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Abstract. We present a novel eye localization method which can be
used in face recognition applications. It is based on two SVM classifiers
which localize the eyes at different resolution levels exploiting the Haar
wavelet representation of the images. We present an extensive analysis
of its performance on images of very different public databases, showing
very good results.
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1. Introduction

Researches on automatic face recognition (FR) started in the seventies, but
had a great impulse in the last decade thanks to the advance in technologies. The
interests for this topic are both scientific and applicative: the former because FR
is a very challenging pattern recognition problem; the latter for its numerous real-
world applications such as human/computer interface, surveillance, and secure
access. Indeed, the usefulness of biometric systems is evident and FR has the ad-
vantage of being non-intrusive, unlike other biometric systems, such as fingerprint
analysis or retinal and iris scan.

A general statement of the face recognition problem can be formulated as fol-
lows: given still or video images of a scene, identify one or more persons using a
stored database of faces.

In the last two decades hundreds of papers dealing with FR have been presented;
Zhao and others reported in [44] both a fundamental survey of the main algorithms,
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and a performance analysis of the most efficient methods that work on still images.
The evaluation has been done adopting a common protocol [30] and referring to a
standard database[14].

This comparison gave two main contributions: first it identified a set of methods
which outperformed the others; second, it clearly identified the conditions in which
the existing algorithms achieve a certain level of success, thus indicating the areas
which require further research.

The best performing algorithms were: the Principal Component Analysis
(PCA) [35], a combined Principal Component Analysis and Linear Discriminant
Analysis (LDA) [43], a Intrapersonal/extrapersonal Image Difference Classifier
(IIDC) [26], and the Elastic Bunch Graph Matching (EBGM) [27]. Since that
comparison, these methods were referred to as standard baselines1.

Regarding the research open problems, the authors observed that even the best
algorithms behave well only on images representing frontal faces, with neutral ex-
pression, acquired under tightly controlled conditions of illumination, and uniform
background. The performance decreases drastically when even one of these con-
ditions is not satisfied. Moreover all the methods need an accurate facial features
(eyes, mouth, and nose) localization to normalize the faces to a common scale,
and to align them precisely. Without accurate localization of the facial features,
robust face recognition cannot be achieved.

Even recent papers [1, 6–8, 16, 24, 31, 40–42], which tackle some of the critical
aspects cited above, do not deal with the feature selection problem. Either im-
plicitly or explicitly, they refer for their initialization to manual annotations of the
facial features, leaving open the issue of their individuation or taking off-the-shelf
solutions. This problem is still indicated as a crucial one [7, 33].

Recently some research works [4, 10, 17, 19, 21, 34, 38] have devoted particular
attention to the problem of eye detection and localization since

• eye appearance is less variant with respect to the other facial features, in
case of pose and expression changes. This allows to define a more robust
pattern to look for;

• eye detection validates the output of a face detector. In fact, even a good
face detector is subject to a certain false acceptance rate and the presence
or absence of eyes is a good criterion to confirm or reject the face detection
output;

• if the detected eyes are precisely localized, the position of the other features
can be easily determined.

Besides, eye localization methods also concern other research fields such as gaze
tracking for man/machine interaction tasks [22], augmenting the importance of
developing a robust, precise and efficient technique.

The method we propose is hierarchical and consists of three subsequent stages:
at first a face detector approximately localizes the position and extension of the

1An efficient implementation and a software environment have been developed [3] to allow
researchers to rigorously compare their new algorithms with the standard ones.
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faces represented in the image; then an eye detector processes the detected sub-
images to roughly individuate the eye positions; finally an eye localizer is applied
to the found positions to further refine the localization precision. Here we focus on
the latter two steps, which can be applied in cascade to any face detector [28,32,37]
that returns a sort of bounding box delimiting each face candidate in the image.

The construction of the eye detector and the eye localizer is similar: both of
them are built as a statistical classifier trained on examples represented via an
overcomplete wavelet decomposition of their respective target patterns. For this
reason we describe the eye detector in detail and then we shortly account for the
specificity of the eye localizer.

The article is organized as follows: in Section 2 we face the problem of selecting
the right features for the eye pattern representation in order to make it more
suitable for classification. Section 3 presents the definition and construction of
the Support Vector Machine (SVM) used for binary classification. Sections 4
and 5 describe respectively the eye detection and the eye localization modules.
Finally, in Section 6 we report the performance of our technique on standard
databases (XM2VTS, Banca, FRGC, and FERET) and we compare it with the
best performing algorithms. This paper includes and significantly extends the
work we published in [5].

