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Abstract. More than a decade ago, Moller and Tofts published their
seminal work on relating processes that are annotated with lower time
bounds, with respect to speed. Their paper has left open many questions
concerning the semantic theory for their suggested bisimulation–based
faster–than preorder, the MT–preorder, which have not been addressed
since. The encountered difficulties concern a general compositionality
result, a complete axiom system for finite processes, and a convincing
intuitive justification of the MT–preorder.

This paper solves these difficulties by developing and employing novel
tools for reasoning in discrete–time process algebra, in particular a gen-
eral commutation lemma relating the sequencing of action and clock
transitions. Most importantly, it is proved that the MT–preorder is fully–
abstract with respect to a natural amortized preorder that uses a simple
bookkeeping mechanism for deciding whether one process is faster than
another. Together these results reveal the intuitive roots of the MT–
preorder as a faster–than relation, while testifying to its semantic ele-
gance. This lifts some of the barriers that have so far hampered progress
in semantic theories for comparing the speed of processes.

Keywords. Asynchronous systems, timed process algebra, lower time
bounds, faster–than relation, Moller–Tofts preorder, bisimulation.

1 Introduction

Over the past two decades, the field of process algebra [7] has proved successful
for modeling and reasoning about the communication behavior of concurrent pro-
cesses. Early process algebras, such as Milner’s CCS [18] and Hoare’s CSP [15],
have been augmented to capture other important system aspects as well, in-
cluding timing behavior [6]. Many variants of timed process algebra that employ
either discrete or continuous notions of time have been proposed, whose seman-
tic theories are usually based on the well–studied concepts of bisimulation [19],
failures [22], or testing [14].

While several approaches for comparing the efficiency of processes have been
introduced in the literature [4, 21], theories for comparing timed processes with
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respect to speed are seeded very sparsely. The most seminal paper in the lat-
ter category was published over a decade ago [20]. In this paper, the authors
Moller and Tofts argue that a faster–than relation on processes can only ex-
ist for those process–algebraic settings where the passage of time cannot pre-
empt behavior, and especially not for settings involving timeout operators. For
a timeout–less fragment of TCCS [19], Moller and Tofts then introduced a com-
positional faster–than preorder based on strong bisimulation [18], and discussed
some of its underlying algebraic laws. Despite the paper’s originality, the work is
lacking regarding three important aspects. First, the advocated preorder is not
intuitively justified but appears to be an ad–hoc remedy for a compositionality
problem. Second, the framework possesses technical weaknesses. For example,
Moller and Tofts only managed to prove compositionality of their preorder for
the class of regular processes, and their proposed laws for characterizing their
preorder are incomplete. Third, no semantic theory that abstracts from internal
computation, in the sense of observation equivalence [18], is presented in [20].

The aim of this paper is to put the faster–than preorder of Moller and Tofts,
or MT–preorder for short, on solid semantic grounds and to highlight its in-
tuitive roots, thereby testifying to the elegance of Moller and Tofts’ approach.
Technically, we add to Milner’s CCS a discrete–time clock prefixing operator
“σ.”, interpreted as lower time bound. Intuitively, process P in σ.P is only ac-
tivated after the ticking of the abstract clock σ, i.e., after one time unit. The
nesting of σ–prefixes then allows the specification of arbitrary delays (written
as prefix (n) with n ∈ N in [20]), which results in a process algebra equivalent
to the fragment of TCCS studied by Moller and Tofts. We refer to this alge-
bra as Timed Asynchronous Communicating Systems with lower time bounds, or
TACSlt. As our first main result we prove that the MT–preorder is composi-
tional and fully–abstract with respect to a natural amortized preorder that uses
a simple bookkeeping mechanism for deciding whether one process is faster than
another. The intuition behind this amortized preorder is that the faster process
must execute each action no later than the slower process does, while both pro-
cesses must be functionally equivalent in the usual sense of strong bisimulation.
To obtain this result we also establish some powerful semantic tools for reasoning
within discrete–time process algebra, in particular a general commutation lemma
relating the sequencing of action and clock transitions. As our second main re-
sult we provide a sound and complete axiomatization of the MT–preorder for
the class of finite processes. This includes the provision of a simple expansion
law, which Moller and Tofts had claimed could not exist. The twist is that this
expansion law is only valid for finite processes, but interestingly not for arbitrary
recursive processes. As our third and final main result we introduce a notion of
a weak MT–preorder — a task that turns out to be far more challenging than
in other bisimulation–based process–algebraic settings.

Our results shed light on the nature of the MT–preorder and overcome the
technical difficulties experienced by Moller and Tofts, thereby completing, gen-
eralizing, and strengthening their results and providing groundwork for advanc-
ing semantic theories that compare processes with respect to speed. This paper
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also complements our previous work on bisimulation–based faster–than relations
for timed process algebra with upper time bounds [17]. Indeed, several ideas
and technical concepts can be carried over from the upper–time–bounds setting
of [17] to the lower–time–bounds setting presented here.

2 Timed Asynchronous Communicating Systems

Our process algebra TACSlt conservatively extends Milner’s CCS [18] by per-
mitting the specification of lower time bounds for the execution of actions and
processes. These will then be used to compare processes with respect to speed.
Syntactically, TACSlt includes a clock prefixing operator “σ.”, taken from Hen-
nessy and Regan’s TPL [14]. Semantically, it adopts a concept of global, discrete
time in which processes are lazy and can always let time pass. For example, σ.P
must wait for at least one time unit before it can start executing process P .

Syntax. The syntax of TACSlt is identical to the one in [17], where we consid-
ered a faster–than preorder that relates processes on the basis of upper rather
than lower time bounds. Formally, let Λ be a countably infinite set of actions not
including the distinguished unobservable, internal action τ . With every a ∈ Λ
we associate a complementary action a. We define Λ =df {a | a ∈ Λ} and take A
to denote the set Λ ∪ Λ ∪ {τ}. Complementation is lifted to Λ ∪ Λ by defining
a =df a. As in CCS [18], an action a communicates with its complement a to
produce the internal action τ . We let a, b, . . . range over Λ ∪ Λ, α, β, . . . over A,
and represent clock ticks by σ. The syntax of TACSlt is defined as follows:

P ::= 0 | x | α.P | σ.P | P + P | P |P | P \ L | P [f ] | µx.P

where x is a variable taken from a countably infinite set V of variables, L ⊆
A\{τ} is a restriction set, and f : A → A is a finite relabeling. A finite relabeling
satisfies the properties f(τ) = τ , f(a) = f(a), and |{α | f(α) �= α}| < ∞. The
set of all terms is abbreviated by P̂ , and we define L =df {a | a ∈ L}. Moreover,
we use the standard definition for open and closed terms. A variable is called
guarded in a term if each occurrence of the variable is within the scope of an
action or clock prefix. Moreover, we require for terms of the form µx.P that x
is guarded in P . We refer to closed and guarded terms as processes, with the set
of all processes written as P, and write ≡ for syntactic equality.

Semantics. The operational semantics of a TACSlt term P ∈ P̂ is given by
a labeled transition system 〈P̂ ,A∪ {σ},−→, P 〉, where P̂ is the set of states,
A∪{σ} the alphabet, −→⊆ P̂×(A∪{σ})×P̂ the transition relation, and P the
start state. Transitions labeled with an action α are called action transitions
that, like in CCS, are local handshake communications in which two processes
may synchronize to take a joint state change together. Transitions labeled with
the clock symbol σ are called clock transitions representing a recurrent global
synchronization that encodes the progress of time.

The operational semantics for action and clock transitions can be defined
via the structural operational rules shown in Tables 1 and 2, respectively. As
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usual, we write P
γ−→ P ′ instead of 〈P, γ, P ′〉 ∈−→, for γ ∈ A ∪ {σ}, and

say that P may engage in γ and thereafter behave like P ′. Sometimes it is also
convenient to write (i) P

γ−→ for ∃P ′. P
γ−→ P ′, (ii) σ−→k

for k ∈ N consecutive
clock transitions, with N including 0, and (iii) P

w−→ P ′, where either w = ε
and P ≡ P ′, or w = γw′ for some γ ∈ A ∪ {σ} and w′ ∈ (A ∪ {σ})∗, and

∃P̂ . P
γ−→ P̂

w′
−→ P ′.

Table 1. Operational semantics for TACSlt (action transitions)

Act
−−

α.P
α−→ P

Rel
P

α−→ P ′

P [f ]
f(α)−→ P ′[f ]

Rec
P

α−→ P ′

µx.P
α−→ P ′[µx.P/x]

Sum1
P

α−→ P ′

P + Q
α−→ P ′

Sum2
Q

α−→ Q′

P + Q
α−→ Q′

Res
P

α−→ P ′

P \ L
α−→ P ′ \ L

α /∈L∪L

Com1
P

α−→ P ′

P |Q α−→ P ′|Q
Com2

Q
α−→ Q′

P |Q α−→ P |Q′
Com3

P
a−→ P ′ Q

a−→ Q′

P |Q τ−→ P ′|Q′

The action–prefix term α.P may engage in action α and then behave like P .
It may also idle, i.e., engage in a clock transition to itself, as process 0 does. The
clock–prefix term σ.P can engage in a clock transition to P and ensures that
there is a delay of at least one time unit before P is activated. The summation
operator + denotes nondeterministic choice: P + Q may behave like P or Q;
according to the deterministic nature of time, a clock transition cannot resolve
choices. The restriction operator \L prohibits the execution of actions in L ∪ L
and, thus, permits the scoping of actions. P [f ] behaves exactly as P with actions
renamed by the relabeling f . The term P |Q stands for the parallel composition
of P and Q according to an interleaving semantics with synchronized commu-
nication on complementary actions, resulting in the internal action τ . Again,
time has to proceed equally on both sides of the operator, i.e., deterministically.
Finally, µx. P denotes recursion, it behaves as a distinguished solution to the
equation x = P . The rules for action transitions are the same as for CCS, with
the exception of the new clock–prefix operator and the rule for recursion; how-
ever, the latter is equivalent to the standard CCS rule over guarded terms [5].

The operational semantics for TACSlt possesses several important proper-
ties [14]. Firstly, any process can perform a clock transition due to our adoption
of a lazy nil–process 0 and a lazy prefix operator. Secondly, the semantics is time–
deterministic, i.e., progress of time does not resolve choices. Formally, P

σ−→ P ′

and P
σ−→ P ′′ implies P ′ ≡ P ′′, for all P, P ′, P ′′ ∈ P̂ , which can easily be proved

via induction on the structure of P .
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Table 2. Operational semantics for TACSlt (clock transitions)

tNil
−−

0
σ−→ 0

tRec
P

σ−→ P ′

µx.P
σ−→ P ′[µx.P/x]

tRes
P

σ−→ P ′

P \ L
σ−→ P ′ \ L

tAct
−−

α.P
σ−→ α.P

tSum
P

σ−→ P ′ Q
σ−→ Q′

P + Q
σ−→ P ′ + Q′

tRel
P

σ−→ P ′

P [f ]
σ−→ P ′[f ]

tPre
−−

σ.P
σ−→ P

tCom
P

σ−→ P ′ Q
σ−→ Q′

P |Q σ−→ P ′|Q′

3 The Moller–Tofts Preorder

This section first recalls the faster–than preorder introduced by Moller and Tofts
in [20], to which we refer as Moller–Tofts preorder, or MT–preorder for short. As
the section’s main contribution, we prove the compositionality of this preorder
for arbitrary processes, which has only been conjectured by Moller and Tofts.
Indeed, the compositionality proof offered in [20] is restricted to processes that
do not have any parallel operators inside the scope of a recursion. The key
for proving compositionality in the general setting is a nontrivial commutation
lemma that considers what happens when adjacent action and clock transitions
are transposed. This lemma also plays an important role when obtaining the
full–abstraction result presented in the next section.

