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LANGUAGES OF FINITE WORDS OCCURRING
INFINITELY MANY TIMES IN AN INFINITE WORD

Klaus Thomsen
1

Abstract. We give necessary and sufficient conditions for a language
to be the language of finite words that occur infinitely many times in
an infinite word.

Mathematics Subject Classification. 37B10, 68R15.

1. Introduction

In dynamical systems there is a notion of ω-limits of a point or set of points,
which is fundamental for several important parts of the theory. The omega limit
set ω(x) of a point x in a dynamical system consists of the points all of whose
neighbourhoods are visited infinitely many times under the iteration of the map,
starting at the point x. The present work arose from the need to determine the
structure of the ω-limit set of a point in a one-sided shift space. Since ω(x) is al-
ways a closed invariant subset of the dynamical system, the ω-limit set of a point
of a one-sided shift space is itself a shift space, and can therefore equally well be
considered as a language. The well-known bijective correspondance between shift
spaces and a particular class of languages makes it possible, and also helpful to
consider the question in its language-theoretic guises. It then takes the following
form: which languages arise as the language of the finite words occurring infinitely
many times in an infinite word? In this form the question was addressed in [6],
together other related questions. We will show here that the languages in question
are those that are infinite, factorial, and chain transitive. “Infinite” means that
the language must contain infinitely many words, and “factorial” is the familiar
condition that the language must be stable under the passage to subwords, while
the third condition, “chain transitivity” may be new in the language setting, al-
though its dynamical systems-equivalent is well established. Given these three
necessary and sufficient conditions, it is easy to see that many regular languages
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can be realized as the language of the finite words occurring infinitely many times
in an infinite word, while just as many can not. We show that there is a finite
algorithm from which it is easy to determine if a given finite automaton, with all
states initial and final, will give rise to a language of finite words occurring infin-
itely many times in an infinite word, or not. In this sense, the question is certainly
decidable for regular languages. Finally, we answer onother question about lan-
guages arising from infinite words which was explicitly stated as an open problem
in [6]. Other open problems from [6] have been solved in [2] and [4].

2. Terminology and basic definitions

Let A be a finite alphabet. The set of finite words in A (including the empty
word) will be denoted by A∗, and the length of a word u ∈ A∗ will be denoted
by |u|. An infinite word in the alphabet A is formally a function N → A, and is
presented as a right-infinite string of letters from the alphabet. The set of infinite
words in A will be denoted by AN. The shift σ acts on AN in the usual way:

σ (a1a2a3a4 . . . ) = a2a3a4a5 . . .

When u ∈ A∗ and a = a1a2 · · · ∈ A∗ ∪ AN, we write u ⊆ a to mean that u =
ai+1ai+2 . . . ai+|u| for some i, and we let p(a) ⊆ A∗ be the set of prefixes of a, and
s(a) ⊆ A∗ the set of suffixes of a, provided of course that a ∈ A∗. When a ∈ AN,
we let L∞(a) denote the language consisting of the finite words occurring infinitely
many times in a, i.e.

L∞(a) =
{
u ∈ A∗ : u = ai+1ai+2ai+3 . . . ai+|u| for infinitely many i

}
.

When investigating the structure of such a language, it is natural to consider
two cases separately. An element a ∈ AN is recurrent when every finite word
which appears in a must appear infinitely many times, i.e. when L∞(a) =
{u ∈ A∗ : u ⊆ a}. We will say that a is eventually recurrent when σk(a) is recur-
rent for some k ∈ N. A language L in the alphabet A is transitive
when w1, w2 ∈ L ⇒ ∃u ∈ A∗ : w1uw2 ∈ L. We call L factorial when u ⊆
w ∈ L ⇒ u ∈ L.

3. The language used to write a recurrent infinite word

Proposition 3.1. Let L be a non-empty language in the finite alphabet A. Then
the following are equivalent:

1) L = L∞(a) for an infinite word a ∈ AN which is eventually recurrent.
2) L is factorial and transitive.
3) L = L∞(a) for an infinite word a ∈ AN which is recurrent.

Proof. 1) ⇒ 2): it is obvious that L is factorial. Choose k ∈ N such that σk(a)
is recurrent. Let w1, w2 ∈ L. Since both words occur infinitely often in a, there
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are occurrences of both words in σk(a) such that w2 is strictly to the right of w1.
It follows that there is a word u ∈ A∗ such that w1uw2 ⊆ σk(a). Since σk(a)
is recurrent, w1uw2 must occur infinitely often in σk(a), and therefore also in a.
Thus w1uw2 ∈ L.

