
⊔

k∈ω |M |k.
Proof. Follows directly from the observation that |M |k is precisely the k’th ap-
proximant of the recursively defined “copy function” appearing in the minimal-
invariant characterization of Λ. �

A tree is called finite if it is equal to one of its cuts, and total if it contains no �.
Thus, finite, total λ-trees are in one-to-one correspondence with ordinary λ-terms,
as previously defined. We also have a natural inclusion of ordinary λ-terms into
λ-trees, 〈·〉 : Λ→ Λ, defined inductively in the obvious way.

5.1.2. Compatibility

We can extend any predicate on λ-terms, P ⊆ Λ, to a corresponding predicate
on λ-trees, P † ⊆ Λ, by

P † = {M ∈ Λ | ∀k ∈ ω. ∃m ∈ P. |M |k � 〈m〉} .

That is, M ∈ P † if every finite cut of M can be increased to a total tree, satisfying
the original predicate. When a tree already represents a proper term, the extension
has no effect: 〈m〉 ∈ P † iff m ∈ P . We also note that P † is downward closed: if
M ∈ P † and M ′ � M , then also M ′ ∈ P †; and that extension is monotone: if
P ⊆ P ′, then P † ⊆ P ′†.

Definition 5. For M ∈ Λ and m ∈ Λ∆, we define the compatibility relations ↔†

and ↔†
∆ by

M ↔† m ⇔ M ∈ {m′ ∈ Λ | m′ ↔ m}†
M ↔†

∆ m ⇔ M ∈ {m′ ∈ Λ∆ | m′ ↔ m}†.

Note that, like convertibility, compatibility is defined with respect to concrete
terms, not α-equivalence classes. Thus,

LAM(g0,LAM(g0,�))↔† LAM(x,LAM(y,VAR(y)))

(because the � can still be increased to VAR(g0), making the two sides convert-
ible), but we do not have

LAM(g0,LAM(g0,�))↔† LAM(x,LAM(y,VAR(x))) .

DENOTATIONAL ASPECTS OF UNTYPED NBE 443

5.1.3. Böhm trees

We can view Böhm trees [2], Chapter 10, as a particular kind of λ-trees. Infor-
mally, a Böhm tree is either �, or a generalized head normal form,

LAM(x1, · · ·LAM(xn,APP(APP(VAR(x),M1), · · ·Mm))) ,

where n,m ≥ 0, and each Mi is itself a Böhm tree. However, we need to make
precise how this evidently circular definition is to be interpreted.

Formally, we define Böhm trees in terms of the following rules:

�bt � (BT-�)

�nf M

�bt M
(BT-nf)

�at M
�nf M

(NF-at)

�nf M0

�nf LAM(x,M0)
(NF-lam)

�at VAR(x)
(AT-var)

�at M1 �bt M2

�at APP(M1,M2)
(AT-app).

These rules determine an operator F on subsets of B = {bt, nf, at} × Λ, where
F (X) is the set of conclusions occurring in rule instances with premises from X :

F (X) = {(bt,�)} ∪ · · · ∪ {(at,APP(M1,M2)) | (at,M1) ∈ X ∧ (bt,M2) ∈ X} .

F is clearly monotone, i.e., X ⊆ X ′ ⇒ F (X) ⊆ F (X ′). We say that a set X ⊆ B
is F -closed if F (X) ⊆ X , i.e., if everything derivable by the rule instances with
premises from X , is already in X .

When X is inclusive, so is F (X), because inclusiveness is preserved by finite
unions, and the constructor functions (as well as pairing with constants) are order-
monics, i.e., also reflect �, so their direct images preserve inclusiveness.

Since both subsets of B and inclusive subsets of B are closed under arbitrary
intersections, they each form complete lattices. Thus, by the Knaster-Tarski fixed-
point theorem, we get the least F -closed set Bfin ⊆ B by taking the intersection
over all F -closed subsets of B, and the least F -closed inclusive set Binf ⊆ B as the
intersection of all F -closed inclusive subsets of B.