Definition 1 (MT–preorder [20]). A relation R ⊆ P ×P is an MT–relation
if, for all 〈P, Q〉 ∈ R and α ∈ A:

1. P
α−→ P ′ implies ∃Q′, k, P ′′. Q σ−→k α−→ Q′, P ′ σ−→k

P ′′, and 〈P ′′, Q′〉 ∈ R.
2. Q

α−→ Q′ implies ∃P ′. P α−→ P ′ and 〈P ′, Q′〉 ∈ R.
3. P

σ−→ P ′ implies ∃Q′. Q σ−→ Q′ and 〈P ′, Q′〉 ∈ R.
4. Q

σ−→ Q′ implies ∃P ′. P σ−→ P ′ and 〈P ′, Q′〉 ∈ R.

We write P �∼mtQ if 〈P, Q〉 ∈ R for some MT–relation R, and call �∼mt the
MT–preorder.

Technically, all conditions of this definition, with the exception of the first one,
are identical to the ones of temporal strong bisimulation (cf., e.g., [8]). Intuitively,
the weaker first condition states that, if the faster process P can perform an
action, then the slower process Q must not match this action right away, but can
perform an arbitrary number k of time steps before doing so. However, delaying
k time steps may make the resulting process Q′ faster than P ′. To account for
this, Moller and Tofts suggest that P ′ performs k time steps of its own, resulting
in process P ′′ that should then be faster than Q′. To see the necessity for this,
consider the processes a.0|σ.b.0 and σ.a.0|σ.b.0, for which a sensible faster–than
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preorder should clearly identify the former process as the faster one. Here, the
a–transition of the former process to 0|σ.b.0 can only be matched by the latter
process after a delay of one time unit, leading to 0|b.0. However, 0|σ.b.0 is not
faster than 0|b.0, but only if it has delayed a time unit as well. Forcing the faster
process to match the delay of the slower one immediately seems arbitrary and
restrictive. Nevertheless, we will show in the next section that this is not the
case and that there is a very natural explanation for this.

It is easy to see that �∼mt is indeed a preorder, i.e., it is reflexive and transitive,
and that it is the largest MT–relation. Moreover, if one studies CCS process
terms only, i.e., TACSlt processes not containing any clock prefix operator, then
two processes are related in the MT–preorder if and only if they are strongly
bisimular. This is because here all clock transitions are idling transitions, i.e.,
σ–loops; vice versa, every process can idle due to the laziness property. Hence,
CCS is a sub–calculus of TACSlt.

Theorem 2 (Precongruence). The MT–preorder �∼mt is a precongruence for
all TACSlt operators.

The only difficult and non–standard part of the proof concerns compositionality
regarding parallel composition and is based on the following commutation lemma.

Lemma 3 (Commutation). Let P, P ′ ∈ P and w ∈ (A ∪ {σ})∗.

1. Simple commutation lemma: If P
w−→ σ−→ P ′, then ∃P ′′. P σ−→ w−→ P ′′ and

P ′�∼mtP
′′.

2. Commutation lemma: If P
w−→ σ−→k

P ′, for k∈N, then ∃P ′′. P σ−→k w−→ P ′′

and P ′�∼mtP
′′.

Intuitively, the commutation lemma states that a delay, i.e., one or more clock
transitions, after a given sequence of transitions can also be made before this
sequence. Moreover, the earlier a delay is performed, the slower the resulting pro-
cess is. In the sequel we are mainly interested in Part (2) of the above lemma,
which follows by induction on k and by employing Part (1). The proof of the
simple commutation lemma is non–trivial and requires the introduction of some
technical machinery. Before doing so we apply the lemma for proving the com-
positionality of the MT–preorder with respect to parallel composition.

Proof (Compositionality for parallel composition). According to Def. 1, it is suf-
ficient to establish that R =df {〈P1|P2, Q1|Q2〉 |P1

�∼mt
P2, Q1

�∼mt
Q2} is an MT–

relation. Let 〈P1|P2, Q1|Q2〉 ∈ R be arbitrary.
The only interesting case involves matching a transition P1|P2

α−→ P ′
1|P ′

2,
for some P ′

1, P
′
2 and some α, since all conditions except Cond. (1) of Def. 1

coincide with the standard ones for temporal strong bisimulation. According to
the operational rules for parallel composition we distinguish the following cases.
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– P1
α−→ P ′

1 and P ′
2 ≡ P2: Since P1

�∼mtQ1 we know of the existence of

some Q′
1, k, P ′′

1 such that Q1
σ−→k α−→ Q′

1, P ′
1

σ−→k
P ′′

1 , and P ′′
1

�∼mtQ
′
1. More-

over, P2
σ−→k

P ′′
2 for some P ′′

2 , as every process is lazy and can thus engage in

arbitrary delays. Since P2
�∼mtQ2, there exists some Q′

2 such that Q2
σ−→k

Q′
2

and P ′′
2

�∼mt
Q′

2. Hence by our operational rules and the definition of R,

(i) P ′
1|P ′

2
σ−→k

P ′′
1 |P ′′

2 , (ii) Q1|Q2
σ−→k α−→ Q′

1|Q′
2, (iii) 〈P ′′

1 |P ′′
2 , Q′

1|Q′
2〉 ∈ R,

as desired.
– P2

α−→ P ′
2 and P ′

1 ≡ P1: This case is analogous to the previous one since
parallel composition is commutative.

– α = τ , P1
a−→ P ′

1, P2
a−→ P ′

2, for some action a �= τ : Since P1
�∼mtQ1 we

know of the existence of some Q′
1, k, P ′′

1 such that Q1
σ−→k a−→ Q′

1, P ′
1

σ−→k

P ′′
1 , and P ′′

1
�∼mtQ

′
1. Similarly, since P2

�∼mtQ2 we know of the existence of

some Q′
2, l, P

′′
2 such that Q2

σ−→l a−→ Q′
2, P ′

2
σ−→l

P ′′
2 , and P ′′

2
�∼mtQ

′
2. We

distinguish the following cases:
• k = l: Then, P ′

1|P ′
2

σ−→k
P ′′

1 |P ′′
2 and Q1|Q2

σ−→k τ−→ Q′
1|Q′

2. Moreover,
〈P ′′

1 |P ′′
2 , Q′

1|Q′
2〉 ∈ R by the definition of R, as desired.

• k �= l: W.l.o.g. we assume k > l; the other case k < l is analogous.
Moreover, we refer to the process between the clock transitions and the
action transition on the path Q2

σ−→l a−→ Q′
2 as Q̂2. Due to the laziness

property of processes, there exists some P̂ ′′
2 , Q̂′′

2 satisfying P ′′
2

σ−→k−l
P̂ ′′

2 ,

P̂ ′′
2

�∼mtQ̂
′′
2 and Q̂2

a−→ Q′
2

σ−→k−l
Q̂′′

2 . By Lemma 3(2) we know of the

existence of some Q̂′
2 such that Q̂2

σ−→k−l a−→ Q̂′
2 and Q̂′′

2
�∼mt

Q̂′
2. Hence,

P ′
1|P ′

2
σ−→k

P ′′
1 |P̂ ′′

2 and Q1|Q2
σ−→k τ−→ Q′

1|Q̂′
2 by our operational rules,

and 〈P ′′
1 |P̂ ′′

2 , Q′
1|Q̂′

2〉 ∈ R by the definition of R. 
�
The remainder of this section is devoted to establishing the correctness of the
commutation lemma. While this exercise is quite technical, it sheds some light on
the nature of faster–than preorders in the context of lower time bounds. We first
define a simple syntactic faster–than relation on process terms that essentially
encodes the syntactic implications of our intuition that any term P should be
faster than σ.P .

Definition 4. The relation � ⊆ P̂ × P̂ is defined as the smallest relation satis-
fying the following properties, for all P, P ′, Q, Q′ ∈ P̂.

Always: (1) P � P (2) P � σ.P
If P ′ � P and Q′ � Q: (3) P ′|Q′ � P |Q (4) P ′ + Q′ � P + Q

(5) P ′ \ L � P \ L (6) P ′[f ] � P [f ]
If P ′ � P and x guarded in P : (7) P ′[µx. P/x] � µx. P

Note that relation � is not transitive and that it is also defined for open terms. It
is interesting to note that � is adopted from [17], where we studied bisimulation–
based faster–than relations in the context of upper time bounds. The syntactic
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and semantic properties of �, relative to the process calculus TACSlt considered
in this paper, are summarized in the following lemma.

Lemma 5. Let P, P ′, Q, R ∈ P̂, y ∈ V, and α ∈ A. Then:

1. P � Q implies P [R/y] � Q[R/y].
2. P

σ−→ P ′ implies P ′ � P .
3. Q � P and P

α−→ P ′ implies ∃Q′. Q α−→ Q′ and Q′ � P ′.
4. Q � P and P

σ−→ R implies R � Q.
5. �| P×P is an MT–relation, whence �| P×P ⊆ �∼mt

.

The most important part of this lemma is Part (5). If a process is syntactically
faster than another according to �, then it is also semantically faster according
to �∼mt. In this light, Part (2) shows that delaying processes indeed results in
faster processes.

Proof. • Part (1): This statement can be proved by induction on the infer-
ence length of P � Q, exactly as in [17]. The only interesting case concerns
Case (7) of Def. 4, where we can assume y �= x since x is neither free in
P [µx.Q/x] nor in µx.Q, as well as P [µx.Q/x] � µx.Q due to P � Q. More-
over, by Barendregt’s Assumption, let us assume that there is no free occur-
rence of x in R. The induction hypothesis yields P [R/y] � Q[R/y], whence
(P [µx.Q/x])[R/y] ≡ (P [R/y])[µx.(Q[R/y])/x] � µx.(Q[R/y]) ≡ (µx.Q)[R/y].

• Part (2): The proof of this statement is a straightforward induction on the
structure of P .

• Part (3): The proof is by induction on the inference length of P � Q. The
only interesting case concerns again Case (7) of Def. 4; note that Case (2) of
Def. 4 is not applicable. Assume, P ′ � P and P

α−→ P̂ for some P̂ . Then we
have µx.P

α−→ P̂ [µx.P/x]. By induction hypothesis, P ′ α−→ P̂ ′ for some P̂ ′ � P̂ .
Hence, P ′[µx.P/x] α−→ P̂ ′[µx.P/x] and, by Part (1), P̂ ′[µx.P/x] � P̂ [µx.P/x].

