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AN UPPER BOUND FOR TRANSFORMING
SELF-VERIFYING AUTOMATA
INTO DETERMINISTIC ONES

IRA ASSENT! AND SEBASTIAN SEIBERT?

Abstract. This paper describes a modification of the power set con-
struction for the transformation of self-verifying nondeterministic finite
automata to deterministic ones. Using a set counting argument, the
upper bound for this transformation can be lowered from 2" to O(\Q/—%)
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1. INTRODUCTION

One of the fundamental research problems of current theoretical computer sci-
ence is the investigation of the computational power of nondeterministic and ran-
domized computations, especially in comparison with deterministic ones. A sub-
area where some progress has been made is the study of finite automata w.r.t.
their descriptional complexity.

In this note, we study the transformation from self-verifying nondeterministic to
deterministic finite automata. From the study of nondeterministic finite automata,
we know that nondeterminism can be used to effectively accept regular languages
by always “guessing” the correct decision to be taken. However, this means in
practice, that from the fact that such an automaton recognizes a certain language,
we can only derive that there exists at least one sequence of states corresponding to
the input word which leads to an accepting computation. Whenever the automaton
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does not accept a word, this means that there exists no such computation among
all possible choices which is much harder to verify. This is where self-verifying
nondeterministic finite automata come into play (see e.g. [2]). They are the
natural answer to the call for automata which use nondeterministic strategies to
search for a solution, but are also able to provide a definite “no” whenever a word
is not in the language accepted.

That is, for all runs of the automaton where it doesn’t get to the correct answer,
it will never give a wrong answer but rather “I do not know”, i.e. it will halt in a
so called neutral state.

Definition 1.1. A self-verifying finite automaton (SVFA) A = (Q, %, 4, qo, F, R)
consists of:

a finite state set @;

a finite alphabet 3;

a transition function § — 29;

an initial state qo;

two disjoint sets F, R C @ of final and rejecting states, respectively.

The remaining states @ \ (F'U R) are called neutral.
Additionally, we demand

(i) no input word w has both computations finishing in accepting states and
finishing in rejecting states;

(ii) each input word w has at least one computation finishing in an accepting
or a rejecting state.

An input word w is accepted if there is at least one computation on w finishing
in an accepting state, and it is rejected if there is at least one computation on w
finishing in a rejecting state.

For deterministic and nondeterministic finite automata (DFA, and NFA, respec-
tively) A = (Q, %, 9, qo, F') we use the standard definition (see [1] for example).

As we can see, self-verifying finite automata always give an “answer” to the
question whether or not a word is in the language. This leads to an interesting
property, in that they can immediately be used for recognition of the complement
language by just interchanging the sets F' and R. So we have always automata of
the same minimal size for a language and its complement, an important difference
to the case of conventional nondeterministic automata.

Immediately, this leads to the question how the SVFA relate in size to the
known models of DFA and NFA. In [2], Hromkovi¢ and Schnitger observed that
the size of a minimal SVFA is at most 1 plus the sum of the sizes of a minimal
NFA for the same language and the size of a minimal NFA for the complement. As
a consequence, they obtained an example that has an n-state SVFA but only DFA
of size Q(Zﬁ) Thus no polynomially bound transformation from SVFA to DFA
can exists, and the question arises whether the blow-up for such a transformation
can be as large as from NFA to DFA.
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Here, we show that at least SVFA are not as far from DFA as NFA in that the
gap in state number that can occur in such a transformation is not n versus 2" in
the worst case but at most n versus O(\Q/ﬁ)

2. FROM SELF-VERIFYING TO DETERMINISTIC AUTOMATA

Since SVFA are a variant of NFA, we can easily adapt the power set construction
to transform a SVFA to DFA, as will be shown below. A central idea to evidence a
lower state number blow-up than in the NFA case, is to show that there are certain
combinations of states which exist only in a minimal DFA resulting from NFA but
not in a minimal DFA obtained from SVFA. Thus we do not use the entire power
set as we do in the unrestricted nondeterministic case, but only a smaller subset
of the power set. (It is known that in the NFA to DFA case the bound is tight
[3-5].) We therefore use considerably less states and consequently obtain a better
upper bound.

