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HIERARCHIES OF FUNCTION CLASSES DEFINED
BY THE FIRST-VALUE OPERATOR

Armin Hemmerling
1

Abstract. The first-value operator assigns to any sequence of partial
functions of the same type a new such function. Its domain is the
union of the domains of the sequence functions, and its value at any
point is just the value of the first function in the sequence which is
defined at that point. In this paper, the first-value operator is applied
to establish hierarchies of classes of functions under various settings.
For effective sequences of computable discrete functions, we obtain a
hierarchy connected with Ershov’s one within ∆0

2. The non-effective
version over real functions is connected with the degrees of discontinuity
and yields a hierarchy related to Hausdorff’s difference hierarchy in
the Borel class ∆B

2 . Finally, the effective version over approximately
computable real functions forms a hierarchy which provides a useful
tool in computable analysis.

Mathematics Subject Classification. 03D55, 03D65, 03E15,
03F60.

1. Introduction and basic notions

Let be given a finite or transfinite sequence F = (fξ)ξ<α of partial functions of
the same type. This means that fξ : A �−→ B, for some source set A and a target
B, α is an ordinal number, and ξ runs through the set {ξ : ξ < α} = {ξ : ξ ∈
α} = α. Partial functions, f : A �−→ B, are here understood as special subsets
of Cartesian products, f ⊆ A × B. By f(x) ↓ we denote that f(x) exists, i.e.,
x ∈ dom(f), whereas f(x) ↑ or f(x) �↑ means that x �∈ dom(f).
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The first-value operator , Φ , assigns to a sequence F the function Φ(F) = f ,
f : A �−→ B, defined by

f(x) �
{

fξx(x) if there is a ξ < α with fξ(x)↓, and ξx = min{ξ < α : fξ(x)↓},
↑ if fξ(x)↑ for all ξ < α.

This technique was introduced by Epstein et al. [3] in order to describe the Ershov
hierarchy of classes of discrete sets M ⊆ Nk, even if the operator Φ was not
explicitly defined there. In [8,9], we transferred this idea to Hausdorff’s hierarchy
establishing a substructure of the Borel class ∆B

2 , as well as to the Hausdorff-
Ershov hierarchy within ∆ta

2 , the effective counterpart of ∆B
2 . In all these cases,

emphasis was put on functions of type f : A �−→ {0, 1} characterizing sets Mf ⊆
A by Mf = {x : f(x) = 1}. The level of a set M in the related hierarchy is
determined by the (minimal) length α of a sequence F consisting of functions of
some basic type and characterizing the set M as M = MΦ(F). To ensure features of
effectivity, the sequences F under consideration have to fulfill related requirements
of computability. In particular, the order types α have to be constructive ordinals
then.

In the present paper, our interest is directed to classes of functions themselves.
The (minimal) length of sequences, which is needed to obtain a function by means
of the first-value operator from some basic class F, determines the level (or degree)
of that function w.r.t. F. It will turn out that this approach both yields a unifying
view to some well-known concepts of classical computability theory and descriptive
set theory, as well as it leads to some new features and tools concerning subjects
of effective analysis.

We begin with explaining the non-effective basic version of the first-value hi-
erarchies . Let F be a non-empty set of partial functions f : A �−→ B, for fixed
sets A and B. Then, for any ordinal number α, we put

∇α(F)={Φ(F) : F =(fξ)ξ<α is a sequence of functions, where fξ∈F for all ξ<α}.

So we always have ∇0(F) = {∅}, the singleton consisting of the empty function ∅,
and ∇1(F) = F. Moreover, it is easily shown that

∇α+1(F) = {f : f(x) �
{

g(x) if g(x)↓,
h(x) otherwise, for functions g ∈ ∇α(F), h ∈ F}.

If ∅ ∈ F, then ∇α(F) ⊆ ∇β(F) whenever α ≤ β. Indeed, given an α-sequence
F = (fξ)ξ<α, we obtain a β-sequence F ′ = (f ′

ξ)ξ<β with Φ(F) = Φ(F ′) by putting
f ′

ξ = fξ, for ξ < α, and f ′
ξ = ∅, for α ≤ ξ < β. If F contains a total function

f̃ , then any partial function f ∈ ∇α(F) is a restriction of a total function from
∇α+1(F). To show this, a sequence defining f is simply enlarged by f̃ .