• Part (4): The proof is again by induction on the inference length of Q � P .
Note that Case (1) of Def. 4 is dealt with by Part (2). We only consider here
Case (7) of Def. 4. Assume P ′ � P and P

σ−→ P̂ for some P̂ . Then we have
µx.P

σ−→ P̂ [µx.P/x]. By induction hypothesis, P̂ � P ′, whence P̂ [µx.P/x] �
P ′[µx.P/x] by Part (1).

• Part (5): Consider arbitrary processes P, Q such that P � Q.
– P

α−→ P ′: Due to the laziness property of our semantics regarding processes,
but not necessarily terms, we know of the existence of some process Q′ such
that Q

σ−→ Q′ and, by Lemma 5(4), Q′ � P . When applying Lemma 5(3) we
obtain some Q′′ such that Q′ α−→ Q′′ and Q′′ � P ′. Since P ′ is a process as
well, there is some P ′′ with P ′ σ−→ P ′′. Finally, by Lemma 5(4), P ′′ � Q′′.

– Q
α−→ Q′: This is case is dealt with by Lemma 5(3).

– P
σ−→ P ′: Since Q is a process, there is some Q′ such that Q

σ−→ Q′ and,
by Lemma 5(4), Q′ � P . Consequently, we must have P ′ � Q′ as well,
according to Lemma 5(4).
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– Q
σ−→ Q′: Lemma 5(4) immediately yields Q′ � P . Since P is a process,

there is some P ′ with P
σ−→ P ′. Hence, P ′ � Q′ by Lemma 5(4) again. 
�

With these prerequisites we can now prove the commutation lemma.

Proof (of Lemma 3). • Part (1): Let P, P1, P
′ ∈ P and w ∈ (A ∪ {σ})∗ such

that P
w−→ P1

σ−→ P ′. Because of Lemma 5(5), it is sufficient to establish
the existence of some P ′′, P2 ∈ P such that P

σ−→ P2
w−→ P ′′ and P ′ � P ′′.

Since every process has a unique clock derivative, we know of the existence of
some P2 with P

σ−→ P2. According to Lemma 5(2), P2 � P holds. Further since
P

w−→ P1 and because of Lemma 5(5), there exists some P ′′ such that P2
w−→ P ′′

and P ′′ � P1. Now, P ′′ � P1 and P1
σ−→ P ′ yields P ′ � P ′′ by Lemma 5(4), as

desired.
• Part (2): Let P, P1, P

′ ∈ P , w ∈ (A ∪ {σ})∗, and k ∈ N such that P
w−→

P1
σ−→k

P ′. The proof of Part (2) is by induction on k. For k = 0, the statement
holds trivially. For k = 1, the statement is the one of Part (1). For the induction

step, consider P
w−→ P1

σ−→k
P ′

1
σ−→ P ′, for k ≥ 1. By the induction hypothesis

we know of the existence of some P2, P
′
2 such that P

σ−→k
P2

w−→ P ′
2 and

P ′
1

�∼mtP
′
2. As the TACSlt semantics for processes supports laziness, P ′

2 can
engage in a clock transition to some P ′′

2 , i.e., P ′
2

σ−→ P ′′
2 . Because of P ′

1
�∼mtP

′
2

as well as time determinacy, we may conclude P ′�∼mtP
′′
2 . Applying the simple

commutation lemma of Part (1) to P2
w−→ P ′

2
σ−→ P ′′

2 , we obtain some P ′′ such

that P2
σ−→ w−→ P ′′ and P ′′

2
�∼mtP

′′. Hence, P
σ−→k+1 w−→ P ′′ and P ′�∼mtP

′′. 
�
The remainder of this paper studies the MT–preorder in detail. We will justify
its motivation as a faster–than relation by means of formal theorems, and we
will correct and generalize several statements made by Moller and Tofts in [20]
concerning its semantic theory.

4 The MT–Preorder is Fully–Abstract

While the MT–preorder is algebraically appealing due to its precongruence prop-
erty, it does not necessarily seem to be a natural choice for defining a faster–than
relation. As mentioned earlier, Def. 1 requires that differences in delays between
processes must be accounted for within one step of matching, and hence not
all the future behaviour of P ′ in Part 1 is considered. In the following we ex-
plore an alternative amortized view of faster–than, where the differences can
be smoothened out over several steps. Technically, we will prove that the MT–
preorder is fully–abstract with respect to this amortized preorder, which demon-
strates that the MT–preorder has indeed very intuitive roots.

Definition 6 (Amortized faster–than preorder). A family (Ri)i∈N of re-
lations over P is a family of faster–than relations if, for all i ∈ N, 〈P, Q〉 ∈ Ri,
and α ∈ A:
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1. P
α−→ P ′ implies ∃Q′, k. Q

σ−→k α−→ Q′ and 〈P ′, Q′〉 ∈ Ri+k.

2. Q
α−→ Q′ implies ∃P ′, k≤i. P

σ−→k α−→ P ′ and 〈P ′, Q′〉 ∈ Ri−k.

3. P
σ−→ P ′ implies ∃Q′, k≥0. k ≥ 1 − i, Q

σ−→k
Q′, and 〈P ′, Q′〉 ∈ Ri−1+k.

4. Q
σ−→ Q′ implies ∃P ′, k≥0. k ≤ i + 1, P

σ−→k
P ′, and 〈P ′, Q′〉 ∈ Ri+1−k.

We write P �∼i Q if 〈P, Q〉 ∈ Ri for some family of faster–than relations (Ri)i∈N,
and call �∼0 the amortized faster–than preorder.

This definition reflects our intuition that processes that perform delays later
along execution paths are faster than functionally equivalent ones that perform
delays earlier; this is because the former processes are executing actions at earlier
absolute times (as measured from the start of the processes) than the latter
ones. Def. 6 formalizes this intuition as follows: P �∼i Q means that Q, or rather
some predecessor of Q, has already performed i clock transitions that were not
matched by P ; therefore, P has a credit of i clock transitions that it might
perform later without a match by Q (cf. Part (3) for k = 0). Any extra delays
of the slower process when matching an action or clock transition of the faster
process, increase credit i accordingly (cf. Parts (1) and (3) for k > 1). Vice versa,
an action or clock transition of the slower process does not necessarily have to
be matched directly by the faster one: the latter may delay up to as many clock
transitions as are allowed by the current credit i (cf. Parts (2) and (4)).

Processes P =df c.a.σ.b.0+ c.a.b.0 and Q =df c.a.b.0 exhibit the difference to
the MT–preorder. The family (Ri)i∈N of faster–than relations defined by R0 =df

{〈P, Q〉}∪{〈R, R〉 | R ∈ P}, R1 =df {〈a.σ.b.0, a.b.0〉, 〈σ.b.0, b.0〉, 〈b.0, b.0〉, 〈0,0〉}
and Ri =df ∅, for i>1, testifies to P �∼0 Q; note that P

c−→ a.σ.b.0 is matched by
Q

σ−→ c−→ a.b.0. However, we do not have P �∼mt
Q. The step P

c−→ a.σ.b.0 could

only be matched by Q
σ−→k c−→ a.b.0 for some k ∈ N. Since a.σ.b.0 σ−→k

a.σ.b.0,
for any k, this would require a.σ.b.0�∼mta.b.0, which is clearly wrong.

It can be shown that the amortized faster–than preorder is indeed a preorder
and that (�∼i

)i∈N is the (componentwise) largest family of faster–than relations.
However, there is an important shortcoming: �∼0 is not preserved under par-
allel composition. Consider the processes P and Q above, where P �∼0 Q. For
R =df µx.(σ.d.0 |σ.x), where d is a ‘fresh’ action not occurring in the sorts
of P and Q, one may show that P |R ��∼0Q |R. The reason for this is as fol-
lows. Transition P |R c−→ a.σ.b.0 |R would need to be matched by a sequence

of transitions Q |R σ−→k c−→ a.b.0 | d.0 | · · · | d.0 |R, for some k∈N and k paral-
lel components d.0, such that a.σ.b.0 |R �∼k a.b.0 | d.0 | · · · | d.0 |R would hold.
Now, let the latter process engage in all d–computations of the k components d.0.
Since d is a fresh action, these can only be matched by unfolding k–times pro-
cess R in a.σ.b.0 |R and executing k clock transitions and k d–transitions. Thus,
a.σ.b.0 |R �∼0 a.b.0 |R would follow necessarily, i.e., no credit remains. While the
right–hand process can now engage in the sequence a.b, the left–hand process
can only match action a, but not also action b due to the lack of credit.

To address this compositionality problem of �∼0
we refine its definition.
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Definition 7 (Amortized faster–than precongruence). A family (Ri)i∈N

of relations over P is a precongruence family if, for all i ∈ N, 〈P, Q〉 ∈ Ri, and
α ∈ A:

1. P
α−→ P ′ implies ∃Q′, k. Q

σ−→k α−→ Q′ and 〈P ′, Q′〉 ∈ Ri+k.

2. Q
α−→ Q′ implies ∃P ′, k ≤ i. P

σ−→k α−→ P ′ and 〈P ′, Q′〉 ∈ Ri−k.
3. P

σ−→ P ′ implies (a) i > 0 and 〈P ′, Q〉 ∈ Ri−1, or
(b) i = 0 and ∃Q′. Q σ−→ Q′ and 〈P ′, Q′〉 ∈ Ri.

4. Q
σ−→ Q′ implies 〈P, Q′〉 ∈ Ri+1.

We write P ��i Q if 〈P, Q〉 ∈ Ri for some precongruence family (Ri)i∈N and
call ��0

the amortized faster–than precongruence.

One can show that this amortized faster–than precongruence is indeed a preorder
and that (��i

)i∈N is the (componentwise) largest family of faster–than relations.
This preorder’s definition is identical to the one of the amortized faster–than
preorder, with the exception that a delay of the faster process now always results
in consuming any available credit, while any delay of the slower process results
in increasing the credit available to the faster one. As a consequence, it is easy to
see that the amortized faster–than precongruence refines the amortized faster–
than preorder, i.e., ��0 ⊆ �∼0. This is indeed a proper inclusion, as can be seen
by studying the example c.a.σ.b.0 + c.a.b.0 �∼0 c.a.b.0.

Theorem 8 (Coincidence). The preorders ��0 and �∼mt coincide.

Proof. The inclusion ��0 ⊆ �∼mt follows immediately by the definitions of these
preorders and the laziness property in TACSlt; note that any credit the faster
process might gain according to Def. 7 can immediately be removed via Rule (3).
For establishing the other inclusion we prove that

Ri =df { 〈P, Q〉 | ∃P̂ . P
σ−→i

P̂ �∼mt Q }
is a precongruence family according to Def. 7, whence P �∼mt Q implies 〈P, Q〉 ∈
R0. Let 〈P, Q〉 ∈ Ri for some i be arbitrary, i.e., P

σ−→i
P̂ �∼mt Q. By Def. 7 we

need to distinguish the following cases.