2) ⇒ 3): let w1, w2, w3, . . . be any numbering of the non-empty words in L.
Since L is transitive we can choose words ai ∈ A∗ such that
w1a1w2a2w3a3 . . . an−1wn ∈ L for all n. Then

x = w1a1w2a2w3a3 · · · ∈ AN

is an infinite word in A, and L∞(x) ⊆ L because L is factorial. To see that
L = L∞(x), it suffices to consider i, j ∈ N and show that there is a k ≥ j such
that wi ⊆ wk. To this end note that wi ⊆ w1a1w2a2 . . . am−1wm ∈ L, when
m = max{i, j}, and that w1a1w2a2 . . . am−1wm = wk for some k, which must be
larger than j since |wk| > |wl| for all l ≤ j. It remains only to show that x is
recurrent, i.e. that every prefix of x occurs infinitely many times in x. But a prefix
of x is contained in w1a1w2a2w3a3 . . . an−1wn for some n and must therefore be a
word in L since L is factorial. Thus any prefix of x must equal wi for some i, and
each wi occurs infinitely many times in x, as we have just seen.

3) ⇒ 1) is trivial. �

4. When the infinite word is not eventually recurrent

We turn to the case of infinite words that are not eventually recurrent. Let L
be a factorial language in the finite alphabet A. Set

�L = {w ∈ A∗ : w /∈ L}.
An element u ∈ �L is minimal when w ∈ A∗, w ⊆ u, |w| < |u| ⇒ w ∈ L. The set of
minimal words in �L will be denoted by MIN

(
�L

)
. We say that L is of finite type

when # MIN
(
�L

)
< ∞. Let w, v ∈ L. A tile from w to v in L is a word u ∈ L

such that w ∈ p(u) and v ∈ s(u). Such a tile will be denoted symbolically by

w
u→ v,

or simply by w → v, when we don’t need to specify the word u. A path from w
to v in L is a sequence of tiles

w0
u1→ w1

u2→ w2
u3→ . . . . . .

uN→ wN+1

such that w = w0, v = wN+1, and |wi| ≥ min{|w|, |v|} for all i = 1, 2, . . . , N . We
say that L is chain transitive when every pair of words in L can be connected by
a path.

Lemma 4.1. Let L be an infinite language which is chain transitive. Then L
is prolongable, in the sense that for every word a1a2 . . . an ∈ L there are letters
a0, an+1 ∈ A such that a0a1a2 . . . anan+1 ∈ L.



644 K. THOMSEN

Proof. Left to the reader. �

Lemma 4.2. Assume that L is a factorial language in A. Let w, v ∈ L and
assume that there is a path from w to v in L. Let y be a word in A∗ such that
w ∈ s(y). It follows that there is a word x ∈ A∗ such that y ∈ p(x), v ∈ s(x) and

u ⊆ x,
u � y,
|u| < min{|w|, |v|}





⇒ u ∈ L. (4.1)

Proof. Assume first that that w
u→ v. Write u = u1u2 . . . un such that w =

u1u2 . . . u|w| and v = un−|v|+1un−|v|+2 . . . un. Then x = yu|w|+1u|w|+2 . . . un ∈ A∗

has the property described in (4.1). Proceed by induction. �

Proposition 4.3. Let L be a language in the alphabet A. Then the following are
equivalent:

1) L = L∞(x) for an infinite word x ∈ AN which is not eventually recurrent.
2) L is factorial, infinite, chain transitive and not of finite type.

Proof. 1) ⇒ 2): L is obviously factorial, and it is easy to see that it is also infinite.
(This follows also from Th. 9 of [6].) By deleting a finite prefix of x we may
assume that a ∈ L∞(x) for all a ∈ A. Write x = x0x1x2 . . . We claim that there
are sequences i0 < i1 < i2 < . . . in N and s0, s1, s2, . . . in MIN

(
�L

)
such that

sk = xik+1xik+2 . . . xik+|sk|, (4.2)

for all k, and
xik−1+2xik−1+3 . . . xik+|sk|−1 ∈ L (4.3)

for all k ≥ 1. We construct these two sequences by induction. So assume that we
have found a string s0, s1, . . . , sn in MIN

(
�L

)
and i0 < i1 < · · · < in in N such

that (4.2) holds for all k ≤ n and (4.3) holds for all 1 ≤ k ≤ n. Since the infinite
word xin+2xin+3xin+4 . . . is not recurrent, there is an N > in + |sn| such that
xin+2xin+3 . . . xN /∈ L∞(x). Set

d = min {j ∈ N : j ≥ in + 2 and xin+2xin+3 . . . xj /∈ L∞(x)} .