If
⋃

η<ξ dom(fη) ⊇ dom(fξ), then the function fξ does not influence the result of
the sequence, Φ(F). Thus, given a sequence F = (fξ)ξ<α, by transfinite recursion
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one can define a sequence F ′ = (f ′
ξ)ξ<α′ such that α′ ≤ α,

⋃
η<ξ dom(f ′

η) ⊂⋃
η≤ξ dom(f ′

η) and Φ(F) = Φ(F ′). More precisely, F ′ = (fξη )η<α′ with a suitably
defined strictly increasing sequence (ξη)η<α′ yielding F ′ as a subsequence of F .
So, for countable universes A, we can restrict ourselves to sequences F whose
lengths α belong to the second number class , CII , which consists of all ordinal
numbers of finite or countably infinite cardinality.

Also, if A is a separable topological space and the basic functions f ∈ F are
supposed to have open domains, sequences of lengths α ∈ CII are sufficient to
obtain all possible results of the first-value operator applied to arbitrary sequences
built of functions from F. Indeed, by (

⋃
η<ξ dom(fη) )ξ<α we obtain an increasing

sequence of open subsets of A, and if it is supposed to be strictly increasing, its
length α must belong to CII. So, in all cases we will be interested in, the restriction
to sequences of order types from CII is justified. In particular, all constructive
ordinals belong to CII too.

The main subject of this paper is to explore properties of linear hierarchies
(∇· · ·

α (F) )α∈CII
, under several settings concerning the universes A and the basic

class F, possibly combined with requirements concerning the sequences F to which
the operator Φ has to be applied. They will be indicated by upper labels at the
∇-sign.

To give a first illustration, we consider the special case that A = B = N, the
set of natural numbers. Notice that N = ω. Nevertheless, we shall use both these
denotations in the sequel: N if the set is mainly considered as a universe, ω if the
viewpoint of ordinal number dominates. As basic classes of functions, F, we first
consider

Fsing = { f : f : N �−→ N , card(f) ≤ 1 } and
Ffin = { f : f : N �−→ N , card(f) < ω }.

Obviously, ∇n(Fsing) = {f : card(f) ≤ n } and ∇n(Ffin) = Ffin if 1 ≤ n < ω, but
∇α(Fsing) =∇α(Ffin) = {f : f : N �−→ N } for all α ≥ ω.

Quite analogous results hold for functions of type f : Nk �−→ N, k ≥ 1, as
well as for many other similar settings. So, the non-effective versions of first-value
hierarchies over discrete universes collapse already at level ω with the largest
possible class of partial functions, even for rather simple basic classes F.

To obtain more interesting results over discrete universes, the operator Φ will
be restricted to effective sequences. This is the subject of the next section. Then
we shall consider real-valued functions over Euclidean spaces, f : R

k �−→ R. The
non-effective setting studied in Section 3 provides the basic background of the
effective version which will be elaborated in Section 4. Throughout this paper, we
try to emphasize analogies and relationships between the three settings: effective
discrete functions and non-effective resp. effective real functions.

This unifying view is just the main feature and motivation of the present paper.
Most of the results and techniques are immediate adaptations from the related
hierarchies of classes of pointsets, and some are even already known for function
classes. Nevertheless, the treatment of these three settings in analogy to each
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other based on the first-value operator has not yet been done so far, but it surely
contributes to a deeper understanding of the related hierarchies.

In the continuous settings, we restrict ourselves to the treatment of (real func-
tions over) Euclidean spaces R

k with their natural topology. From the viewpoint
of computable analysis, this seems to be the most interesting case. Hierarchies of
classes of pointsets over the Cantor space and the Baire space were considered by
Selivanov [20]. He already remarked “a deep and useful connection of the effective
Hierarchy with limiting computations of a special kind”. The latter means an
implicit application of the first-value operator.

In the remaining part of this introductory section, we show how the µ operator
of classical recursion theory can be substituted by the first-value operator Φ. This
gives a further illustration and demonstrates the computational power of the Φ
operator. The reader who is preferably interested in the function hierarchies we
announced may skip this part.

The operator µ assigns to any function g : N
k+1 �−→ N, k ≥ 1, the k-ary

function µg defined by

µg(�x) �
⎧⎨
⎩

min{y : g(�x, y) = 0} if there is a y with g(�x, y) = 0
and g(�x, y′) ↓ for all y′ < y,

↑ otherwise.