– P
α−→ P ′: Due to the laziness property in TACSlt, there is a unique P ′′

such that P ′ σ−→i
P ′′. By our commutation lemma, Lemma 3(2), and by time

determinacy, we obtain P̂
α−→ P̂ ′ for some P̂ ′ such that P ′′ �∼mt P̂ ′. Applying

Def. 1(1) to P̂ �∼mt Q yields Q′, k, P̂ ′′ satisfying Q
σ−→k α−→ Q′, P̂ ′ σ−→k

P̂ ′′,
and P̂ ′′ �∼mt

Q′. Now, repeatedly applying Def. 1(4) to P ′′ �∼mt
P̂ ′, proves

the existence of some P ′′′ such that P ′′ σ−→k
P ′′′ and P ′′′ �∼mt P̂ ′′. Hence,

P ′ σ−→i+k
P ′′′ �∼mt Q′, i.e., 〈P ′, Q′〉 ∈ Ri+k.

– Q
α−→ Q′: We know by Def. 1(2) of some P̂ ′ such that P̂

α−→ P̂ ′ and

P̂ ′ �∼mt
Q′. Hence, P

σ−→i α−→ P̂ ′ and 〈P̂ ′, Q′〉 ∈ R0.
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– P
σ−→ P ′: If i > 0, then we obtain 〈P ′, Q〉 ∈ Ri−1 immediately. Otherwise

(i = 0), P ≡ P̂ , i.e., P �∼mt Q. Hence the existence of some Q′ such that
Q

σ−→ Q′ and P ′ �∼mt Q′. This implies 〈P ′, Q′〉 ∈ R0, as desired.
– Q

σ−→ Q′: Since P̂ �∼mt Q, there exists some P̂ ′ satisfying P̂
σ−→ P̂ ′ and

P̂ ′ �∼mt Q′. Hence, P
σ−→i σ−→ P̂ ′ �∼mt Q′, i.e., 〈P, Q′〉 ∈ Ri+1. 
�

Consequently, ��0 is not only a preorder but indeed a precongruence, since �∼mt

is a precongruence. Note, however, that the relations ��i, for i > 0, are not
precongruences; for example, σ.b.0 ��1b.0 but not a.σ.b.0 ��1a.b.0 due to Def. 7(3).

Theorem 9 (Full abstraction). The preorder ��0 is the largest precongruence
contained in �∼0.

Proof. We know by universal algebra that there exists a largest precongru-
ence �∼+

0 contained in �∼0, which is characterized by �∼+
0 = {〈P, Q〉| ∀contexts C[ ].

C[P ] �∼0 C[Q] }. Because of Thm. 8, it suffices to prove �∼mt =
�∼+

0 .
We have already established that �∼mt is a precongruence and, by Thm. 8,

that �∼mt = ��0 ⊆ �∼0. Hence, �∼mt = �∼+
mt ⊆ �∼+

0 . For proving the reverse
inclusion �∼+

0 ⊆ �∼mt, it turns out to be convenient to define yet another char-
acterization �∼mt′ of �∼mt and prove �∼+

0 ⊆ �∼mt′ .
The preorder �∼mt′ is defined as �∼mt

when replacing Part (3) in Def. 1 by

(3’) P
σ−→ P ′ implies ∃Q′, P ′′, k≥1. Q

σ−→k
Q′, P ′ σ−→k−1

P ′′, 〈P ′′, Q′〉 ∈ R .

This leads to a notion of MT’–relation. First, observe that �∼mt′ = �∼mt. The
inclusion “⊇” is trivial since (3’) is less restrictive than (3). For proving inclu-
sion “⊆” we show that �∼mt′ is an MT–relation. This is trivial except for the
case P

σ−→ P ′. In that case, due to the laziness property of TACSlt, there is a
process Q′ with Q

σ−→ Q′. According to Part (4), P ′ �∼mt′ Q′, as desired.
We may now establish the remaining inclusion �∼+

0 ⊆ �∼mt′ by showing that

Ra =df { 〈P, Q〉 | C[P ] �∼0 C[Q] }
is an MT’–relation, where C[ ] =df |µx.(σ.d.0 |σ.x) for some ‘fresh’ action d
that is not in the sorts of P and Q. Let 〈P, Q〉 ∈ Ra; according to the variation
of Def. 1 we distinguish the following cases.

– P
α−→ P ′: Hence, C[P ] α−→ C[P ′] by the operational rules for TACSlt.

Since C[P ] �∼0
C[Q] and by the definition of C[ ] we know of the existence of

some Q′, k such that

C[Q] σ−→k α−→ C[Q′] | d.0 | . . . | d.0︸ ︷︷ ︸
k times

,

where Q
σ−→k α−→ Q′ and C[P ′] �∼kC[Q′] | d.0 | . . . | d.0. Further, consider

C[Q′] | d.0 | . . . | d.0 d−→
k

C[Q′]. (The latter process is really C[Q′] |0 | . . . |0
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but 0 as a parallel component never makes a difference regarding all seman-
tic preorders considered in this paper; hence, we freely omit such compo-
nents.) These action transitions must be matched by the faster process us-
ing exactly k clock transitions (according to the definition of C[ ] at least k
and according to Part (2) at most k clock transitions). Hence, there exist
processes P0, P1, P2, . . . , Pk and numbers j1, j2, . . . , jk with

∑
1≤i≤k ji = k

such that, for 1 ≤ i ≤ k, (i) P0 ≡ P ′, (ii) C[Pi−1]
σ−→ji d−→ C[Pi], where

Pi−1
σ−→ji

Pi, and (iii) C[Pk] �∼0 C[Q′]. Thus, 〈Pk, Q′〉 ∈ Ra, as desired.
– Q

α−→ Q′: By TACSlt semantics, C[Q] α−→ C[Q′]. Further, by Def. 6 and
due to the definition of C[ ], there exists some P ′ such that C[P ] α−→ C[P ′],
where P

α−→ P ′ and C[P ′] �∼0 C[Q′]. Hence, 〈P ′, Q′〉 ∈ Ra.
– P

σ−→ P ′: Then, C[P ] σ−→ C[P ′] | d.0 by our operational rules. Because of
C[P ] �∼0C[Q] and the definition of C[ ], there exists some Q′ and some k ≥ 1

such that C[Q] σ−→k
C[Q′] | d.0 | · · · | d.0 with k parallel components d.0,

where Q
σ−→k

Q′, and C[P ′] | d.0 �∼k−1 C[Q′] | d.0 | · · · | d.0. Because of the

derivation C[Q′] | d.0 | · · · | d.0 d−→
k

C[Q′] and since d is a fresh action not
in the sort of P , we conclude that C[P ′] | d.0 performs at least (cf. definition
of C[ ]) and at most (cf. Part (2)) k−1 clock transitions and k d–transitions,

giving C[P ′′] �∼0 C[Q′] for a process P ′′ satisfying P ′ σ−→k−1
P ′′. Hence,

〈P ′′, Q′〉 ∈ Ra, i.e., Part (3’) of the definition of �∼mt holds.
– Q

σ−→ Q′: Here, we may derive C[Q] σ−→ C[Q′] | d.0 and one of the following
cases holds.
• k = 1, i.e., C[P ] σ−→ C[P ′] | d.0 �∼0 C[Q′] | d.0: The d–transition of pro-

cess C[Q′] | d.0 must be matched by the d–transition of C[P ′] | d.0 such
that C[P ′] �∼0 C[Q′].

• k = 0, i.e., C[P ] �∼1 C[Q′] | d.0: Here, the d–transition of C[Q′] | d.0 can
only be matched by a clock transition followed by a d–transition such
that C[P ′] �∼0 C[Q′].

In both cases we have the existence of some P ′ such that P
σ−→ P ′ and

〈P ′, Q′〉 ∈ Ra. 
�
Intuitively, Thms. 8 and 9 show that the MT–preorder rests on a very natural,
amortized view of the notion of faster–than. Henceforth, we will call �∼mt = ��0
the strong faster–than precongruence.

5 Axiomatizing the Moller–Tofts Preorder

We give a sound and complete axiomatization of our strong faster–than precon-
gruence �∼mt

for the class of finite processes, which do not contain any recursion
operator. This allows one to compare our semantic theory for a calculus with
lower time bounds, with the one developed for a calculus with upper time bounds
presented in [17], as well as with the CCS theory of strong bisimulation [18].
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Table 3. Axiom system for finite processes

(A1) t + u = u + t (D1) 0[f ] = 0
(A2) t + (u + v) = (t + u) + v (D2) (α.t)[f ] = f(α).(t[f ])
(A3) t + t = t (D3) (σ.t)[f ] = σ.(t[f ])
(A4) t + 0 = t (D4) (t + u)[f ] = t[f ] + u[f ]

(P3) t + σ.t = t (C1) 0 \ L = 0

(P4) σ.(t + u) = σ.t + σ.u (C2) (α.t) \ L = 0 α ∈ L ∪ L

(P5) t � σ.t (C3) (α.t) \ L = α.(t \ L) α /∈ L ∪ L
(C4) (σ.t) \ L = σ.(t \ L)

(P6) α.t = α.σ.t + α.t (C5) (t + u) \ L = (t \ L) + (u \ L)

Let t ≡ ∑
i∈I αi.ti [ + σ.tσ ] and u ≡ ∑

j∈J βj .uj [ + σ.uσ ] .

(E) t|u =
∑

i∈I αi.(ti|u) +
∑

j∈J βj .(t|uj) +
∑

αi=βj
τ.(ti|uj) +⎧⎪⎪⎨

⎪⎪⎩

0 if both σ.tσ, σ.uσ are absent
σ.(((

∑
i∈I αi.ti) + tσ) | (∑j∈J βj .uj)) if only σ.uσ is absent

σ.((
∑

i∈I αi.ti) | ((∑j∈J βj .uj) + uσ)) if only σ.tσ is absent

σ.(((
∑

i∈I αi.ti) + tσ) | ((∑j∈J βj .uj) + uσ)) otherwise

The axioms for our MT–precongruence are shown in Table 3, where a term
in square brackets is optional. Moreover,

∑
is the indexed version of +, and we

adopt the convention that the sum over the empty index set is identified with
process 0. Any axiom of the form t = u should be read as two axioms t � u
and u � t. We write � t � u if t � u can be derived from the axioms.