Then in + 2 < d ≤ N , and in + |sn| < d since sn ∈ MIN
(
�L

)
. Furthermore,

xin+2xin+3 . . . xd−1 ∈ L. Set

in+1 = max {j ≤ d : xj+1xj+2 . . . xd /∈ L∞(x)} ,

and note that in +1 ≤ in+1. It follows that sn+1 = xin+1+1xin+1+2xin+1+3 . . . xd ∈
MIN

(
�L

)
. This completes the construction. Note that an si can only occur finitely

many times in the sequence since otherwise it would be an element of L∞(x). It
follows that

lim
i→∞

|si| = ∞. (4.4)
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In particular, we conclude from this that # MIN
(
�L

)
= ∞, i.e. L is not of

finite type. Next we use the sk’s to prove that L is chain transitive. Let w
and v be non-empty words in L. Note that w can not contain any element from
MIN

(
�L

)
because L is factorial. Since w occurs in x, there must be an r ∈ N

such that w ⊆ xir−1+2xir−1+3 . . . xir+|sr |−1; specifically w = xaxa+1 . . . xb, where
ir−1 +2 ≤ a ≤ b ≤ ir + |sr|−1. Furthermore, since w occurs infinitely many times
in x, it follows from (4.4) that we can arrange that |sj| ≥ min{|w|, |v|} + 3 for
all j ≥ r. Similar considerations apply to v, so we see that there is a t > r such
that v ⊆ xit−1+2xit−1+3 . . . xit+|st|−1. It suffices therefore to show that for any
non-empty word w′′ ⊆ xkxk+1 . . . xir+1+|sr+1|−1, where k = max {a, ir + 2}, with
|w′′| ≥ min {|w|, |v|}, there are tiles w → w′ → w′′ such that |w′| ≥ min {|w|, |v|},
or a tile such that w → w′′. To this end, let w′′ = xkxk+1 . . . xir+1+|sr+1|−1. If
a < ir + 2, set u2 = xir+2xir+3 . . . xir+1+|sr+1|−1, u1 = xaxa+1 . . . xir+|sr |−1 and
w′ = xir+2xir+3 . . . xir+|sr|−1. Then

w
u1→ w′ u2→ w′′.

If a ≥ ir +2, set u = xaxa+1 . . . xir+1+|sr+1|−1, and note that w
u→ w′′ in this case.

It follows that L = L∞(x) is chain transitive.
2) ⇒ 1): since L is not of finite type, there is a sequence s0, s1, s2, . . . of distinct

elements in MIN
(
�L

)
, all of length at least 3. Let w0, w1, w2, w3, . . . be a list of

the non-empty words in L. For convenience we arrange the sequences such that
|si| ≤ |si+1| and |wi| ≤ |wi+1| for all i. Note that limk→∞ |sk| = limk→∞ |wk| = ∞.
For every word x = a1a2 . . . an ∈ A∗ of length n ≥ 3, let m(x), l(x) and r(x) denote
the words m(x) = a2a3 . . . an−1, l(x) = a1a2 . . . an−1 and r(x) = a2a3 . . . an,
respectively. Then m(si), l(si), r(si) ∈ L for all i. Since L is chain transitive there
is, for each i, a path from r(si) to wi+1 and from wi+1 to l (si+1). We use these
paths to construct a sequence of words, a1, a2, a3, · · · ∈ A∗ such that

a) ai ∈ p (ai+1);
b) si ∈ s (a2i);
c) wi ∈ s (a2i−1); and
d)

u ⊆ aj ,
u � a2i,
|u| < min{|m (si−1)| , |wi−1|}





⇒ u ∈ L,

for all i ≥ 1. The construction proceeds by an induction started by taking a1 = w1.
Assume that a1, a2, . . . , a2n have been constructed. By Lemma 4.2 there is word
a2n+1 ∈ A∗ such that a2n ∈ p(a2n+1), wn+1 ∈ s (a2n+1) and

u ⊆ a2n+1,
u � a2n,
|u| < min{|r (sn)| , |wn+1|}





⇒ u ∈ L.
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Another application of Lemma 4.2 gives us a word y ∈ A∗ such that a2n+1 ∈
p(y), l (sn+1) ∈ s(y), and

u ⊆ y,
u � a2n+1,
|u| < min{|l (sn+1)| , |wn+1|}





⇒ u ∈ L.

Set a2n+2 = yz, where z ∈ A is the last letter in sn+1. Then a2n+1 ∈ p(a2n+2),
sn+1 ∈ s(a2n+2), and

u ⊆ a2n+2,
u � a2n,
|u| < min{|m (sn)| , |wn|}





⇒ u ∈ L.