By a partial primitive recursive (briefly: p.pr.r.) function f : Nk �−→ N, we un-
derstand a restriction of a (total) primitive recursive function to a primitive recur-
sive domain. This means that there are primitive recursive functions
g, h : N

k −→ N such that

f(�x) �
{

g(�x) if h(�x) = 0,
↑ otherwise.

Let Fp.pr.r. denote the set of all p.pr.r. functions. For α ≤ ω, a sequence
F = (fn)n<α of functions fn ∈ Fp.pr.r. (of some fixed arity k ≥ 1) is called prim-
itive recursive (pr.r.) if there are primitive recursive functions g, h : N

k+1 −→ N

such that

fn(�x) �
{

g(�x, n) if h(�x, n) = 0,
↑ otherwise.

Correspondingly, ∇pr.r.
α (Fp.pr.r.) is the class of all functions obtained by the first-

value operator applied to primitive recursive sequences of length α of functions
from Fp.pr.r.. Finally, let the class of all partial recursive functions be denoted by
Fp.r..

Lemma 1.1. ∇pr.r.
n (Fp.pr.r.) = Fp.pr.r. if 1 ≤ n < ω, and ∇pr.r.

ω (Fp.pr.r.) = Fp.r..

The first statement follows, since for finite sequences F , Φ(F) can be expressed
by a conditional equation with finitely many branches characterized by conditions
which are conjunctions of finitely many primitive recursive predicates, so they are
primitive recursive too. Inclusion “⊆” of the second statement is also obvious
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from computability theory. To prove “⊇”, we use a weak version of Kleene’s
normal-form theorem. Given a partial recursive function f : Nk �−→ N, there are
(total) primitive recursive functions g : N −→ N and h : N

k+1 −→ N such that
f = g ◦ µh. Let

fn(�x) �
{

g(n) if h(�x, n) = 0 ,
↑ otherwise .

F = (fn)n<ω is a primitive recursive sequence of p.pr.r. functions, and we have
f = Φ(F). �

So, in order to define the class of partial recursive functions from that of primi-
tive recursive functions, instead of the µ operator, the first-value operator applied
to primitive recursive sequences (each of which is determined by a p.pr.r. function)
would be sufficient.

2. The Ershov hierarchy for discrete functions

Now we are going to study the first-value operator on effective sequences of
computable functions of type f : Nk �−→ N. Since Nk and N are recursively iso-
morphic via Cantor’s k-tuple function, without loss of generality we could restrict
ourselves to the case k = 1. However, to remain in analogy to the later treat-
ment of k-ary real functions, also here we prefer to consider arbitrary dimensions
k ∈ N+ .

As mentioned in Section 1, the first-value operator was essentially introduced
in [3], within the recursion theoretic setting around Ershov’s hierarchy. So the
related notions and results are already well-known.

Effectivity for transfinite sequences is defined by means of constructive ordinals.
We report some fundamental facts and denotations employed in the sequel. For
more details, the reader may consult [19]. Let (φn : n ∈ N) be a standard (Kleene)
numbering of the partial recursive functions.

A naming system (of ordinals), S, is given by a numbering νS : N �−→ CII
such that

• ran(νS) is an initial segment of ordinals: ran(νS) = α = {ξ : ξ < α} for
some α ∈ CII;

• for any n ∈ dom(νS), it is decidable (by a partial recursive function
kS : N �−→ {0, 1, 2}) whether νS(n) = 0 or whether νS(n) is a succes-
sor or a limit number;

• for any number n, where νS(n) is a successor, a number n′ is computable
(by a partial recursive function pS) such that n ∈ ν−1

S (νS(n′) + 1);
• and for any name n ∈ ν−1

S (λ) of a limit number λ, an index n′ is com-
putable (by a partial recursive function qS) such that φn′ is a total function
and (νS(φn′(m))m∈N is an increasing sequence of ordinals converging to λ.

More precisely, we have S = (νS , kS , pS , qS). An ordinal α ∈ CII is called construc-
tive iff there is a naming system S for which α ∈ ran(νS). S is called recursively
related iff the set {(n, n′) : n, n′ ∈ dom(νS), νS(n) ≤ νS(n′)} is recursive, it is
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called univalent iff νS is injective. To any constructive ordinal α, there is a re-
cursively related, univalent (briefly, r.r.u.) system S assigning a name to that
ordinal. So we can restrict ourselves to such special naming systems. They will be
denoted in the form α/S. Notice that each concept based on a constructive ordinal
α might depend both on that ordinal and its r.r.u. naming system S used in the
corresponding context. Any univalent naming system S with ran(νS) = M ⊆ N is
computationally equivalent to the identical numbering ν = idM . Thus, for α ≤ ω
the canonical naming system with the identical mapping as numbering is always
used, without loss of generality.