Axioms (A1)–(A4), (D1)–(D4), and (C1)–(C5) are exactly the ones for strong
bisimulation in CCS [18]. Hence, the semantic theory of our calculus is distin-
guished from the one for strong bisimulation by the additional Axioms (P3)–(P6)
and the refined expansion law (E). Further, it is distinguished from the one for
the faster–than preorder for upper time bounds [17] by leaving out Axioms (P1)
and (P2) related to enforcing upper time bounds, and by adding Axiom (P6).
Intuitively, this added axiom states that inserting a delay within a path of a
process does not alter the speed of the process, as long as there exists a func-
tionally equivalent path without delay; this shows that our theory concentrates
on best–case behavior by ignoring the slower summand that has the optional
delay. Axiom (P6) generalizes to

(P6’) α.P = α.σk.P + α.P ,

for any k ∈ N, by repeated application; here, “σk.” stands for k nested clock
prefixes. Axiom (P3) is similar in spirit to Axiom (P6) but cannot be derived
from the other axioms. Axiom (P4) is a standard axiom in timed process algebras
and testifies to the fact that time is a deterministic concept and does not resolve
choices. Finally, Axiom (P5) encodes our elementary intuition of clock prefixes
and speed within TACSlt, namely that any process t is faster than process σ.t,
which must delay the execution of t by one clock tick.

The correctness of our axioms relative to �∼mt can be established as usual [18].
Note that all axioms, with the exception of the Expansion Axiom (E) and Ax-
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iom (P3), are sound for arbitrary processes, not only for finite ones. For exam-
ple, the correctness of Axiom (P5) follows from our syntactic relation � and
Lemma 5(5). The correctness of direction “α.t � α.σ.t + α.t” of Axiom (P6) is
due to the correctness of Axioms (P5) and (A3). For proving the correctness
of direction “α.σ.t + α.t � α.t”, the only interesting case is the matching of
α.σ.t + α.t

α−→ σ.t. Here, we consider α.t
σ−→ α.t

α−→ t, and observe σ.t
σ−→ t

and t �∼mtt. It should be noted here that the axioms presented in [20] do not
completely correspond with the MT–preorder, as has also been noted by Moller
and Tofts since the publication of their paper in 1991 [priv. commun.]. For ex-
ample, a.σ.b.0 + a.b.0 is as fast as a.b.0, which does not seem to be derivable
from the axioms in [20]. In our theory, this example is a simple instantiation of
Axiom (P6).

The only correctness proofs we provide in more detail concern the expansion
axiom and Axiom (P3). Moller and Tofts claim in [20] that the “standard”
expansion law [18] for faster–than relations based on lower time bounds does
not hold, even for finite processes. While this observation is true for arbitrary
processes, it is incorrect for finite ones. As a simple example we have a.0 |σ.b.0 =
a.(0|σ.b.0) + σ.(a.0|b.0), contrary to the claims in [20].

Proof (Correctness of Axiom (E) for finite processes). It suffices to consider the
case P ≡ ∑

i∈I αi.Pi + σ.Pσ and Q ≡ ∑
j∈J βj .Qj + σ.Qσ. The other three cases

are similar: in fact, the first case is obvious, while the second and third case can
be derived from the fourth by considering uσ ≡ 0 and tσ ≡ 0, respectively. For
notational convenience we simply abbreviate

∑
i∈I αi.Pi by

∑
i and

∑
j∈J βj .Qj

by
∑

j . To prove the expansion axiom correct, we show that (i) R ∪ {〈P |Q,∑
i∈I αi.(Pi|Q)+

∑
j∈J βj .(P |Qj)+

∑
αi=βj

τ.(Pi|Qj) +σ.(
∑

i +Pσ|
∑

j +Qσ)〉} ∪
�∼mt and (ii) R−1 ∪ {〈∑i∈I αi.(Pi|Q) +

∑
j∈J βj .(P |Qj) +

∑
αi=βj

τ.(Pi|Qj)+
σ.(

∑
i +Pσ|

∑
j +Qσ) , P |Q〉} ∪ �∼mt are MT–relations, where

R = { 〈lhs, rhs〉 | ∃k ∈ N. Pσ
σ−→k

P ′
σ and Qσ

σ−→k
Q′

σ }
lhs = (

∑
i

+ P ′
σ) | (

∑
j

+ Q′
σ)

rhs =
∑
i∈I

αi.(Pi|Q) +
∑
j∈J

βj .(P |Qj) +
∑

αi=βj

τ.(Pi|Qj) + ((
∑

i

+ P ′
σ) | (

∑
j

+ Q′
σ))

We also implicitly exploit the correctness of Axiom (P6). Obviously, the action
transitions of the left–hand side and of the right–hand side of Axiom (E) match,
while the matching of a clock transition leads to the pair in R for k = 0. Hence,
it is sufficient to consider some arbitrary pair 〈lhs, rhs〉 ∈ R. Thus, there exists

some k ∈ N such that Pσ
σ−→k

P ′
σ and Qσ

σ−→k
Q′

σ.
For the proof of Claim (i), note that action transitions of lhs are trivially

matched by rhs. The converse is also the case for most action transitions, except
rhs αi−→ Pi | (

∑
j∈J βj.Qj + σ.Qσ), which deserve a closer look. These transi-

tions can be matched by lhs αi−→ Pi | (
∑

j∈J βj.Qj + Q′
σ). Since Qσ

σ−→k
Q′

σ we
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know by Lemma 5 and the correctness of Axiom (P5) that Q′
σ

�∼mt Qσ
�∼mt σ.Qσ.

Thus, Pi | (
∑

j∈J βj .Qj + Q′
σ) �∼mt Pi | (

∑
j∈J βj .Qj + σ.Qσ). Further, consider

the clock transitions of lhs and rhs, i.e., lhs σ−→ lhs′ ≡ (
∑

i +P ′′
σ ) | (∑j +Q′′

σ)
and rhs σ−→ rhs′ ≡ ∑

i∈I αi.(Pi|Q) +
∑

j∈J βj .(P |Qj) +
∑

αi=βj
τ.(Pi|Qj) +

(
∑

i +P ′′
σ | ∑

j +Q′′
σ), for P ′′

σ , Q′′
σ satisfying P ′

σ
σ−→ P ′′

σ and Q′
σ

σ−→ Q′′
σ. Since

Pσ
σ−→k

P ′
σ

σ−→ P ′′
σ and Qσ

σ−→k
Q′

σ
σ−→ Q′′

σ, we have 〈lhs′, rhs′〉 ∈ R.
For the proof of Claim (ii), the following property is essential:

∀P ∈Pfin. ∃n∈N. ∀P ′, P ′′∈Pfin. P
σ−→n

P ′, P ′ σ−→ P ′′ implies P ′ ≡ P ′′ (∗)

This property can be proved by induction on the structure of finite processes.
When proving Claim (ii) observe that clock transitions and most action transi-
tions can be dealt with as before. The interesting part of the proof is the matching
of action transitions of the form rhs αi−→ Pi | (

∑
j∈J βj .Qj + σ.Qσ). We consider

the transition sequence lhs σ−→max+1 αi−→ Pi | (
∑

j∈J βj .Qj + Q̂σ), where max is
the maximal number of clock transitions before process Qσ starts idling, accord-
ing to Property (∗), and where Q̂σ is the unique process such that Qσ

σ−→max
Q̂σ.

Further, rhs αi−→ Pi | (
∑

j∈J βj .Qj + σ.Qσ) σ−→max+1
P ′

i | (
∑

j∈J βj .Qj + Q̂σ),

where P ′
i is the unique process satisfying Pi

σ−→max+1
P ′

i . Thus, P ′
i

�∼mt Pi by
Lemma 5 and P ′

i | (
∑

j∈J βj .Qj + Q̂σ) �∼mt
Pi | (

∑
j∈J βj .Qj + Q̂σ) by Thm. 2,

whence the expansion axiom is valid for finite processes. 
�
The above proof relies on Property (∗) that does not hold, e.g., for the recursive
process D =df µx.(d.0 |σ.x). When applying Axiom (E) to a.0 |σ.D we obtain
a.0 |σ.D = a.(0 |σ.D)+σ.(a.0|D). However, a.(0 |σ.D)+σ.(a.0|D) � �∼mt a.0 |σ.D.
Assume otherwise; then, by Def. 1, the σ–derivatives of both processes must
be related, i.e., a.(0 |σ.D) + (a.0 |D) �∼mt

a.0 |D would hold. However, if the
allegedly faster process performs an a–transition to (0 |σ.D), then the slower
should match this after some delay of, say, k ≥ 1 clock transitions; the case
where k = 0 is obvious. According to Def. 1 we obtain

(0 |D | d.0 | · · · | d.0︸ ︷︷ ︸
k−1 times

) �∼mt (0 |D | d.0 | · · · | d.0︸ ︷︷ ︸
k times

) .

This is clearly invalid, as the slower process can engage in k consecutive d–
transitions of which the faster process can only match the first k−1 transitions.
Hence, Axiom (E) is not universally correct. We leave it to future work to see
how far the expansion law might be generalized.

Proof (Correctness of Axiom (P3) for finite processes). Direction “t � t + σ.t”
can be derived from Axioms (P5) and (A3) and is thus correct for arbitrary
processes. For establishing the correctness of the reverse direction we show that

R =df {〈P + Q, P 〉 |Q σ−→ P and P satisfies Property (∗)}
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is an MT–relation. Thus, let 〈P + Q, P 〉 ∈ R, and let max be the number n
in Property (∗) for P ; as mentioned earlier, every finite process satisfies this
property.

The only interesting case arises when P +Q
α−→ Q′ due to Q

α−→ Q′, for some
action α and finite process Q′. Because of the laziness property of TACSlt, there
exists some Q̂ such that Q′ σ−→max+1

Q̂. We may then apply the commutation
lemma, Lemma 3(2), to obtain P̂ , P ′ satisfying Q

σ−→ P
σ−→max

P̂ , P̂
α−→ P ′,

and Q̂ �∼mt P ′. Further, by the choice of max, we have P̂
σ−→ P̂ . Hence we have

satisfied Def. 1(1): P
σ−→max+1

P̂
α−→ P ′, Q′ σ−→max+1

Q̂, and Q̂ �∼mt P ′.

Direction “�” of Axiom (P3) does not hold for arbitrary processes; for example,
D + σ.D � �∼mt D using process D from above. Consider the matching of transi-

tions D + σ.D
σ−→2

(D | d.0 | d.0) + (D | d.0) d−→ D performed by the left–hand

side, which enforces for the right–hand side process D
σ−→2 σ−→k d−→ Dk+1 ≡

D | d.0 | · · · | d.0 with k + 1 components d.0. But Dk � �∼mt Dk+1, as the former
process cannot match the k + 1 d–transitions of the latter one.

The proof for the completeness of our axiomatization is based on the following
notion of normal form.

Definition 10 (Normal form). A finite process t is in normal form if

t ≡
∑
i∈I

αi.ti [ + σ.tσ ] ,

where (i) I denotes a finite index set, (ii) αi ∈ A for all i ∈ I, (iii) all the ti are
in normal form, and (iv) the subterm in brackets is optional and, if it exists, tσ
is in normal form

∑
j∈J βj .uj [ + σ.uσ ] and ∀i∈I ∃j ∈J. αi.ti ≡ βj .uj .

Observe that the unique clock derivative t′ of a normal form is again in normal
form; its size is not larger, and smaller if summand σ.tσ is present. Further,
� t′ = tσ by Cond. (iv).

Proposition 11 (Rewriting into normal forms). For any finite process t,
there exists some finite process u in normal form such that � t = u.