The associated rule-induction principles are: if a predicate P on B is F -closed,
then Bfin ⊆ P (since Bfin was the least F -closed set). Analogously, if P is both F -
closed and inclusive, then Binf ⊆ P . As special cases we get inversion principles :
Bfin = F (Bfin) and Binf = F (Binf), i.e., every element of either set can be written
as the conclusion of a rule with premises in the corresponding set. Naturally,
Bfin ⊆ Binf , because Bfin is the least of all fixed points of F .

We write Bfin
s for {M | (s,M) ∈ Bfin}, and analogously for Binf

s . The set of
Böhm trees is then defined to be Binf

bt ; the finite Böhm trees are Bfin
bt .

(Note, incidentally, that Böhm trees are not simply the uniform extension of
finite normal forms to λ-trees, N †

nf . The latter (which could be called infinitary
normal forms) are merely the λ-trees that do not contain any evident β-redexes.
We thus have Binf

bt ⊆ N †
nf , but the opposite inclusion does not hold: infinitary

normal forms include non-Böhm trees, such as LAM(x,�) or APP(APP(. . . , x), x).

444 A. FILINSKI AND H.K. ROHDE

Nor should Binf
bt be confused with the set of trees determined by a coinductive

reading of the above rules, i.e., the greatest fixed point of F . That set still contains,
e.g., the tree LAM(x0,LAM(x1, · · ·)). Even though we allow Böhm trees to be
infinite, each run of curried abstractions or applications must be finite, like in the
inductive reading of the rules.)

Again, we expect that a reduction-free Böhm normalizer will output Böhm trees
that are compatible with the input term (soundness); that convertible inputs are
mapped to the same Böhm tree (identification); and that the output tree is as
large as possible (completeness).

5.2. A semantic Böhm-tree construction

The modularity of output-term generation, originally motivated by flexible gen-
eration of fresh names, also allows us to “locally” re-target the existing normal-
ization construction to Böhm trees.

5.2.1. Output-tree generation

For any f : A → B, where A and B are pointed cpos, we define its smashed
strict extension, · � f : A→ B, by ⊥A � f = ⊥B, and a � f = f(a) otherwise.

We first define tree-based analogs of the wrapper functions from Section 2.2,
again using de Bruijn-level naming:

Definition 6 (cf. Def. 1). Let Λ̂ = [N→ Λ], and define

V̂AR(v) = λnN.VAR(v)

L̂AM(f) = λnN. f (gen(n)) (n + 1) � λMΛ
0 .LAM(gen(n),M0)

ÂPP(l1, l2) = λnN. l1 n � λMΛ
1 .APP(M1, l2 n).

Note that ÂPP is strict in its first argument only. Making it strict in both, would
revert the normalizer to always produce either � or a finite, total λ-tree as the re-
sult, just like the original version. Strictness in the first argument does not actually
matter, since the function will never be applied to a �-representative; however,
from an operational viewpoint, it is convenient to know that it is safe to evaluate
the argument eagerly. Making L̂AM non-strict would not affect correctness with
respect to compatibility, but the output would no longer necessarily be a Böhm
tree.

5.2.2. The residualizing model

The construction of the residualizing model from Section 2.3 can be reused
verbatim, since it only relies on Λ̂ being a pointed cpo with continuous wrapper
functions. Only the codomain of the putative Böhm normalizer changes:

Definition 7 (cf. Def. 2). For any ∆, we define the function bt∆ : Λ∆ → Λ by

bt∆(m) = ↓ ([[m]]r (λxV. ↑ V̂AR(x))) �∆.

DENOTATIONAL ASPECTS OF UNTYPED NBE 445

Again, we write just bt : Λ→Λ for the variant where �∆ is replaced with 0, noting
that it agrees with bt∆ whenever ∆ ∩G = ∅.

5.3. Correctness of the construction

The proof proceeds very much like in the original, finitary case.

5.3.1. Basic results about compatibility

Lemma 17. P † is inclusive for any P .