Given a naming system S, S-computability of functions like f : Nk × CII �−→ N,
k ∈ N, is understood as usual w.r.t. the numbering νS : there is a recursive
function ϕ : Nk × N �−→ N such that ϕ(�x, n) � f(�x, νS(n)) for all �x ∈ Nk and
n ∈ dom(νS). For a naming system α/S, an α-sequence F = (fξ)ξ<α of functions
fξ : N

k �−→ N is said to be S-computable iff there is an S-computable function
f : N

k × CII �−→ N such that f(�x, ξ) � fξ(�x) for all �x ∈ N
k and all ordinals

ξ < α. Then, if S is recursively related, the domain of the function Φ(F) is r.e.:
dom(Φ(F) ) =

⋃
ξ<α dom(fξ) ∈ Σ0

1.
A function f : N

k �−→ N is called α/S-recursive iff f = Φ(F) for an S-
computable α-sequence F of k-ary p.r. functions, and f is said to be α-recursive
iff it is α/S-recursive for some r.r.u. naming system α/S. So we get the follow-
ing classes of functions, in the notation-dependent and the notation-independent
version, i.e., with and without “/S”, respectively:

∇E
α(/S) = {f : f is an α(/S)-recursive function from some N

k into N }.

The upper label E refers to Ershov, due to the analogy with the classes of Ershov’s
hierarchy consisting of just those subsets of N

k, which belong to ∆0
2, cf. [3,4].

In this sense, we shall also refer to the hierarchy of function classes ∇E
α(/S) as

the Ershov hierarchy for functions. More precisely, in the sense of Section 1,
we would have to write ∇E

α(/S)(Fp.r.), where Fp.r. denotes the class of all partial
recursive functions. Since this basic class is now fixed, however, it is omitted in
the denotation.

Obviously, ∇E
α(/S) ⊆ ∇E

(α+1)(/S) if S is a naming system for α + 1 too. Let

∇E
<α(/S) =

⋃
β<α

∇E
β(/S) .

For successor numbers α = α′ + 1, we have ∇E
<α(/S) = ∇E

α′(/S). For limit numbers
α = λ, the class ∇E

<λ(/S) is more interesting. The following result shows that strict
hierarchy properties are valid w.r.t. the notation-dependent classes.

Proposition 2.1. For all r.r.u. naming systems (α + 1)/S and λ/S, with limit
numbers λ,

∇E
α/S ⊂ ∇E

(α+1)/S and ∇E
<λ/S ⊂ ∇E

λ/S .
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This follows immediately from analogous results for the classes ∆E
α/S of Ershov’s

hierarchy, cf. [3,4,9]. These classes consist of the so-called α/S-recursive subsets
of N

k, which are characterized by the α/S-recursivity of their total characteristic
functions in the above defined sense. Thus, due to the classical results, there are
even total {0, 1}-valued discrete functions in ∇E

(α+1)/S \∇E
α/S and ∇E

λ/S \∇E
<λ/S ,

respectively. �
The following proposition characterizes the class of functions occurring in the

Ershov hierarchy. It also shows that the notation-independent hierarchy collapses
at level ω2. Recall that f ≤T 0′ means that the function f is 0′-computable, i.e.,
computable by means of the halting problem as oracle. A function f : Nk �−→ N is
called limit-computable iff there is a total recursive function ϕ : N

k+1 −→ N such
that f(�x) � limn→∞ ϕ(�x, n); in particular, f(�x) ↓ iff the sequence (ϕ(�x, n))n<ω

converges.

Proposition 2.2. For any function f : Nk �−→ N are equivalent:

(i) f ∈∇E
α/S , for a constructive ordinal α and a r.r.u. system α/S;

(ii) f ≤T 0′ and dom(f) is r.e.;
(iii) f is limit-computable and dom(f) is r.e.;
(iv) f ∈ ∇E

ω2 .