The proof is by induction on the structure of finite processes and is quite straight-
forward. We only note here that Cond. (iv) of Def. 10 can be achieved by apply-
ing Axiom (P3). For proving our axiom system complete, the following technical
lemmas are useful.

Lemma 12. Let t ≡ ∑
i∈I αi.ti [ + σ.tσ ] be in normal form, and let terms t′, u

and k ∈ N such that t
σ−→k

t′ and � t′ � u. Then � t � σk.u.

Proof. The proof is by induction on k. For k = 0, i.e., t′ ≡ t, the statement
is trivial. For k = 1 we know by the operational rules for TACSlt that t′ ≡∑

i∈I αi.ti [ + tσ ]. Then, by repeated application of Axioms (P5) and (P4),



Technical Report 2004–1 19

� t =
∑

i∈I αi.ti [ + σ.tσ ] � ∑
i∈I σ.αi.ti [ + σ.tσ ] = σ.t′ � σ.u. For k + 1 > 1

we have t
σ−→ t′′ σ−→k

t′, with t′′ being in normal form. Then, by induction,
� t′′ � σk.u. Further � t � σk+1.u, according to the case for k = 1. 
�

Lemma 13. Let t ≡ ∑
i∈I αi.ti + σ.tσ be in normal form and γ, t′, k such that

t
σ−→k γ−→ t′. Then, there exists a sub–term γ.t′ of t with � t = t + σk.γ.t′.

Proof. The statement is trivial for k = 0. If k > 0 we proceed by induction on k.
For the induction base, k = 1, we have t

σ−→ t′′ for t′′ ≡ ∑
i∈I αi.ti + tσ, where

tσ ≡ ∑
j∈J βj .uj [ + σ.uσ ] satisfying ∀i∈ I ∃j ∈J. αi.ti ≡ βj .uj by Def. 10(iv).

Hence, γ.t′ ≡ βj .uj , for some j ∈ J . The desired property then holds simply
by applying Axioms (A3) and (P4). Regarding the induction step, recall that
the unique σ–derivative t′′ of t is itself in normal form; a subterm γ.t′ of t′′ is
also a subterm of t and obviously � t′′ = tσ. Then, � t = t + σ.tσ = t + σ.t′′ =
t + σ.(t′′ + σk.γ.t′) = t + σk+1.γ.t′, as desired, where the third equality holds by
induction hypothesis. 
�

We are now able to state and prove the main result of this section.

Theorem 14 (Correctness & completeness). For finite processes t and u
we have: � t � u if and only if t �∼mt u.

Proof. The correctness “ =⇒ ” of our axiom system follows by induction on the
length of the inference � t � u, as usual. We concentrate on proving complete-
ness “⇐= ”. By Prop. 11 is suffices to prove this implication for processes t and u
in normal form, i.e., t ≡ ∑

i∈I αi.ti [ + σ.tσ ] and u ≡ ∑
j∈J βi.ui [ + σ.uσ ].

We proceed by induction on the sum of the process sizes of t and u. If this
sum is zero we have t ≡ u ≡ 0, and we are done. Otherwise, we consider four
cases, depending on whether each of the optional σ–summands σ.tσ and σ.uσ is
present.

– Both summands σ.tσ and σ.uσ are absent: Hence, t ≡ ∑
i∈I αi.ti and u ≡∑

j∈J βj .uj. Due to t �∼mtu we may derive a couple of important properties:

1. ∀i ∈ I. ∃j ∈ J, k ∈ N. αi=βj , ti
σ−→k

t′ and t′ �∼mt uj (cf. Def. 1(1)). The
induction hypothesis yields � t′ � uj; recall that t′ is in normal form.
Hence by Lemma 12, � ti � σk.uj which implies � αi.ti � βj.σ

k.uj. With
Axiom (P6’) we conclude � βj .uj + αi.ti � βj .uj + βj .σ

k.uj = βj .uj .
2. ∀j ∈ J. ∃i ∈ I. βj=αi and ti �∼mt uj (cf. Def. 1(2)). By induction hypoth-

esis, � ti � uj holds, whence � αi.ti � βj .uj.

We may now conclude this case as follows:

� t =
∑

i∈I αi.ti
(2, A3) � ∑

j∈J βj .uj +
∑

i∈I αi.ti
(1) � ∑

j∈J βj .uj = u
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– Summand σ.tσ is present and σ.uσ absent: Because of property
∑

i∈I αi.ti +
σ.tσ �∼mt

∑
j∈J βj .uj we may derive the following properties similar to the

previous case:
1. ∀i ∈ I. ∃j ∈ J. � βj .uj + αi.ti � βj .uj.
2. ∀j ∈ J. ∃i ∈ I. � αi.ti � βj .uj.
3. When considering initial clock transitions of t and u we obtain tσ �∼mt

u;
note Cond. (iv) of Def. 10. Since tσ is in normal form, the induction
hypothesis applies and yields � tσ � u.

We may now finish off the case.

� t =
∑

i∈I αi.ti + σ.tσ
(2, A3) � ∑

j∈J βj .uj + σ.tσ +
∑

i∈I αi.ti
(3) � u + σ.u +

∑
i∈I αi.ti

(P3) = u +
∑

i∈I αi.ti
(1) � u

– Summand σ.tσ is absent and σ.uσ present: Here we have
∑

i∈I αi.ti �∼mt∑
j∈J βj .uj + σ.uσ. When considering a clock transition of both processes,

Def. 1 implies t �∼mt

∑
j∈J βj .uj + uσ. As the right–hand side process is a

normal form of smaller size than the one of u we may apply the induction
hypothesis and Axiom (P5) to obtain � t � ∑

j∈J βj .uj +uσ � ∑
j∈J βj .uj +

σ.uσ = u.

– Both summands σ.tσ and σ.uσ are present: By the premise
∑

i∈I αi.ti +
σ.tσ �∼mt

∑
j∈J βj .uj + σ.uσ we may conclude the validity of the following

properties, similar to the previous cases:

1. By Def. 1(1) and induction hypothesis we have ∀i∈I. ∃u′, k. u
σ−→k αi−→

u′, ti
σ−→k

t′, and � t′ � u′. Lemma 12 yields � ti � σk.u′, whence
� αi.ti � αi.σ

k.u′ � σk.αi.σ
k.u′ by Axiom (P5). We may now apply

this to � u = u+σk.αi.σ
k.u′, which follows from Lemma 13 by applying

Axiom (P6) k–times, in order to obtain � u + αi.ti � u.
2. ∀j ∈ J. ∃i ∈ I. � αi.ti � βj .uj.
3. � tσ � uσ (cf. Def. 1, Parts (3) and (4)).

We may now finish this case as follows.

(2, A3) � t � ∑
j∈J βj .uj + t

(3) � u +
∑

i∈I αi.ti
(1) � u

This completes the proof of Thm. 14. 
�

6 Example

This section applies our semantic theory to a simple example dealing with two
implementations of a two–place storage in terms of two cells and a buffer, respec-
tively (cf., [18]). For simplifying the presentation we specify recursion via recur-
sive process equations in the style of Milner [18], instead of using our recursion
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operator. The two–cells system is defined as the parallel composition of two one–
place cells C0

def= in.C1, where C1
def= σ.out.C0. The two–place buffer B0 is given

by the process equations B0
def= in.B1, B1

def= σ.out.B0 + in.B2 and B2
def= σ.out.B1.

As is reflected by the σ–prefixes in front of the out–prefixes, both cells C0 and
the two–place buffer B0 have to delay at least one time unit until they can offer
a communication on port out. Intuitively, one would expect the two cell system
to be strictly faster, since if both cells are full, then both data items stored may
be output after a delay of only one time unit, while the buffer requires a delay
of at least two time units until it may release the second data item.

As desired, our semantic theory for TACSlt relates C0 |C0 and B0. Formally,
this may be witnessed by the MT–relation given below, in which we employ the
abbreviations C′

1 =df out.C0, B′
1 =df out.B0 + in.B2, and B′

2 =df out.B1.

〈C0 |C0 , B0 〉 〈C1 |C0 , B1 〉 〈C0 |C1 , B1 〉 〈C′
1 |C0 , B′

1 〉
〈C0 |C′

1 , B′
1 〉 〈C1 |C1 , B2 〉 〈C′

1 |C1 , B2 〉 〈C1 |C′
1 , B2 〉

〈C′
1 |C′

1 , B′
2 〉 〈C′

1 |C0 , B1 〉 〈C0 |C′
1 , B1 〉

It is easy to check, by referring to Def. 1, that this relation is indeed an MT–
relation, whence C0 |C0

�∼mt B0. Vice versa, B0
�∼mt C0 |C0 does not hold accord-

ing to Def. 1, since C0 |C0 can engage in the transition sequence C0 |C0
in−→ in−→

σ−→ out−→ out−→, which cannot be matched by B0. Thus, the two–cells system is faster
than the two–place buffer in all contexts, although functionally equivalent, which
matches our intuition mentioned above.

Another example, which compares the speeds of different forms of mail deliv-
ery and originates in [20], can be adapted from our earlier work on faster–than
relations for processes with upper time bounds [17]. This adaptation only re-
quires one to interpret σ–prefixes as lower time bounds instead of upper time
bounds. The axiomatic reasoning may then proceed as in [17], which only em-
ploys axioms that are part of the axiom system presented in Sec. 5, too.

7 Abstracting from Internal Computation

As usual in process algebra, one wishes to coarsen a semantic theory by abstract-
ing from the internal action τ , which is supposed to be hidden from an external
observer. While doing this is usually quite straightforward for CCS–based cal-
culi [18], it turns out to be highly non–trivial here, which we guess may be the
reason why it has not been attempted by Moller and Tofts in [20].

We start off by defining a weak version of our reference preorder, the amor-
tized faster–than preorder, which requires us to introduce the following auxiliary
notations. For any action α we define α̂ =df ε, if α = τ , and α̂ =df α, otherwise.
Further, we let ε=⇒ =df

τ−→∗
and write P

γ
=⇒ Q, where γ ∈ A ∪ {σ}, if there

exist R and S such that P
ε=⇒ R

γ−→ S
ε=⇒ Q. We also let σ=⇒0

stand for ε=⇒.

Definition 15 (Weak amortized faster–than preorder). A family (Ri)i∈N

of relations over P is a family of weak faster–than relations if, for all i ∈ N,
〈P, Q〉 ∈ Ri, and α ∈ A:
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1. P
α−→ P ′ implies ∃Q′, k, k′. Q σ=⇒k α̂=⇒ σ=⇒k′

Q′ and 〈P ′, Q′〉 ∈ Ri+k+k′ .

2. Q
α−→ Q′ implies ∃P ′, k, k′. k+k′ ≤ i, P

σ=⇒k α̂=⇒ σ=⇒k′
P ′ and

〈P ′, Q′〉 ∈ Ri−k−k′ .

3. P
σ−→ P ′ implies ∃Q′, k≥0. k ≥ 1−i, Q

σ=⇒k
Q′, and 〈P ′, Q′〉 ∈ Ri−1+k.