Proof. We need to show that ∀k ∈ ω. ∃m ∈ P. |M |k � 〈m〉 is an inclusive predicate
in M . By closure under intersections, it is enough to consider a fixed k. But, for
any chain (Mi)i∈ω, there must be an i0 such that ∀i ≥ i0.|Mi|k = |Mi0 |k. Hence,
if Mi0 ∈ P †, the m ∈ P such that |Mi0 |k � 〈m〉 will also work for all subsequent i,
and thus also for

⊔
i∈ω Mi. �

Lemma 18. The constructor functions preserve compatibility:
(a) For all m and ∆, �↔†

∆ m.

(b) If v ∈ ∆, then VAR(v) ↔†
∆ VAR(v).

(c) If M ↔†
∆∪{v} m, then LAM(v,M) ↔†

∆ LAM(v,m).

(d) If M1 ↔†
∆ m1 and M2 ↔†

∆ m2, then APP(M1,M2) ↔†
∆ APP(m1,m2).

Proof. Straightforward. Part (a) uses that � is the least element in Λ and that ↔
is reflexive; part (b) uses that both � and ↔ are reflexive; parts (c) and (d) use
that LAM(v, ·) and APP(·, ·) are monotonic and that↔ is a congruence wrt. LAM
and APP, respectively. �

5.3.2. Correctness of the wrappers

Definition 8 (cf. Def. 3). For l ∈ Λ̂, m ∈ Λ∆, and s ∈ {nf, at}, we define the
representation relation � by

l �∆
s m iff ∀n ≥ �∆. l n↔†

∆ m ∧ (l n = � ∨ l n ∈ Binf
s) .

The correctness of the wrappers will need to be established with respect to the new
definition of �. The original “interface” lemmas of � (Lems. 3–5) can actually
be restated verbatim – this considerably simplifies establishing soundness. Of
course, the underlying meanings, and hence the proofs, of the Lemmas do change,
according to the new definitions for the Böhm-tree construction.

Lemma 19 (cf. Lem. 3). For fixed ∆, s, and m, the predicate P = {l | l �∆
s m}

is pointed and inclusive.

Proof. Pointedness is immediate. Inclusiveness also follows directly, since the rela-
tion is defined in terms of universal quantification, conjunction, finite disjunction,
and inverse image by the (continuous) application function from the inclusive
predicates ↔†

∆ (by Def. 5 and Lem. 17) and Binf
s (by construction). �

446 A. FILINSKI AND H.K. ROHDE

Lemma 20 (cf. Lem. 4). The representation relation is closed under weakening
and conversion:

(a) If l �∆
s m and ∆ ⊆ ∆′, then also l �∆′

s m.
(b) If l �∆

s m and m′ ∈ Λ∆ with m↔ m′, then also l �∆
s m′.

Proof. Both parts are immediate from the definition, with (a) using monotonicity
of predicate extension, and (b) using transitivity of ↔. �
Lemma 21 (cf. Lem. 5). Representations of terms behave much like the terms
themselves:

(a) If v ∈ ∆, then V̂AR(v) �∆
at VAR(v).

(b) If l1 �∆
at m1 and l2 �∆

nf m2, then ÂPP(l1, l2) �∆
at APP(m1,m2).

(c) If l �∆
at m, then also l �∆

nf m.

(d) Let f ∈ [V → Λ̂] and m ∈ Λ∆∪{x}. If ∀v /∈ ∆.fv �∆∪{v}
nf m[VAR(v)/x],

then L̂AM(f) �∆
nf LAM(x,m).

Proof. All parts are relatively straightforward, where Lemma 18 is used through-
out. Part (d) also uses transitivity of ↔ and the assumption on m’s free vari-
ables. �

5.3.3. Adequacy of the residualizing model

By virtue of the above “interface” lemmas, the verbatim insertion of
Lemmas 6–9 and their proofs remain correct with the Böhm tree definitions, mod-
ulo a simple substitution of references to Lemmas 3–5 with references to Lem-
mas 19–21, respectively.

5.3.4. Correctness of the Böhm-tree normalization function

The key technical property of Böhm trees we will need for the completeness
result, is that any finite cut of a Böhm tree can be extended to a finite Böhm
tree, still approximating the original one. Thus, it will suffice to consider only
approximants of the output term that are themselves Böhm trees.