2. Feature selection

The difficulty intrinsic to the task of pattern recognition requires an accurate
choice of a suitable representation of the eye pattern. In [5] we have observed that
the wavelet representation is more favorable than the direct representation as it
leads to a smaller generalization error. Indeed, Haar wavelets permit to abstract
the low level features (the information represented by the gray level values of the
pixel) and allow to describe the pattern in terms of luminance changes at different
frequencies, at different positions and along different orientations. Moreover, Haar
coefficients are much faster to compute than other wavelet coefficients.

Ideally the set of coefficients resulting from the analysis of the pattern can be
thought of as composed of two parts: an informative part that condenses most of
the eye shape, plus a non-informative part that contains noise and irrelevant de-
tails. The goal of feature selection is to separate the two parts as much as possible
in order to keep only the relevant features. This yields a better representation of
the pattern because it reduces the dimensionality of the problem by removing the
non-informative coefficients (realizing a sort of denoising of the data) and results
in an easier separation of the positive examples (pattern) from the negative ones
(non pattern).

Our feature selection procedure was inspired by the work of Papageorgiou
et al. [29]. The size of our pattern examples is 16 × 16 pixels: such a dimension
represents a trade off between the necessity to maintain low the computational
cost and to have sufficient details to learn the pattern shape. All the wavelets
have square support and are generated via the application of the one-dimensional
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Figure 1. The shape of the bi-dimensional Haar wavelet coeffi-
cients. From left to right: horizontal, vertical, diagonal.

FWT (Fast Wavelet Transform)

cj−1,k = 1√
2
(cj,2k + cj,2k+1) for k = 0, 1, ..., 2j−1 − 1

dj−1,k = 1√
2
(cj,k − cj,k+1) for k = 0, 1, ..., 2j − 2

⎫⎬
⎭ for j = 4, 3, 2

by alternating the transform along the rows and the columns of the image for each
level j of the wavelet decomposition (the level j = 4 corresponds to the scaling
coefficients of the highest detail level, that is to the original pixels of the image).
This is a modified version of the original FWT because it skips the subsampling
step over the wavelet coefficients dj,k. In fact it is called a denser or overcomplete
transform as it produces four times as many coefficients with respect to the original
one. We desire this redundancy because we want to increase the variety of features
among which to select the most significant.

A bi-dimensional wavelet coefficient do
j,k1,k2 is identified by four parameters:

j is called the detail level and relates to the size of the window over which
the coefficient is calculated (hence it regulates the frequency); (k1, k2) is called
the shift and relates to the position of the coefficient within the image; o ∈
{horizontal, vertical, diagonal} determines the orientation of the edge that is
tested for presence. In Figure 1 we show the shape of the wavelet coefficients
under consideration.

The coefficients cj,k1,k2 are called the scaling coefficients and describe the mean
illumination of the image; we discard them producing a sort of illumination nor-
malization of the pattern examples.

In order to carry out the selection process, we need a way to assess the relative
importance of the coefficients left. This is done via a normalization step: we take
a set L of eye pattern images (|L| = 2152 in our case) and we decompose each
l ∈ L in its wavelet coefficients do

j,k1,k2
(l). For each coefficient do

j,k1,k2
we calculate

its mean value in the sample of patterns:

do
j,k1,k2 =

∑|L|
l=1 |do

j,k1,k2
(l)|

|L|
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and we normalize it with respect to the average mean of its band (i.e. of its detail
level); if we call Bj the band (the set) of all do

j,k1,k2
of level j then

d̃o
j,k1,k2 =

do
j,k1,k2

mj
, where mj =

∑
k1

∑
k2

∑
o do

j,k1,k2

|Bj | ,

represent the normalized coefficients that can be now ordered to assess their rel-
ative importance. Notice that the normalization is done here within the entire
bands and not within each sub-band (a subset of a band whose coefficients have
all the same orientation).

Since the expected value of the sum of all d̃o
j,k1,k2 in the same band is approx-

imately equal to their cardinality2

E

[∑
k1

∑
k2

∑
o

d̃o
j,k1,k2

]
=
∑
k1

∑
k2

∑
o

E

[
do

j,k1,k2

mj

]

≈
∑

k1

∑
k2

∑
o E[do

j,k1,k2 ] · |Bj |
E
[∑

k1

∑
k2

∑
o do

j,k1,k2

] = |Bj |

the normalized coefficients d̃o
j,k1,k2 > 0 can be interpreted as follows:

d̃o
j,k1,k2

⎧⎨
⎩

∼ 1 ⇒ no regularity
� 1 ⇒ systematic uniformity
� 1 ⇒ systematic variation.