Thus the desired sequence of ai’s can be constructed by induction. It follows from
condition a) that there is a unique infinite word x ∈ AN such that ai is a prefix
of x for all i. We claim that wi ∈ L∞(x). To see this, note that that wi ⊆ wj for
infinitely many j because L is prolongable by Lemma 4.1. By construction wj ⊆ x
for all j, and we conclude therefore that wi ∈ L∞(x). Thus L ⊆ L∞(x). It follows
from d) that the reversed inclusion also holds. Indeed, if w ∈ L∞(x), we can choose
an i ∈ N so large that min {|m (si−1)| , |wi−1|} > |w|. Since w ∈ L∞(x), there must
be a j > 2i such that w ⊆ aj , but w � a2i. Hence w ∈ L by condition d).

Up to now we haven’t used the presence of the si’s in x. They are needed
now to show that x can not be eventually recurrent: For every k ∈ N there is by
construction an si in xkxk+1xk+2 . . . , and hence L is not equal to {u ∈ A∗ : u ⊆
xkxk+1xk+2 . . .}, and x is therefore not eventually recurrent. �

Lemma 4.4. Let L be a factorial and chain transitive language. Assume that L
is of finite type. It follows that L is transitive.

Proof. Let k ∈ N be larger than the maximal length of a word in MIN
(
�L

)
. It

follows then that every word w of L of length |w| ≥ k is synchronizing, in the sense
that the implication

u, v ∈ A∗,
uw, wv ∈ L

}
⇒ uwv ∈ L (4.5)

holds. Consider then any pair of words w1, w2 ∈ L. Since L is prolongable by
Lemma 4.1 there are words w, v ∈ L such that min {|w|, |v|} ≥ k, w1 ∈ p(w) and
w2 ∈ s(v). Since L is chain transitive there is path from w to v with all tiles longer
than k. It follows then from (4.5) that this path can put together to form a tile
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from w to v. This shows that for any two words, w1 and w2, in L, we can find a
word u ∈ L such that w1 ∈ p(u) and w2 ∈ s(u). Since L is also infinite, it must
be transitive. �

Theorem 4.5. A language L in the finite alphabet A is the language of the words
occurring infinitely many times in an infinite word in A if and only if L is

• infinite;
• factorial; and
• chain transitive.

The infinite word can be chosen to be recurrent if and only if L is transitive.

Proof. Combine Proposition 3.1, Proposition 4.3 and Lemma 4.5. �

Note that it follows from Propositions 3.1 and 4.3 that a language which is
infinite, factorial and transitive, but not of finite type, can be realized as L∞(x),
both with an x which is recurrent and with an x which is not eventually recurrent.

In general it is not so easy to determine if a given language is chain transitive
or not. For regular languages, however, it is quite easy, as we shall explain in the
next section.

5. Which infinite and factorial regular languages are

chain transitive?

A regular and factorial language L can be described as the words recognized
by a finite automatum in which all states are initial and final, cf. Lemma 5 of
[2]. If L is also prolongable, as it must be if it is chain transitive by Lemma 4.1,
it is the language of a sofic shift space, [5], and L consists of the finite words
obtained by “reading” the finite paths in a finite graph without sinks or sources,
where the edges are labeled by the alphabet A, cf. [5]. The question we are
looking at is therefore the following: given a finite graph without sinks or sources
in which the edges are labeled by the letters of the alphabet A, how do we decide if
the corresponding language is chain transitive?

Let G be a finite labeled graph without sinks or sources. Let C1, C2, . . . , CN de-
note the communication classes of vertices in G, cf. Section 4.4 in [5]. For each Ci

we have an irreducible subgraph Gi of G whose vertices are the vertices in Ci and
whose edges consist of the edges from G that go between vertices in Ci. Each Gi

inherits the labeling from G and defines a sub-language Li of the language L de-
fined by G. Each Li is infinite, factorial and transitive. Define an oriented graph G
whose vertices are 1, 2, . . . , N . There is an edge in G from i to j if and only i 
= j
and either # (Li ∩ Lj) = ∞ or there is a path in G from some vertex in Ci to a
vertex in Cj . We call G the graph of chain connected components of G.