Definition 9. For any Böhm tree M ∈ Binf
bt , and k ∈ ω, we define the Böhm cut

‖M‖k by induction on k, as follows:

‖M‖0 = � ‖�‖k+1 = � ‖VAR(x)‖k+1 = VAR(x)

‖LAM(x,M0)‖k+1 = ‖M0‖k � λM ′
0.LAM(x,M ′

0)

‖APP(M1,M2)‖k+1 = ‖M1‖k � λM ′
1.APP(M ′

1, ‖M2‖k).

Intuitively, ‖M‖k is the largest (necessarily finite) Böhm tree such that ‖M‖k �
|M |k. It is constructed by cutting off branches early, if they do not reach a complete
Böhm-subtree within the remaining height limit.

Lemma 22. Böhm cuts satisfy:
(a) ∀k. ‖M‖k ∈ Bfin

bt .

DENOTATIONAL ASPECTS OF UNTYPED NBE 447

(b) ∀k. ‖M‖k � |M |k.
(c) ∀k. ∃k′. |M |k � ‖M‖k′

.
(These are the only properties of ‖M‖k that we will subsequently use.)

Proof. Part (a) is shown by induction on k, using the strengthened induction
hypothesis P (k) ⇔ ∀s ∈ {bt, at, nf},M ∈ Binf

s .‖M‖k = � ∨ ‖M‖k ∈ Bfin
s . In the

inductive step, we use the inversion principle for Binf to derive from M ∈ Binf
s , the

relevant properties of its immediate subtrees.
Part (b) is a straightforward induction on k.
Part (c) is proved by the inclusive variant of rule induction for Binf , with the

strengthened predicate P (s,M)⇔ ∀k.∃k′.|M |k � ‖M‖k′∧(s �= bt⇒ ‖M‖k′ �= �).
To verify that this property is indeed inclusive, we first note that, by closure under
intersections, it suffices to consider a fixed k. Then, for any chain (Mi)i∈ω , the
chain (|Mi|k)i∈ω will eventually be stationary, so the k′ existing at this point in
the chain will also work for

⊔
i∈ω Mi, by monotonicity of ‖ − ‖k′

.
The induction proper then considers each rule in turn; in each case, it follows

easily that P holds of the rule conclusion if it holds of the premise(s). (In the
case of Rule AT-app, we also exploit that the (‖M‖i)i∈ω form a chain, so that
the maximum of the two k′ from the premises will work as a k′ for the whole
application.) �

For showing completeness, it will be convenient to disregard the exact vari-
able names occurring in the output tree. Accordingly, we define the (evidently
continuous) shape function $: Λ→ Λ, by

$ � = � $ VAR(x) = VAR(x$)
$ LAM(x,M0) = LAM(x$, $M0) $ APP(M1,M2) = APP($M1, $M2)

where x$ is some arbitrary but fixed variable. From the definition of the ordering
relation on Λ, it is easy to see that if M �M ′ but $M ′ � $M , then M = M ′.

We can now refine the previous characterization of the wrapper functions, to
state that they produce representatives that are at least as defined as some given
finite tree:

Definition 10 (cf. Def. 4). For any finite M , and l ∈ Λ̂, we define the bounded
uniform definedness predicate defM (l) by defM (l) ⇔ ∀n ∈ ω. $M � $ (l n). We
also write def+M (l) for M �= � ∧ defM (l).

Lemma 23 (cf. Lem. 10). The wrapper functions preserve bounded definedness:

(a) For all v ∈ V, def+VAR(x)(V̂AR(v)).

(b) If for all v ∈ V, def+M0
(f v), then def+LAM(x,M0)

(L̂AM(f)).

(c) If def+M1
(l1) and defM2(l2), then def+APP(M1,M2)(ÂPP(l1, l2)).

Proof. All three parts are straightforward, by the construction of $. �
Lemma 24 (cf. Lem. 11). Let m ∈ Λ and ρ ∈ [V → Dr] be such that ∀x ∈
FV (m). ∃l ∈ Λ̂. ρ(x) = ↑ l ∧ def+VAR(x)(l). Then, for any M ∈ Λ with M � 〈m〉,

448 A. FILINSKI AND H.K. ROHDE

(a) If M ∈ Bfin
at , then ∃l.[[m]]r ρ = ↑ l ∧ def+M (l).