Hence the normalization allows us to distinguish two sub-categories of coefficients
that can be ordered separately: C+, the coefficients that are systematically greater
than 1, and C−, those which are systematically smaller than 1. Both of them retain
precious information because they respectively represent the edges of the pattern
that are systematically strong or systematically absent.

The first feature selection is done by not considering the detail level j = 3
because eye patterns are characterized by relatively small frequencies (filters with
long support), while the do

3,k1,k2
correspond to Haar wavelets of support 2×2 pixels;

this first step reduces the number of wavelet coefficients from 849 to 174.
Once separated the 174 normalized coefficients in the ordered sets C+ and C−,

we define an error function to drive the selection process. We can measure the
expressive power of the coefficients by measuring how well they reconstruct the
pattern that they represent. We choose as distance metrics the summation of
the absolute value of the pixelwise difference. The coefficients in C+ are meant to
characterize the eye shape, thus we calculate the distance between the mean eye
pattern and the pattern reconstructed by incrementally adding more and more

2The equality does not hold strictly because the random variables do
j,k1,k2 and mj are not

independent. However they can be assumed to be so, as their correlation is very low (mj depends

on the sum of many do
j,k1,k2).
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Figure 2. Feature selection of coefficients within C+ and C−.

coefficients according to their ordering (from the biggest to the smallest). The
normalized coefficients in C− are evaluated against a uniform pattern because
they represent the absence of detail (now the ordering is from the smallest to the
biggest).

In Figure 2 we plot the error functions as we vary the number of features
maintained. By looking at the trend of the curves we devise an empirical selection
principle: regarding C+ we want to be able to reconstruct at least 90% of the
pattern information while not including uninformative coefficients, therefore we
stop at position 38 (out of 63) just before a “plateau” of the error function (the
following coefficients would not add crucial information). Analogously, for what
concerns C− we intend to exclude about 90% of spurious information meanwhile
stopping the selection just after a plateau; hence we keep 54 coefficients out of 111
(they account for 14% of the difference from the uniform pattern).

Figure 3 visualizes the decomposition of the original pattern and its reconstruc-
tion by only considering the selected features.

3. SVM eye classifier

The Support Vector Machines are the state-of-the-art model for many classifica-
tion tasks. They can be used as a powerful statistical tool for supervised learning
of visual patterns and generate strong classifiers with good discriminative capacity
and high accuracy rate [9, 36]. We put ourselves in the context of binary classifi-
cation where we intend to design and train machines that separate a positive class
from a negative one.

In order to train an SVM we collect a set of labelled example T = {(xi, yi)|i =
1, ..., l} where the label yi ∈ {−1, +1} determines the class of the example xi.
Each example is formed by the selected wavelet coefficients extracted from the
corresponding image. We intend to build a classifier that shows good generalization
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Figure 3. Upper left: the original pattern (16 × 16); lower left:
its decomposition (32×32); upper right: the reconstructed pattern
(16 × 16); lower right: the selected coefficients (32 × 32).

properties without making any assumption on the probability distribution that
generates the training set.

An SVM binary classifier is a linear machine because it is defined as the hy-
perplane that optimally separates the two classes of examples. It is optimal in
the sense that it maximizes the separation margin of the classes (the distance be-
tween the hyperplane and the examples closest to it) by solving the dual quadratic
program

max
α

∑l
i=1 αi − 1

2

∑l
i,j=1 yiyjαiαj

s.t.
∑l

i=1 yiαi = 0
0 ≤ αi ≤ C, i = 1, . . . l.

(1)

The parameter C regulates the “hardness” of the separating surface, that is the
number of training example that can be misclassified in the training phase: by
increasing the value of C the machine accepts fewer and fewer exceptions to the
decision rule (if C is too big there might not exist a separating hyperplane).

The function K(xi,xj) is called the kernel function and is a measure of similar-
ity of the training examples. Some kernel functions induce a non linear mapping
from the example space to a highly dimensional space where the linear separation
can be actually achieved. One function of this type is the Gaussian kernel

K(xi,xj) = e−γ||xi−xj ||2
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that has been successfully used in many techniques devoted to solving difficult
learning tasks. It is defined in terms of the parameter γ = 1

2σ2 that regulates
the width of the Gaussian functions used for the similarity measurement (σ is the
standard deviation of the Gaussian distribution).