The equivalence (ii)⇔ (iii) is well-known, cf. [21]. (iv)⇒ (i) is trivial, and (i)⇒
(iii) is easily shown. Also, (i)⇒ (ii) was shown in [3]. Finally, (iii)⇒ (iv) was
proved in [3] too. (In fact, there it was claimed that f ∈ ∇E

ω2 for arbitrary limit-
computable partial functions, the mistake, however, is easily seen.) �

3. The Hausdorff hierarchy for real functions

Hausdorff’s difference hierarchy within the Borel class ∆B
2 over (complete and

separable) topological spaces was essentially established in [5], long before notions
of recursivity or computability came into use. This topological setting, however,
was mainly directed to classes of pointsets and is not directly transferable to
function classes. Moreover, in topology it is less customary to deal with partial
functions, a basic feature in applying the Φ operator. A considerable progress
to a related classification of functions was made by Hertling and Weihrauch, and
Hertling, who introduced and studied the levels of discontinuity of functions, see
[10–12]. Finally, in [9] we have shown how the Hausdorff hierarchy of classes of
pointsets can be characterized by means of the first-value operator. This setting is
now transferred to a classification of certain real-valued functions over Euclidean
spaces.

In the sequel, by a real function, we mean any partial function f : Rk �−→ R,
for an arbitrary dimension k ∈ N+ . A real function f is said to be continuous iff
for all open G ⊆ R the preimages f−1[G] are open pointsets too. This means that
f has to be continuous in all points �x ∈ dom(f) and, moreover, dom(f) = f−1[R]
has to be open. The basic class of the hierarchy we are going to introduce will be
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that of continuous functions,

Fcont = {f : f is a continuous real function }.

For an ordinal α ∈ CII, a real function f is said to be α-continuous iff there is an
α-sequence F = (fξ)ξ<α of continuous functions fξ ∈ Fcont such that f = Φ(F).
Notice that then dom(f) =

⋃
ξ<α dom(fξ) is open too. The 1-continuous functions

are just the members of Fcont.
The classes of the Hausdorff hierarchy for real functions are defined as

∇H
α = {f : f is an α-continuous real function } and

∇H
<α =

⋃
β<α

∇H
β .

We have the following strict inclusions.

Proposition 3.1. For all ordinals α and limit numbers λ with α, λ ∈ CII,

∇H
α ⊂ ∇H

(α+1) and ∇H
<λ ⊂ ∇H

λ .

This follows from related properties of the usual Hausdorff hierarchy for the classes
∆H

α , cf. [9], Sections 3 and 5. These classes consist of the α-clopen pointsets A,
which are just those whose total characteristic functions χA are α-continuous.
Thus, there are total {0, 1}-valued real functions in ∇H

(α+1) \ ∇H
α and ∇H

λ \ ∇H
<λ,

respectively. �
Another characterization of the Hausdorff hierarchy of functions can be ob-

tained by the technique of depth analysis . It goes also back to Hausdorff [5], who
showed that the resolvable sets are exactly the members of ∆B

2 . In [8,9], we have
combined his method with features of Ershov’s hierarchy [4] within ∆0

2. Before
that, Hertling and Weihrauch [12], and Hertling [10,11], had applied Hausdorff’s
method to functions over topological spaces and introduced related levels of dis-
continuity. In this paper, we essentially follow their setting, even if the notations
are modified in order to remain in accordance with [9] and to prepare for a smooth
passage to the effective version in the following section, which has not yet been
considered so far.

For a closed set F ⊆ R
k and an arbitrary A ⊆ F , let A|◦F denote the interior

of A relatively to F which is considered as a complete subspace of Rk. Thus,
A|◦F =

⋃ {B ∩ F : B ∩ F ⊆ A , and B is open in R
k } .

Given a real function f : R
k �−→ R, let the pointsets Cξ

f , U ξ
f ⊆ R

k, for all
ordinals ξ, be defined by transfinite recursion as follows:

C0
f = {�x : f(�x) ↓ , and f is continuous in �x }|◦

Rk ,

this is the ordinary interior of the domain of continuity of function f . For ξ > 0, put

U ξ
f =

⋂
η<ξ

Cη
f and Cξ

f = {�x ∈ U ξ
f : f(�x) ↓ , and f |Uξ

f
is continuous in �x }|◦

Uξ
f

.
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Notice that herein and throughout the paper, the overline denotes the complement
of a set.