(b) If M ∈ Bfin
nf , then def+M (↓ [[m]]r ρ).

(c) If M ∈ Bfin
bt , then defM (↓ [[m]]r ρ).

Proof. By rule induction for Bfin, with respect to the evident combined predicate.
All cases are straightforward, by appeal to Lemma 23. �

We can now show the main completeness lemma:

Lemma 25. Let m ∈ Λ∆. If M ↔† m and M ∈ Binf
bt then $M � $ bt∆(m).

Proof. Since for any λ-tree M , M =
⊔

k |M |k (Lem. 16), by continuity of $, we
get the desired result from

⊔
k $ |M |k � $ bt∆(m). By the definition of

⊔
, it thus

suffices to show, for all k, $ |M |k � $ bt∆(m).
Let k be given. By Lemma 22c, there exists a k′ such that |M |k � ‖M‖k′

.
From the definition of M ↔† m, we get that, for this k′, there exists an m′ ∈ Λ,
such that |M |k′ � 〈m′〉 and m ↔ m′. Since ‖M‖k′ � |M |k′

(Lem. 22b), we must
also have ‖M‖k′ � 〈m′〉.

Let ρ0 = λx.↑ V̂AR(x); by Lemma 23a, this clearly satisfies the condition
on ρ in Lemma 24. Since ‖M‖k′ ∈ Bfin

bt (Lem. 22a), Lemma 24c gives us that
def‖M‖k′ (↓ ([[m′]]r ρ0)), so in particular $ ‖M‖k′ � $ (↓ ([[m′]]r ρ0) �∆). Thus, us-
ing model soundness, $ ‖M‖k′ � $ (↓ ([[m]]r ρ0) �∆) = $ bt∆(m). Finally, from
|M |k � ‖M‖k′

, we get $ |M |k � $ ‖M‖k′
, and thus $ |M |k � $ bt∆(m), as re-

quired. �

Theorem 5 (cf. Th. 2). bt∆ from Definition 7 is a Böhm-tree normalization
function on Λ∆, i.e., for all m,m′ ∈ Λ∆,

(a) (soundness) bt∆(m) ↔†
∆ m and bt∆(m) ∈ Binf

bt .
(b) (identification) If m↔ m′, then bt∆(m) = bt∆(m′).
(c) (completeness) bt∆(m) is maximal among M ∈ Binf

bt such that M ↔† m.

Proof. (Soundness) and (identification) are shown verbatim as in Theorem 2 (using
Lem. 21a instead of Lem. 5a), with the unsurprising exception that unfolding the
new definition for � (using Def. 8 instead of Def. 3), again taking n = �∆, yields
bt∆(m) = � ∨ bt∆(m) ∈ Binf

nf , from which we get the desired bt∆(m) ∈ Binf
bt by

Rule BT-� or Rule BT-nf, respectively.
(Completeness) Let M ∈ Binf

bt with M ↔† m be given; we must show that
M cannot be strictly greater than bt∆(m). So assume that bt∆(m) � M . By
Lemma 25, $M � $ bt∆(m), so we must actually have bt∆(m) = M . �

From downwards closure of ↔†, we get a simple, intuitive characterization of
soundness: in any finite approximation (not necessarily a level-uniform cut) of
bt∆(m), we can replace all holes � with proper terms, to obtain a term convertible
to the original m. (In particular, if bt∆(m) �= �, by the inversion principle for
Binf

bt , we see that the original term must have at least a head normal form.) On the
other hand, completeness says that no such replacement for a hole already present

DENOTATIONAL ASPECTS OF UNTYPED NBE 449

datatype term = VAR of string | LAM of string*term | APP of term*term

datatype tree = LVAR of string | LLAM of string*(unit->tree)

| LAPP of (unit->tree)*(unit->tree)

datatype sem = TM of int -> tree | FUN of (unit -> sem) -> sem;

let fun down (s:sem):int->tree = fn n =>

(case s of

TM l => l n

| FUN f => LLAM("g"^Int.toString n, (fn v => fn () => v)