The decision function is defined as follows

f(x) = sign (SV M(x)) = sign

( ∑
xi∈SV

yiα
opt
i K(x,xj) + bopt

)
(2)

where SV M(x) = 0 is the equation of the separating hyperplane. It is important
to notice that f only depends on those vectors xi that, when projected in the
high dimensional space, lie closest to the decision surface (the only examples for
which αi �= 0). They represent the most difficult examples to learn and are called
Support Vectors just because they alone support the construction of the decision
function.

Apart from the choice of the kernel function, the machine definition is cus-
tomized to the specific problem by tuning all its free parameters. The generaliza-
tion skill of the classifier is then estimated by measuring the classification error
on a test set that is disjoint from the training set, but that has been generated
according to the same distribution. One suitable measure to evaluate the gener-
alization capacity of the machine is the product of the recall times the precision3.
These quantities are defined as follows

precision =
TP

TP + FP
recall =

TP

TP + FN

where TP = true positives, FN = false negatives, FP = false positives. The choice
for the best parameters is done by choosing the combination of γ and C that
maximizes precision × recall.

The training was carried out on a training set of 8936 examples and a test set of
4357 examples, given as input to the SVMlight optimization algorithm [23]. The
examples have been extracted from a subset of the BANCA database (to model
the frontal face features under different illumination conditions) and from a cus-
tom database containing many heterogenous and uncontrolled pictures of various
people (useful to model pose variations and non-neutral face expressions). The
positive class contains eye images cropped to a size equal to the inter-ocular dis-
tance. The negative class is populated by the other facial features (nose, mouth,
chin, cheeks, forehead, etc.) and by some examples extracted from the background
of the images.

Figure 4 shows the trend of the generalization performance as we vary the
parameters that define the machine; the best choice is done for C = 11 and
γ = 4 × 10−4 which corresponds to an error on the test set lower than 3%.

3These quantities relate to the soundness and the completeness of the classification method.
In fact the precision estimates the probability that an example classified as positive is really an
eye, while the recall estimates the probability that, given an eye, it is classified as a positive.
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Figure 4. Parameters tuning: best generalization for C = 11,
γ = 4 × 10−4.

4. Detection technique

The detection of the eye features proceeds hierarchically from the detection of
the face position, since a first extraction of the face candidate regions avoids an
extensive eye search in the whole image. It is like doing an attention selective
process which quickly discards the irrelevant background information. We do this
step using our implementation of the Viola Jones face detector [37] or our skin
map detector [5] for color images. Besides giving the position of the face, both
detectors roughly estimate its extension (scale) on the image with a certain error
distribution. This uncertainty makes it particularly unfeasible to rely on geometric
relations in order to identify the eye region [34], but the range of the scale variation
is not so wide to require a complete multi-resolution search of the eye pattern. We
deal with this variability by considering a range of three scales fed in a strong
classifier for eye detection.

The evaluation of a candidate point P comes to evaluating three examples
centered in it: the one at the inferred scale (example xP ), plus two examples
extracted according to a small underestimation (80%) and a small overestimation
(120%) of that scale (examples x−

P and x+
P ).

We weaken the standard decision function (2) because the sign of the classi-
fication is not sufficient to obtain a robust detection. Since the margin of the
hyperplane is proportional to the Euclidean distance of the support vectors from
the decision function, we treat SV M(x) as a “measure” of the confidence with
which the SVM classifies the example x. Thus we define the function

ρ(P ) = SV M(xP ) + SV M(x−
P ) + SV M(x+

P )

as the strength of the candidate point P . Being the three scales quite close, we
usually observe a good correlation among the margins on positive examples, and
the definition of ρ is useful to prevent the exclusion of a good candidate due to a
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wrong estimate of the face dimension. It also serves to weaken the strength of a
pattern that looks similar to an eye only at a certain scale.

We proceed by evaluating ρ(P ) over a small subset of points in the face region:
first we identify the points that lie on the edges, then we subsample them with a
step that depends on the scale of the face region; we consider as point candidates
the ones for which ρ(P ) is greater than 0, and we group them according to their
proximity in the image; each group of point candidates is then represented by its
centroid (the eye candidate) obtained weighting each point P with its ρ(P ). This
last step strengthens the eye detection, making it more stable. Ideally we should
have two eye candidates, however, sometimes it happens that the eye classifier
detects also one or more false positives. In presence of false detections (if more
than two eye candidates are present) we introduce a final selection criterion that
exploits the margin of the classifier and assumes the substantial verticality of the
face pose. Doing so, we manage to select the eye positions, and to discard the
false detections, by choosing the candidates couple (ci, cj) that maximizes

SV M(ci) · SV M(cj)
1 +

√|(ci)y − (cj)y|
where (ci)y is the y coordinate of the eye candidate ci. As we do not want to enforce
the perfect verticality of the face, the square root at denominator is introduced to
give more importance to the strength of the eye candidates with respect to their
horizontal alignment.