4. Q
σ−→ Q′ implies ∃P ′, k≥0. k ≤ i+1, P

σ=⇒k
P ′, and 〈P ′, Q′〉 ∈ Ri+1−k.

We write P �≈i Q if 〈P, Q〉 ∈ Ri for some family of weak faster–than rela-
tions (Ri)i∈N, and call �≈0 the weak amortized faster–than preorder.

Relation �≈0 is indeed a preorder; while reflexivity is obvious, establishing transi-
tivity is simple but nontrivial. The best way of proving transitivity is by showing
that Rk =df { �≈i ◦ �≈j | i+j = k }, for k ∈ N, is a family of weak faster–than
relations. Moreover, one may check that (�≈i)i∈N is the (componentwise) largest
family of weak faster–than relations.

Our weakening of the amortized faster–than preorder might appear surprising

at first sight, due to the presence of σ=⇒k′
trailing weak action transitions on the

right–hand side of the definition. As usual for weak bisimilarity, one may have
a number of internal transitions before and after a matching action transition,
and to get to these trailing internal transitions one may need to pass further
clock transitions.

As in the strong case, it is easy to see that �≈0 is not a precongruence, even
not for parallel composition. To identify the largest precongruence contained
in �≈0, one may be tempted to first define a straightforward weak variant of the
MT–preorder (with Cond. (3’)) and hope that this preorder is included in �≈0,
and is compositional for all operators except summation. This definition would
impose the following conditions on the notion of a weak MT–relation R ⊆ P×P:

1. P
α−→ P ′ implies ∃Q′, k, P ′′, k′. Q

σ=⇒k α̂=⇒ σ=⇒k′
Q′, P ′ σ=⇒k+k′

P ′′, and
〈P ′′, Q′〉 ∈ R.

2. Q
α−→ Q′ implies ∃P ′. P α̂=⇒ P ′ and 〈P ′, Q′〉 ∈ R.

3. P
σ−→ P ′ implies ∃Q′, P ′′, k. Q

σ=⇒k
Q′, P ′ σ=⇒k−1

P ′′, and 〈P ′′, Q′〉 ∈ R.
4. Q

σ−→ Q′ implies ∃P ′. P σ=⇒ P ′ and 〈P ′, Q′〉 ∈ R.

Unfortunately, this preorder is not even included in �≈0, nor is it included in
any other desirable weak faster–than preorder. The reason for this is that, e.g.,
τ.(τ.a.0 + τ.b.0) would be deemed faster than a.0; in particular, the first τ–
transition of the faster process to τ.a.0 + τ.b.0 can be matched by a.0 σ−→ a.0
and choosing τ.a.0 + τ.b.0 τ−→ a.0 σ−→ a.0. However, τ.(τ.a.0 + τ.b.0)� �≈0 a.0, as

the transition sequence τ.(τ.a.0 + τ.b.0) τ−→ τ.a.0 + τ.b.0 τ−→ b.0 b−→ 0 cannot
be matched by process a.0. This example indicates that one should demand, in

Cond. (1), P ′ σ−→k+k′
P ′′. Similarly, the example σ.(τ.a.0 + τ.b.0) and σ.τ.a.0

shows that Cond. (3) should be modified to demand P ′ σ−→k−1
P ′′. Furthermore,

exploring compositionality for parallel composition suggests also in Cond. (4)
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P
σ−→ P ′ (cf. proof of Prop. 18), which implies that we may simply write Q

σ−→
Q′ and 〈P ′, Q′〉 ∈ R in Cond. (3) as well. This leads to the following definition
of a weak Moller–Tofts preorder.

Definition 16 (Weak MT–preorder). A relation R ⊆ P ×P is a weak MT–
relation if, for all 〈P, Q〉 ∈ R and α ∈ A:

1. P
α−→ P ′ implies ∃Q′, k, P ′′, k′. Q σ=⇒k α̂=⇒ σ=⇒k′

Q′, P ′ σ−→k+k′
P ′′, and

〈P ′′, Q′〉 ∈ R.
2. Q

α−→ Q′ implies ∃P ′. P α̂=⇒ P ′ and 〈P ′, Q′〉 ∈ R.
3. P

σ−→ P ′ implies ∃Q′. Q σ−→ Q′ and 〈P ′, Q′〉 ∈ R.
4. Q

σ−→ Q′ implies ∃P ′. P σ−→ P ′ and 〈P ′, Q′〉 ∈ R.

We write P �≈mtQ if 〈P, Q〉 ∈ R for some weak MT–relation R, and call �≈mt the
weak MT–preorder.

We first show that �≈mt is a preorder. While reflexivity is obvious, it is difficult to
see whether �≈mt is transitive, i.e., whether �≈mt ◦ �≈mt ⊆ �≈mt holds. In order to
prove transitivity, we first note that �≈mt satisfies the property �∼mt ◦ �≈mt ⊆ �≈mt,
to which we refer as quasi–transitivity. Next, we establish an important technical
lemma for which we need to introduce some notation. For w, w′ ∈ (A ∪ {σ})∗
we write w ≡v w′ if w�Λ∪Λ = w′

�Λ∪Λ
. Intuitively, w ≡v w′ if the words w, w′ are

visibly equivalent, i.e., if they are identical up to occurrences of σ and τ . We
also let |w|σ denote the number of occurrences of σ in w.

Lemma 17. Let Q, Q′, R ∈ P and w ∈ (A ∪ {σ})∗ with Q �≈mt R and Q
w−→

Q′. Then there exists some Q′′, l, R′, w′′ such that w ≡v w′′, |w′′|σ = |w|σ+ l,

Q′ σ−→l
Q′′, R

w′′−→ R′, and Q′′ �≈mt R′.

Proof. The proof is by induction on the structure of word w. If w = ε, then the
statement holds trivially. If w = σv for some v ∈ (A∪{σ})∗, then one may easily
prove the statement by referring to the induction hypothesis. Hence, we are left
with the case w = αv. Thus, let process Q̂ be such that Q

α−→ Q̂
v−→ Q′. By

Cond. (1) of Def. 16, there exist processes R′′, Q̂′, a number l̂, and a word wα with

wα ≡v α, |wα|σ = l̂, R
wα−→ R′′, Q̂

σ−→l̂
Q̂′, and Q̂′�≈mtR

′′. Due to the laziness

property, there exists some Q′′′ with Q′ σ−→l̂
Q′′′. We may now apply Lemma 3(2)

to obtain a process Q̂′′′ satisfying Q̂
σ−→l̂

Q̂′ v−→ Q̂′′′ and Q′′′�∼mtQ̂
′′′. Applying

the induction hypothesis to Q̂′, v, R′′ yields processes Q̂′′, R′, a number l′, and a

word v′ fulfilling the conditions v ≡v v′, |v′|σ = |v|σ+l′, Q̂′′′ σ−→l′
Q̂′′, R′′ v′−→ R′,

and Q̂′′�≈mtR
′. Since Q′′′�≈mtQ̂

′′′ and Q̂′′′ σ−→l′
Q̂′′ we know by Cond. (4) of Def. 1

of the existence of some process Q′′ such that Q′′′ σ−→l′
Q′′ and Q′′�∼mtQ̂

′′. Thus,
Q′′ �∼mt Q̂′′ �≈mt R′ and, by quasi–transitivity, Q′′ �≈mt R′. By setting w′′ =df wαv′

and l =df l̂ + l′ we are done. 
�
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Using this lemma we may now prove the transitivity of the weak MT–preorder.

Proof. (of property �≈mt ◦ �≈mt ⊆ �≈mt) It is sufficient to show that �≈mt ◦ �≈mt is
a weak MT–relation. Let P �≈mt Q �≈mt R for some processes P, Q, R. We focus
only on Cond. (1) of Def. 16, since all other conditions are trivial to estab-
lish. Let P

α−→ P ′, for which the premise P �≈mt Q implies the existence of

some Q′, k, P ′′, k′ such that Q
σ=⇒k α̂=⇒ σ=⇒k′

Q′, P ′ σ−→k+k′
P ′′, and P ′′ �≈mt Q′.

Further, we apply Lemma 17 to obtain w′′∈(A ∪ {σ})∗, l∈N, Q′′∈P, and R′∈P
such that w′′ ≡v α̂, |w′′|σ = k+k′+l, Q′ σ−→l

Q′′, R
w′′−→ R′, and Q′′ �≈mt R′.

Finally, Cond. (4) of Def. 16 guarantees the existence of some P ′′′ such that

P ′′ σ−→l
P ′′′ and P ′′′ �≈mt

Q′′. Hence, R
σ=⇒l′ α̂=⇒ σ=⇒l′′

R′ for some l′, l′′∈N with
l′+l′′ = k+k′+l, and P ′′′ �≈mt Q′′ �≈mt R′, as desired. 
�
It is obvious from Defs. 1 and 16 that the MT–preorder �∼mt is a weak MT–
relation and hence included in the weak MT–preorder �≈mt. Further, �≈mt is
included in the weak amortized faster–than preorder �≈0, since one may prove

that Ri =df {〈P, Q〉 |P σ−→i
P ′�≈mtQ} is a family of weak faster–than relations.

Proposition 18. The weak MT–preorder �≈mt is compositional for all TACSlt

operators except summation.

Proof. We restrict ourselves to the most interesting case of verifying compo-
sitionality of �≈mt with respect to parallel composition. To do so, we show
that R =df {〈P1|P2, Q1|Q2〉 |P1

�≈mtP2, Q1
�≈mtQ2} is a weak MT–relation. Let

〈P1|P2, Q1|Q2〉 ∈ R be arbitrary.
The only difficult part of the proof concerns establishing Cond. (1) of Def. 16

in the case of synchronization. Let P1|P2
τ−→ P ′

1|P ′
2 for processes P ′

1, P
′
2, due

to P1
a−→ P ′

1 and P2
a−→ P ′

2 for some visible action a. Since P1
�≈mtQ1 we

know of the existence of some Q′
1, k, P ′′

1 , k′ such that Q1
σ=⇒k a=⇒ σ=⇒k′

Q′
1,

P ′
1

σ−→k+k′
P ′′

1 , and P ′′
1

�≈mt Q′
1. Similarly, since P2

�≈mt Q2 we know of the ex-

istence of some Q′
2, l, P

′′
2 , l′ such that Q2

σ=⇒l a=⇒ σ=⇒l′
Q′

2, P ′
2

σ−→l+l′
P ′′

2 , and
P ′′

2
�≈mt Q′

2. We distinguish the following cases:

– k = l: W.l.o.g. we further assume k′ ≥ l′. Due to the laziness property

in TACSlt there exists some Q′′
2 with Q′

2
σ−→k′−l′

Q′′
2 and, because of

P ′′
2

�≈mtQ
′
2, there exists some P̂ ′′

2 such that P ′′
2

σ−→k′−l′
P̂ ′′

2 and P̂ ′′
2

�≈mtQ
′′
2 .