Theorem 2.1. For any n-state SVFA an equivalent DFA can be constructed using

at most O<2TT;) states.

Proof. As mentioned above, the adapted power set construction is central to this
proof. We will now give a formal definition of the generalized power set construc-
tion, valid for NFA and SVFA. This is a modification of the construction for NFA
as it is used in standard computer science literature (see e.g. [1]). O

Definition 2.2. (power set construction).

Let A=(Q,%,d,q0,F) or A= (Q,%,6,qo, F, R) be a nondeterministic or self-
verifying finite automaton respectively. Then an equivalent deterministic finite
automaton B = (Q', X, ¢, {qo}, F’) can be constructed as follows:

(i) The set of states Q' is the subset of the power set of @, 2%, consisting of
the states reachable from {go} via §’ defined below.
(ii) The new transition function ¢’ is defined by
8'(¢',a) == U ey 0(q,a) where ¢’ € Q',a € %
(i) F':=={q¢ € Q' | ¢ NF #0} is the new set of accepting states consisting
of those sets of states from )’ which contain an accepting state from A.

Note that in the case of SVFA, this definition explicitly relies only on final versus
non-final states, not on the distinction between neutral and rejecting states. But
implicitly, the definition of SVFA assures that there is no rejecting state in any
¢’ € F’, and that at least one rejecting state is in each ¢’ € Q" \ F”.

We now show that from the definition of self-verifying finite automata which
do not allow for computations on any input word finishing in both accepting and
rejecting states, we obtain considerably less states in the equivalent minimal DFA.

Claim 2.3. Let B = (Q',%,¢,{qo}, F’) be a DFA obtained from an SVFA
A=(Q,X%,9,q,F, R) by power set construction.

If there are two states S1,S52 € @’ such that S; C Sy, then S; and S are
equivalent, i.e. can be identified without changing the language accepted by B.
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In other words this means that after minimization B cannot contain two such
states that are subsets of each other.

Recall that equivalence of S7 and S; means that for all z € ¥* we have S =, F
iff Sy % F'.

To prove Claim 2.3, assume to the contrary that there is an input word x which,
read in Sp, leads to an accepting state whereas the same word, read in S5, leads
to a rejecting state in our DFA B. (By symmetry of the SVFA and DFA, the
converse case is handled identically.)

Let us now take a look at the original SVFA A for the above situation. If in
the DFA in state S; B reads x and reaches the set of accepting states, one of
the original states in S;, which we call ¢;, has a path leading to an accepting
state of A, that is ¢ — gr € F. Analogously, there exists go € S such that
q2 - qr € R.

By construction of Sy there exists y € X* such that qq AN @ — qr and
Qo — G2 — Gy

This results in a contradiction to the definition of a self-verifying finite automa-
ton where no input word can have computations finishing in both accepting and
rejecting states, which proves Claim 2.3.

Now, since states of B that are subsets of each other can be identified, we no
longer can have 2" states in a minimal deterministic finite automaton resulting
from minimizing B, if we start with a self-verifying finite automaton A with n
states. How many do we have at most? To answer this question we have to take a
closer look at the construction of power sets. The problem is to find the maximal
number of set combinations without strict inclusions.

As the greatest quantity is that of sets containing half the number of elements
possible, the largest possible number of pairwise incomparable sets is (L"72 j)'

We now have to determine an upper bound for (L"72 j)' The result is the dif-
ference we can show between nondeterministic finite automata and self-verifying
finite automata for the power set construction and thus the improvement in the
upper bound for the conversion from self-verifying finite automata to deterministic
finite automata.

What we still have to show is that (
in Theorem 2.1.

Recall the following property of binomial coefficients: (‘Z) = (af—;)!b!.
we get:

) is indeed in 0(2—) as we claimed

n
[n/2] Vv

Using this,

L ﬁ .

To determine the value of this expression we use Stirling’s formula:

n n
n! ~ (—) 21n.
e
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This formula is also applicable for broken rational numbers, which is very con-
venient in our case. Note that we do not need an exact expression, as we are
interested in asymptotic bounds.

We now simply apply Stirling’s formula to the above expression (1) to obtain
the upper bound we claimed earlier.
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