5. Localization technique

While the eye detector must distinguish the global eye shape from that of other
facial patterns, the eye localizer is intended to exhibit a high sensitivity to the
center of eyes, that is we want its response to peak sharply at the eye center and
rapidly fade away within its neighborhood.

The construction of the localizer directly follows from these considerations.
First of all, the examples are represented by the same overcomplete wavelet trans-
form but this time we do not discard the highest detail level (j = 3) as we are
particularly interested in the high resolutive power of the localizer. After apply-
ing the same feature selection procedure of Section 3 we retain 380 coefficients out
of 849 (197 in C+, 183 in C−). Secondly, the eye localizer works on a smaller recep-
tive field: it is presented with patterns that are half size of the eye patterns defined
for the eye detector. Thirdly, the training examples are taken from the same image
sample of the eye detector but with an important difference: the negative class is
now populated with sub-images obtained by small, random displacements of the
positive examples (in the ratio of one positive to ten negatives).

The eye localizer can be used in cascade to the eye detector in order to improve
the precision of the eye localization. If correctly initialized, the eye localizer really
manages to recover the detection. The initialization concerns two parameters: the
eye position and scale. In the previous section we have described how we calculate
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Table 1. Eye detection results.

Database # of images % with deye ≤ 0.25

XM2VTS 1180 99.0%

BANCA 416 96.9%

FRGC Controlled 473 99.6%

FRGC Uncontrolled 396 94.8%

FERET 1000 96.4%

the eye positions. Regarding the eye scale we can infer quite a stable estimate by
calculating the average of the scales of xP , x−

P and x+
P weighted by their margins

of classification ρ. The refinement procedure performed by the localizer proceeds
analogously as in the eye detection module: the candidates that give the highest
response are grouped together and averaged according to their margin to compute
their centroid.

6. Experimental results

In order to assess the accuracy of both the eye detection and localization module
we need to adopt a suitable protocol. Jesorsky and others [21] proposed to use the
normalized measure

deye =
max(||Cl − C̃l||, ||Cr − C̃r||)

||Cl − Cr||
where the values C̃r/l stand for the positions output by the localization method,
while the values Cr/l are the ground truth of the right and left eye center respec-
tively. This measure is scale independent and therefore it permits to compare data
sets characterized by different resolution of the face regions. There is an agreement
that deye ≤ 0.25 is a good criterion to identify correct eye detection, that is to
flag their presence [21, 25, 45]. Such a level of precision is considered sufficient for
recognition algorithms which do not require a precise alignment, but they need an
initialization step to work locally on the found regions [2].

In the following table we give the rate of the sole eye detector for various public
databases (see appendix for description). We manually annotated ourselves the
ground truth of the BANCA and FRGC databases, while for the XM2VTS and
FERET we referred to the public ones available at the web pages [14, 20].

Concerning the XM2VTS and BANCA databases the highest eye detection
rates have been reported by [19]; comparing their results with ours we observe
that on the XM2VTS databases, the performance are approximately the same
(99%), while on the BANCA database they reach the 88% of success against
our 96.9%. Regarding the FERET and FRGC databases, to our knowledge the
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Table 2. Eye localization results after refinement.

Database # of images % with deye ≤ 0.1

XM2VTS 1180 94.7%

BANCA 416 91.9%

FRGC Controlled 473 94.1%

FRGC Uncontrolled 396 85.8%

FERET 1000 89.5%

best results have been reported in [39], which are globally worse than ours (they
give a detection of the 94.5%).

However when we speak of eye localization the threshold deye ≤ 0.25 is not
sufficient: here we consider the threshold value deye ≤ 0.1 as a reasonable ac-
curacy (10% of the inter-ocular distance). In Table 2 we report the localization
results after the refinement phase, that is after the application of the eye localizer
initialized on the positions output by the eye detector.

The comparison between these results and those obtained in [19] shows that we
have a greater percentage of success on both the XM2VTS and BANCA databases,
being significantly better on the second one (91.9% against 72%).