Then, Q1|Q2
σ=⇒k τ=⇒ σ=⇒k′

Q′
1|Q′′

2 and P ′
1|P ′

2
σ−→k+k′

P ′′
1 |P̂ ′′

2 by our opera-
tional rules, and 〈P ′′

1 |P̂ ′′
2 , Q′

1|Q′′
2〉 ∈ R by the definition of R, as desired.

– k �= l: W.l.o.g. we assume k > l. We refer to the process between the weak

clock transitions and the weak action transition on the path Q2
σ=⇒l a=⇒ σ=⇒l′

Q′
2 as Q̂2. Because of the laziness property in TACSlt and since P ′′

2
�≈mt Q′

2,

there exist processes P̂ ′′
2 , Q̂′

2 satisfying P ′′
2

σ−→k−l
P̂ ′′

2 , Q′
2

σ−→k−l
Q̂′

2 and
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P̂ ′′
2

�≈mt Q̂′
2. (This is the place in this proof we referred to in the last few lines

before Definition 16.) We may now apply Lemma 3(2) to obtain some Q̂′′
2

such that Q̂2
σ−→k−l a=⇒ σ=⇒l′

Q̂′′
2 and Q̂′

2
�∼mt

Q̂′′
2 . Now, P̂ ′′

2
�≈mt

Q̂′
2

�∼mt
Q̂′′

2 ,
whence P̂ ′′

2
�≈mt Q̂′′

2 because of �∼mt ⊆ �≈mt and the transitivity of �≈mt. Now,
we are in the case k = l. 
�

As expected for a CCS–based process calculus, �≈mt is not a precongruence for
summation, but the summation fix used for other bisimulation–based timed pro-
cess algebras proves adequate for TACSlt, too.

Definition 19 (Weak MT–precongruence). A relation R ⊆ P×P is a weak
MT–precongruence relation if, for all 〈P, Q〉 ∈ R and α ∈ A:

1. P
α−→ P ′ implies ∃Q′, k, P ′′, k′. Q σ=⇒k α=⇒ σ=⇒k′

Q′, P ′ σ−→k+k′
P ′′, and

P ′′ �≈mt Q′.
2. Q

α−→ Q′ implies ∃P ′. P α=⇒ P ′ and P ′ �≈mt Q′.
3. P

σ−→ P ′ implies ∃Q′. Q σ−→ Q′ and 〈P ′, Q′〉 ∈ R.
4. Q

σ−→ Q′ implies ∃P ′. P σ−→ P ′ and 〈P ′, Q′〉 ∈ R.

We write P �

�mt
Q if 〈P, Q〉 ∈ R for some weak MT–precongruence relation R,

and call �

�mt
the weak MT–precongruence.

Again, �

�mt
is a preorder and the largest weak MT–precongruence relation. It is

worth pointing out that the strong faster–than precongruence �∼mt is contained
in the weak faster–than precongruence �

�mt
, which follows by inspecting the

respective definitions. The recursive definition of the weak MT–precongruence
employed in (3) and (4) above reflects the fact that clock transitions do not
resolve choices.

Theorem 20. �

�mt
is the largest precongruence contained in �≈mt.

Proof. The proof of compositionality of this preorder regarding the TACSlt

operators is quite standard, except for the parallel composition operator that
needs to be treated as for the weak MT–preorder before. Containment is proved
by showing that �

�mt
∪ �≈mt is a weak MT–relation.

We are left with establishing the “largest” claim. From universal algebra we
know that the largest precongruence �≈

c

mt in �≈mt exists and also that �≈
c

mt =
{〈P, Q〉 | ∀C[x]. C[P ] �≈mt C[Q]}. Since �

�mt
is a precongruence that is contained

in �≈mt, the inclusion �

�mt
⊆ �≈

c

mt holds. Thus, it remains to show �≈
c

mt ⊆ �

�mt
.

Consider the relation �

�

aux

mt
=df {〈P, Q〉 |P +c.0 �≈mt Q+c.0 , where c /∈ sort(P )∪

sort(Q)}. By definition of �

�

aux

mt
we have �≈

c

mt ⊆ �

�

aux

mt
. We establish the other in-

clusion �

�

aux

mt
⊆ �

�mt
by proving that �

�

aux

mt
is a weak MT–precongruence relation.

Let P �

�

aux

mt
Q, i.e., P + c.0 �≈mt

Q + c.0, and distinguish the following cases.
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– Action transitions: Let P
α−→ P ′, i.e., α �= c and P + c.0 α−→ P ′ by

Rule (Sum1). Since P �

�

aux

mt
Q we conclude the existence of some process R and

k, k′ ∈ N satisfying Q + c.0 σ=⇒k α̂=⇒ σ=⇒k′
R, P ′ σ−→k+k′

P ′′ and P ′′ �≈mt R.
Since P ′′ cannot perform a c–transition, Q + c.0 must have performed some

action from Q to become R; we conclude Q
σ=⇒l α=⇒ σ=⇒l′

R with l+l′ = k+k′.
The reverse case, where process Q engages in an action transition, is straight-
forward, as Conds. (2) of Defs. 16 and 19 coincide with the ones for obser-
vation equivalence and observation congruence in CCS [18].

– Clock transitions: Let P
σ−→ P ′. By Rules (tAct) and (tSum), P + c.0 σ−→

P ′ + c.0 holds. Since P �

�

aux

mt
Q we know of the existence of some process R

such that Q + c.0 σ−→ R and P ′ + c.0 �≈mt
R. As clock derivatives are unique

we have R ≡ Q′ + c.0 for some Q′ satisfying Q
σ−→ Q′. Because c is a

distinguished action not in the sorts of P ′ and Q′ we may further conclude
P ′ �

�

aux

mt
Q′, as desired. The other case, where process Q engages in a clock

transition, is analogous.

This shows that �

�

aux

mt
is a weak MT–precongruence relation. Hence, �

�

aux

mt
⊆ �

�mt
,

as desired. 
�

It remains an open question whether the weak MT–precongruence is also the
largest precongruence contained in the weak amortized faster–than preorder.
Our attempts of finding a suitable context for proving this full–abstraction result
have been unsuccessful so far. Nevertheless we believe in the validity of such a
result and are optimistic to identify a simpler formulation of the weak MT–
preorder, referring to fewer internal computation steps, from which the desired
context may be derived.

8 Related Work

Although there is a wealth of literature on timed process algebras [6], little
work has been done in developing theories for relating processes with respect
to speed. The approaches closest to ours are obviously the one by Moller and
Tofts regarding processes equipped with lower time bounds [20], and our own
one regarding processes equipped with upper time bounds [17]. As these have
been referred to and discussed throughout, we refrain from repetitions here.

The probably best–known related work focuses on comparing process effi-
ciency rather than process speed. Arun–Kumar and Hennessy [3, 4] have devel-
oped a bisimulation–based theory for untimed processes that is based on counting
internal actions, which was later carried over to De Nicola and Hennessy’s testing
framework [12] by Natarajan and Cleaveland [21]. In these theories, runs of par-
allel processes are seen to be the interleaved runs of their component processes.
Consequently, e.g., (τ.a.0 | τ.a.b.0) \ {a} is as efficient as τ.τ.τ.b.0, whereas, in
our setting, (σ.a.0 |σ.a.b.0) \ {a} is strictly faster than σ.σ.τ.b.0.
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The sparse work on comparing process speeds largely concentrated on worst–
case timing behavior on the basis of upper time bounds. Research by Vogler et
al. [16, 23] originally employed the concurrency–theoretic framework of Petri
nets and testing semantics; it has only recently been carried over to the process
algebra PAFAS [11] and is discussed in [17]. Simultaneously, Corradini et al. [10]
pursued a different idea for relating processes with respect to speed, which is
known as the ill–timed–but–well–caused approach [2, 13]. This approach allows
system components to attach local time stamps to actions. Since actions may
occur as in an untimed process algebra, local time stamps may decrease within
a sequence of actions which is exhibited by several processes running in parallel.
The presence of these “ill–timed” runs makes it difficult to relate the faster–than
preorder of Corradini et al. to the one of Moller and Tofts; a modified approach
restricting attention to “well–timed” behaviour might allow some insight.

9 Conclusions and Future Work

In previous work [17], the authors investigated bisimulation–based preorders that
relate the speeds of asynchronous processes relative to given upper time bounds,
specifying when actions have to be executed at the latest. The present paper
considered the case of lower time bounds, specifying when actions may be exe-
cuted at the earliest, by revisiting the seminal approach of Moller and Tofts [20].
Although Moller and Tofts’ work was published more than a decade ago and the
first one to introduce a faster–than relation in timed process algebra, it was never
followed up in the literature — except for [1] where characteristic formulae are
provided. One reason for this might be the absence of strong theoretical results,
including the absence of a compositionality result for arbitrary processes, of a
full–abstraction result, and of a complete axiomatization for finite processes, as
well as the bleak picture drawn in [20] for achieving such results elegantly.

This paper established these nontrivial results by introducing some novel
process–algebraic techniques, including a commutation lemma between action
and clock transitions. In particular, we proved a full–abstraction theorem with
respect to a very intuitive amortized preorder that uses bookkeeping for deciding
whether one process is faster than another. In addition, an expansion law was
established for finite processes, which paved the way for a sound and complete
axiomatization of the Moller–Tofts preorder. This not only testifies to the nature
of the MT–preorder but also highlights its importance among the sparse related
work in the field. Last, but not least, a variant of the MT–preorder that abstracts
from internal, unobservable actions was studied.

Future work should proceed along three directions. First, we wish to complete
the theory for our weak MT–precongruence by establishing the conjectured full–
abstraction result. Second, the developed preorders should be implemented in a
formal verification tool, such as the Concurrency Workbench NC [9]. Third, we
intend to integrate our theory for lower time bounds with our earlier work on
upper time bounds [17], thereby exploring the appropriateness of our faster–than
approaches for settings with restricted asynchrony.
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[1] L. Aceto, A. Ingólfsdóttir, M.L. Pedersen, and J. Poulsen. Characteristic formulae
for timed automata. RAIRO, Theoretical Informatics and Applications, 34:565–
584, 2000.

[2] L. Aceto and D. Murphy. Timing and causality in process algebra. Acta Inform.,
33(4):317–350, 1996.

[3] S. Arun-Kumar and M.C.B. Hennessy. An efficiency preorder for processes. Acta
Inform., 29(8):737–760, 1992.

[4] S. Arun-Kumar and V. Natarajan. Conformance: A precongruence close to bisim-
ilarity. In STRICT ’95, Workshops in Comp., pp. 55–68. Springer-Verlag, 1995.

[5] E. Badouel and P. Darondeau. On guarded recursion. TCS, 82(2):403–408, 1991.
[6] J.C.M. Baeten and C.A. Middelburg. Process algebra with timing: Real time and

discrete time. In Bergstra et al. [7], ch. 10, pp. 627–684.
[7] J.A. Bergstra, A. Ponse, and S.A. Smolka, eds. Handbook of Process Algebra.

Elsevier Science, 2001.
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