(down (f (fn () => TM(fn n’ => LVAR("g"^Int.toString n))))

(n+1))))

in let fun eval (m:term):(string->sem)->sem = fn p =>

(case m of

VAR x => p x

| LAM(x,m0) => FUN(fn d => eval m0

(fn x’ => if x = x’ then d () else p x’))

| APP(m1,m2) => (case (eval m1 p) of

TM l => TM(fn n =>

LAPP((fn v => fn () => v) (l n),

fn () => down (eval m2 p) n))

| FUN f => f (fn () => eval m2 p)))

in let fun bt (m:term):tree =

down (eval m (fn x => TM(fn n => LVAR(x)))) 0

in bt end end end

Figure 3. The Böhm normalization algorithm, BT .

in bt∆(m) can have even a head normal form, since this would contradict that the
result tree was maximal.

Like in the finitary case, the characterization of normal forms for soundness and
completeness is based on β-normalization only. If we restricted our definition of
Böhm trees to only α-normal ones (i.e., using a fixed naming convention for bound
variables), instead of saying that the output was a maximal Böhm tree compatible
with the input, we would have that it was the greatest.

5.4. An implementation of the construction

As before, the development of an actual algorithm and its proof of correctness is
straightforward, given the domain-theoretic construction. Unsurprisingly, we shall
need to identify � with divergence, to obtain a computable algorithm (shown in
Fig. 3), returning so-called effective Böhm trees.

As could be expected, we need to extend our ML program with a (necessarily
non-ground) datatype tree, with an isomorphism iΛT : Λ ∼=→ [[tree]]ml

⊥ (whereas, in
the finitary case, we could simply assume that Λ = [[term]]ml). This isomorphism
makes it possible to reuse Lemmas 12–14 and their proofs with only few, obvious
modifications. Like Λ, tree is overly lazy for representing Böhm trees, so we need

450 A. FILINSKI AND H.K. ROHDE

to strictify the representations of L̂AM and ÂPP explicitly, using the idiom (fn v
=> fn () => v). As remarked in Section 5.2.1, the latter strictification is in fact
optional, but advantageous from an efficiency perspective.

Theorem 6 (cf. Lem. 15). For all m ∈ Λ, iΛT (bt(m)) = θbt m.

Proof. Straightforward adaptation of Lemmas 12–15. Additionally, the existence
and basic properties of iΛT must be established, similarly to Lemma 12. (Here,
since there are no negative occurrences of X in the domain equations, the isomor-
phism candidates can even be defined without mutual recursion.) �

We thus have that the concrete Böhm-tree algorithm is denotationally correct
(up to isomorphism). However, BT , although well-typed and closed, is not a
complete program, since tree is not a ground type. Hence, unlike for NORM ,
we cannot readily observe the program output: we first need a formal model of
observation of Böhm trees.

5.5. Observing Böhm trees

5.5.1. Computations with infinite results

When the output of the normalizer is a partial, infinitary data structure, it is
far less clear what to consider a legitimate notion of observation of the output.
In particular, unlike linear streams, which can be naturally produced and printed
incrementally, general trees need either a concept of “fair” autonomous production
(every non-� node will eventually be printed), or a model based on interaction,
where an independent observer explicitly asks for successive nodes of the tree,
while avoiding branches that are (or might be) �. Properly formalizing each of
these in the context of our simple functional language, would be far beyond the
scope of the present paper, however.

Instead, we will consider a very simple model of observation, where the observer
can only ask about one specific node in the tree, for each run; the notion of
interaction is thus lifted out as an extralinguistic concept into multiple (possibly
even concurrent) top-level evaluations. (Of course, since the language fragment
we consider is pure, many subcomputations can be shared across such evaluations;
but our denotational model deliberately does not account for such quantitative
aspects.) This approach will still allow us to state precisely that we can correctly
inspect any reachable part of the output tree, and observationally distinguish any
non-identical trees.