Lemma 5.1. Let M be the square of the number of edges in G. Then # (Li ∩ Lj) =
∞ if and only if Li ∩ Lj contains a word of length M .
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Proof. Note that Li ∩ Lj consists of the words labeled by a path in the labeled
graph Hi,j with vertices Ci × Cj , where there is an edge labeled a from (e, f) to
(e′, f ′) if and only if there are edges e → e′ and f → f ′ in Gi and Gj , respectively,
both labeled a. It follows that any path in Hi,j with more that M edges must
contain a loop. �

Proposition 5.2. The language L determined by the labeled graph G is chain tran-
sitive if and only if the graph G of chain connected components of G is irreducible
(i.e. for i 
= j there is a path in G from i to j).

Proof. Assume first that G is irreducible, and consider two words w1, w2 ∈ L. Let
pi be a path in G which label wi, i = 1, 2. By prolonging p1 to the right and p2

to the left, we can obtain two new paths, p3 and p4, respectively, such that the
terminal vertex of p3 is an element of some Ci while the initial vertex of p4 is an
element of some Cj . If i = j, we can connect the two vertices by a path in Gi

and placed together with p3 and p4 we obtain a path in G which label a word
u ∈ L such that w1 ∈ p(u) and w2 ∈ s(u). Thus u is a tile from w1 and w2. If
i 
= j, there is by assumption a path in G from Ci to Cj . Consider the first edge
Ci → Ci′ in this path. If there is a path in G from some vertex in Ci to a vertex
in Ci′ we can proceed as above to obtain a tile u from w1 to a word w′

1 ∈ Li′

with |w′
1| ≥ min{|w1| , |w2|}. If instead # (Li ∩ Li′) = ∞, Li ∩ Li′ must contain

a word w′
1 with |w′

1| ≥ min{|w1| , |w2|}. Let p5 be a path in Gi which label w′
1.

Since Gi is irreducible we can connect p3 with p5 to obtain a tile from w1 to w′
1.

We can therefore proceed through finitely many steps (one step for each of the
edges in the path in G connecting i to j), to get a path from w1 to a word v ∈ Lj

such that |v| ≥ min{|w1| , |w2|}. Since v, w2 ∈ Lj , and Lj is transitive there is
a tile from v to w2. We have thus obtained a path in L from w1 to w2, proving
that L is chain transitive.

Assume then that L is chain transitive, and consider i 
= j in {1, 2, . . . , N}.
Let M be the number from Lemma 5.1. There is an m ∈ N such that any path
in G of length m or more must pass through at least M consecutive edges in one
of the Gk’s. Let w1 ∈ Li, wj ∈ Lj, both of length 2m. Since L is chain transitive
there is a path in L from w1 to w2. Consider the first tile u of the path. This
u is the label of path p in G in which at least M consecutive edges among the
first m edges must pass through one of the Gk’s, say Gi1 . Then # (Li ∩ Li1) = ∞,
so there is an edge i → i1 in G, unless i = i1. Similarly, among the m last edges
in p, at least M consecutive edges must be contained in one of the Gk’s, say Gi2 .
The path p connects therefore the communication classes Ci1 and Ci2 , giving us
an edge i1 → i2 in G, unless i1 = i2. By repeating these arguments, one tile at the
time, we obtain a path i → j in G, proving that this graph is irreducible. �

It is clear from the preceding that there is a finite algorithm which produces the
graph of chain connected components of a given labeled graph. We can therefore
conclude that it is decidable if the language of a given finite automaton with all
states initial and final is the language of finite words occurring infinitely many
times in an infinite word.
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It seems appropriate, as an illustration, to give some simple examples of regular
infinite and factorial languages that are chain transitive, and hence can be realized
as the language of finite words occurring infinitely many times in an infinite word,
and others that are not.

The graph of its chain connected components
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A labeled graph

The languages given by the first and third of the labeled graphs can be real-
ized as the language of finite words occurring infinitely many times in an infinite
word. The others can not. The chain transitive languages of the first and third
of the graphs are not transitive so it follows from Proposition 3.1 that an infinite
word x for which the corresponding language becomes equal to L∞(x) can not be
eventually recurrent.

The reader who is so inclined should have no difficulty in adopting the previ-
ous analysis to find necessary and sufficient conditions for a language to be the
language of finite words occurring infinitely many times in a bi-infinite word.

Remark 5.3. In “Open problem 2” of [6], the authors ask if there is any almost
periodic infinite word w such that the language of the finite words occurring in w
is context-free and not regular. The answer to this question is “No”. Assume
namely that such a word w exists. Since w is almost periodic, the language of
words occurring in w is then also the language of a minimal subshift X , i.e. a
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subshift where all orbits are dense. If the language is context-free, it follows that X
must contain a periodic point, cf. [1] or [3]. Being minimal, X must then equal
the corresponding finite orbit. In particular, the language of X must be regular.
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