The work described in [38] does not adopt the same error metrics as we do and
it reports results only on the FRGC. They measure the normalized mean error
(not the maximum, which is a worst case analysis) and give an error of 2.67%
on the entire FRGC. By adopting this measure on our experiments, we observe
an error of 2.65% and 3.88% on the controlled and uncontrolled images of our
experiments (respectively). If we consider that the entire FRGC contains twice
as many controlled images as uncontrolled ones, we see that these results are very
similar.

The work [34] adopts the same evaluation criteria (deye ≤ 0.1 and deye ≤ 0.25)
and reports good results on the BioID database [12]: 98.1% and 91.8% respectively.
In the future we plan to try our method on this dataset as well, however here
we stress the fact that our technique behaves equally good on a large variety of
databases and it actually works also on images with complex background and on
faces with certain expression and pose variations. Moreover we observe that the
generalization capabilities of the statistical classifier allow to treat problematic
situations like the presence of transparent or semi-transparent spectacles, or the
eye closure.

In Figure 5 we show some outputs of our algorithm on a sample of custom
images (here we use as face detector our skin color detector [5]). As we show in
the figure, the algorithm is quite robust to moderate rotations in and out of the
plane, as well as to a certain overestimation of the face extension; moreover it is
quite insensitive to face expressions as they usually do not affect the eye patterns.



EYE LOCALIZATION FOR FACE RECOGNITION 135

Figure 5. Some outputs of the eye localization algorithm. Boxes:
detected faces; circles: detected eyes; crosses: localized eyes.



136 P. CAMPADELLI, R. LANZAROTTI AND G. LIPORI

7. Summary and conclusions

We have presented an eye localization algorithm which assumes as input a rough
localization of the face in the image. One or two SVM can be used as a function
of the accuracy required by the further steps of the face recognition task. The
first SVM localizes the eyes with a rough precision and, when an higher precision
is required, a second classifier with higher discriminative power can be made to
work in a small surround of the points found by the first one.

Higher precision, however, has a cost; indeed with our implementation, which
does not focus on speed, the first SVM takes approximately 3 s on face regions
300×350 pixel wide on a Pentium 4, 2.8 GHz while the second takes 4 times more.

Experimental results show that, at both considered levels of accuracy, our
method localizes the eyes with a detection rate that is higher than the current
state of the art on most of the standard public databases.

Further research will concentrate on reducing the computational time and im-
proving the results of the second SVM.

Appendix A: Database description

In this appendix we briefly describe the public databases used to test our
method, specifying for each of them which images we selected for tests.

• XM2VTS [15]: it consists of 1180 high quality images of single faces
acquired in frontal position, and with homogeneous background; some of
the subjects wear spectacles. The tests refer to the whole database;

• BANCA [11]: it consists of three sub-databases referred to as Controlled,
Adverse and Degraded. In this work we do not take into account the
third one, since the images are particularly blurred, making the step of
precise eye localization useless. The other two are: – Controlled: it
consists of 2080 images each one representing one person placed frontally
to the camera and on a uniform background. The database collects pic-
tures of 52 people of different ethnic groups (Caucasian, Indians, Japanese,
Africans, South-Americans), acquired in 4 different sections (10 images per
subject in each section). The illumination conditions vary from daylight
to underexposed, while no evident light chromatic alteration is present.
– Adverse: like the BANCA-Controlled it consists of 2080 images,
each one representing one person placed frontally to the camera and look-
ing down, while in this database the background is non-uniform. The
image quality and illumination are not very good.

We built the BANCA test set taking for each subject the first image of
each section, that is 416 images.

• FRGC [13] The FRGC databases collects 5658 high resolution images
of 275 subjects in frontal position. The images are organized in subject
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session, where each section consists of 4 images acquired in controlled
conditions (uniform background and homogeneous illumination) and two
in uncontrolled conditions (generic background and varying illumination
conditions). In both situations half of the images represent subjects with
neutral expression and half smiling. The number of sections varies from
subject to subject, between 1 and 7. We built two different test sets, corre-
sponding to the controlled and uncontrolled conditions. The first contains
473 images, and is obtained taking for each subject the first image of the
first two sections (when the second is present). The set of uncontrolled
images is built according to the same criterion, and contains 396 images.

• FERET [14] The FERET database consists of 10 gray level images per
person organized according to the angle between the subjects and the
camera (0◦, ±15◦, ±25◦, ±40◦, ±60◦), and where two sets of frontal view
images, respectively with neutral and smiling expression, are included.
Our FERET test set consists of 1000 images selected randomly from the
images with a rotation up to ±15◦.
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