To keep the construction concise in our limited ML fragment, we use a uniform,
numeric indexing scheme for nodes. In general, for any finitely branching (but
potentially infinitely deep) rooted tree, we can associate a unique natural number
to each node as follows: the root node has index 0, and for a node with index n
in the i’th subtree of a k-ary root node, its index in the whole tree is n · k + i.
That is, if we consider a tree to be a node label a, and k (possibly 0) subtrees, we
access the label of the n’th node of a tree t, t@ n, as follows:

a(t1, . . . , tk) @ 0 = a (0≤k) a(t1, . . . , tk) @ n·k+i = ti @ n (1≤i≤k).

DENOTATIONAL ASPECTS OF UNTYPED NBE 451

datatype res = VR of string | LM of string | AP of unit | ER of unit;

let fun obs (t:tree):int->res = fn n =>

(case t of

LVAR x => if n = 0 then VR x else ER ()

| LLAM(x,t0) => if n = 0 then LM x else obs (t0 ()) (n-1)

| LAPP(t1,t2) => if n = 0 then AP ()

else if n mod 2 = 1 then obs (t1 ()) ((n-1) div 2)

else obs (t2 ()) ((n-2) div 2))

in obs end

Figure 4. A simple observation function, OBS .

Note that the only invalid indices are those that would correspond to subtrees of
a zero-ary (i.e., leaf) node.

5.5.2. Observing λ-trees

For the specific case of λ-trees, we must also take into account partiality, and
the fact that various nodes have different information as the label. Accordingly,
we define the set of observation results by

O = {VR(v) | v ∈ V} ∪ {LM(v) | v ∈ V} ∪ {AP} ∪ {ER}

and define the operation ·@ · : Λ × ω→O⊥ by course-of-values induction on the
second argument:

� @ n = ⊥ VAR(v) @ 0 = �VR(v)� VAR(v) @ n+1 = �ER�
LAM(v,M0) @ 0 = �LM(v)� LAM(v,M0) @ n+1 = M0 @ n

APP(M1,M2) @ 0 = �AP�
APP(M1,M2) @ 2·n+1 = M1 @ n APP(M1,M2) @ 2·n+2 = M2 @ n.

We note that node-observations completely characterize a λ-tree:

Lemma 26. If for all n ∈ ω, M @ n = M ′ @ n, then M = M ′.

Proof. By Lemma 16, it suffices to show that ∀k.|M |k = |M ′|k, which follows by
a straightforward induction on k. �

5.5.3. Implementing tree-observations in ML

The ML implementation of the observation function is shown in Figure 4. To
represent observation results, we introduce another ground datatype res; like for
term, we assume that [[res]]ml = O, and that the meanings of the constructors
agree. We also assume that the ML fragment has been extended with aritmetic
operators -, div, and mod, completely analogous to the existing +.

Lemma 27. For all M ∈ Λ and n ∈ ω, M @ n = iΛT (M) � λt. θobs t � λf. f n.

452 A. FILINSKI AND H.K. ROHDE

Proof. The proof is by a straightforward course-of-values induction on n, using the
fixed-point equation for fix(Θobs) and the “translating” properties of iΛT (analo-
gous to those of iDS in Lem. 12) throughout. �

Consider now an ML program whose datatype declarations are a union of those
in Figures 3 and 4 (in any order), and take

OBSBT = fn m => OBS (BT m).

This is an ML expression of type term -> int -> res, i.e., a complete program.

Theorem 7 (cf. Th. 4). For all m ∈ Λ, n ∈ ω, and o ∈ O, OBSBT • (m,n) = o iff
bt(m) @ n = �o�.
Proof. We first note that, since BT and OBS are closed, for any ξ, [[BT]]ml ξ =
�θbt� and [[OBS]]ml ξ = �θobs�. The result then follows directly from Theorem 6,
Lemma 27, and Theorem 3. �

Moreover, Lemma 26 tells us that BT is also operationally correct with respect
to any other observation function (including ones using more user-friendly access
paths), because OBS -observations can already distinguish all elements of type tree,
even those that do not represent proper Böhm trees.

6. Conclusions and perspectives

We have presented a domain-theoretic analysis of a normalization-by-evaluation
construction for the untyped λ-calculus. Compared to the typed case, the main dif-
ference is a change from induction on types to general recursion, both for function
definitions and for the domains and relations on them. That the correctness proof
has a generalized computational-adequacy result at its core, further strengthens
the connection between normalization and evaluation. Moreover, the algorithmic
content of the construction corresponds very directly to a simple functional pro-
gram, enabling a precise verification of the normalizer as actually implemented.

There are several possible directions in which to extend or modify the present
work. Especially in the infinitary variant of the algorithm, there is some leeway in
exactly what kind of λ-trees we wish to consider as output, and our observation
model for them. It should also be possible to extend the language and notion
of normalization with interpreted constants in a suitable sense. But already the
current results indicate that the fundamental ideas of NBE are not incompatible
with general recursive types. Thus, reduction-free normalization may provide a
complementary view of other equational systems that are currently analyzed using
exclusively reduction-based methods. It might even be possible to find unified for-
mulations of rewriting-theoretic and model-theoretic normalization results about
particular such systems.

Acknowledgements. The authors wish to thank Olivier Danvy, as well as the FOSSACS’04
and RAIRO-ITA reviewers, for their insightful comments.

DENOTATIONAL ASPECTS OF UNTYPED NBE 453

References

[1] K. Aehlig and F. Joachimski, Operational aspects of untyped normalization by evaluation.
Math. Structures Comput. Sci. 14 (2004) 587–611.

[2] H.P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies
in Logic and the Foundations of Mathematics. North-Holland, revised edition (1984).

[3] U. Berger and H. Schwichtenberg, An inverse of the evaluation functional for typed λ-
calculus, in Proc. of the Sixth Annual IEEE Symposium on Logic in Computer Science,
Amsterdam, The Netherlands (July 1991) 203–211.

[4] T. Coquand and P. Dybjer, Intuitionistic model constructions and normalization proofs.
Math. Structures Comput. Sci. 7 (1997) 75–94.

[5] A. Filinski, A semantic account of type-directed partial evaluation, in International Con-
ference on Principles and Practice of Declarative Programming, edited by G. Nadathur,
Springer-Verlag, Paris, France. Lect. Notes Comput. Sci. 1702 (1999) 378–395

[6] A. Filinski and H.K. Rohde, A denotational account of untyped normalization by evalua-
tion, in 7th International Conference on Foundations of Software Science and Computation
Structures (FOSSACS 2004), edited by I. Walukiewicz, Springer-Verlag, Barcelona, Spain
Lect. Notes Comput. Sci. 2987 (2004) 167–181.

[7] A. Filinski and H.K. Rohde, Denotational aspects of untyped normalization by evaluation
(extended version, with detailed proofs). BRICS Report RS-05-4, University of Aarhus,
Denmark (February 2005). Available from http://www.brics.dk/RS/05/4/.

[8] B. Grégoire and X. Leroy, A compiled implementation of strong reduction, in Proc. of the
Seventh ACM SIGPLAN International Conference on Functional Programming, edited by
S. Peyton Jones, ACM Press, Pittsburgh, Pennsylvania, SIGPLAN Notices 37 (2002) 235–
246.

[9] R. Milner, M. Tofte, R. Harper and D. MacQueen, The Definition of Standard ML. The
MIT Press, revised edition (1997).

[10] J.C. Mitchell, Foundations for Programming Languages. The MIT Press (1996).
[11] A.M. Pitts, Computational adequacy via “mixed” inductive definitions, in Mathematical

Foundations of Programming Semantics. Springer-Verlag. Lect. Notes Comput. Sci. 802
(1993) 72–82.

[12] A.M. Pitts, Relational properties of domains. Inform. Comput. 127 (1996) 66–90.
[13] G.D. Plotkin, LCF considered as a programming language. Theor. Comput. Sci. 5 (1977)

223–255.
[14] M.R. Shinwell, A.M. Pitts and M.J. Gabbay, FreshML: Programming with binders made

simple, in Eighth ACM SIGPLAN International Conference on Functional Programming,
ACM Press, Uppsala, Sweden (2003) 263–274.