Of course, since U0
f =

⋂ ∅ = R
k, the initial step is included in the general

recursion step. By transfinite induction, it follows that any union
⋃

η<ξ Cη
f is open

in R
k and all U ξ

f are closed. Moreover, Cη
f ∩ Cξ

f = ∅ if η �= ξ.
The sequence of universes U ξ

f consists of decreasing closed subsets of R
k all

including dom(f),

Rk = U0
f ⊇ U1

f ⊇ . . . ⊇ U ξ
f ⊇ U ξ+1

f ⊇ · · · ⊇ dom(f) .

Thus, there is a least ordinal α ∈ CII such that Uα
f = Uα+1

f or, equivalently,
Cα

f = ∅. Then we have Uη
f ⊃ U ξ

f and Cη
f �= ∅ for all η < ξ ≤ α, but Uα

f = U ξ
f and

Cξ
f = ∅ for all ξ ≥ α.
The function f is called resolvable iff Uα

f = dom(f) for this least ordinal α, at
which the sequence of universes becomes stationary. In this case, we have

dom(f) =
⋃

ξ<α
Cξ

f ,

and we define the local depth of a point �x ∈ dom(f) w.r.t. function f by

depthf (�x) = ξ iff �x ∈ Cξ
f ,

whereas the global depth of f is given by

udepth(f) = min{ξ : U ξ
f = dom(f) } .

Now we are going to explore the relationships between resolvability and α-
continuity.

Lemma 3.2. Let f = Φ(F) with F = (fξ)ξ<α, fξ ∈ Fcont, α ∈ CII. Then, for all
ordinals ξ < α, ⋃

η≤ξ
dom(fη) ⊆

⋃
η≤ξ

Cη
f .

The inclusion holds for ξ = 0, i.e., dom(f0) ⊆ C0
f , since C0

f is the largest open set
on which f is continuous, f0 coincides with f on dom(f0) and f0 is continuous.

Now let the assertion be fulfilled for all ξ′ < ξ. Then,

U ξ
f =

⋂
η<ξ

Cη
f =

⋃
η<ξ

Cη
f ⊆

⋃
η<ξ

dom(fη) =
⋂

η<ξ
dom(fη) .

Cξ
f is the largest relatively open subset of U ξ

f on which f |Uξ
f

is continuous. More-

over, fξ(�x) = f(�x) for all �x ∈ dom(fξ) \ (
⋂

η<ξ dom(fη) ) = dom(fξ)∩⋂
η<ξ dom(fη) ⊇ dom(fξ) ∩ U ξ

f , and fξ is continuous. Thus, dom(fξ) ∩ U ξ
f ⊆ Cξ

f ,
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and
⋃

η≤ξ dom(fη) = dom(fξ)∪
⋃

η<ξ dom(fη) ⊆ dom(fξ)∪
⋃

η<ξ Cη
f ⊆ (dom(fξ)∩

U ξ
f ) ∪ ⋃

η<ξ Cη
f ⊆ ⋃

η≤ξ Cη
f . �

From Lemma 3.2 one obtains the resolvability of any real function, which is
α-continuous for some α ∈ CII. Indeed, if f = Φ(F) with a sequence F = (fξ)ξ<α,
fξ ∈ Fcont, then

⋃
η<α dom(fη) = dom(f). Since

⋃
η<ξ Cη

f ⊆ dom(f) for all
ordinals ξ, it follows Cα

f = ∅. Thus, f is resolvable. Moreover, by Lemma 3.2,
udepth(f) is a lower bound of the lengths of sequences of continuous functions, F ,
with Φ(F) = f .

Now we look for the inverse direction.

Lemma 3.3. If a real function f is resolvable, then there is a sequence F =
(fξ)ξ<udepth(f) such that f = Φ(F) and, moreover,

(+) fξ ∈ Fcont and
⋃

η≤ξ dom(fη) =
⋃

η≤ξ Cη
f for all ξ < udepth(f) .

Put f0 = f |C0
f
, and the requirement (+) is fulfilled for ξ = 0.

Suppose fη has been defined for all η < ξ such that (+) holds. Then we have⋃
η<ξ dom(fη) =

⋃
η<ξ Cη

f . By definition of Cξ
f , there is an open set G ⊆ R

k such
that Cξ

f = U ξ
f ∩ G, i.e., G ⊆ ⋃

η≤ξ Cη
f ⊆ dom(f). Moreover, f |Cξ

f
is a continuous

function on Cξ
f , considered as a closed subset of the normal space G. Thus, by

the Tietze-Urysohn theorem, see e.g. [2], f |Cξ
f

can be extended to a continuous

function fξ over G. So we have dom(fξ) = G and fξ(�x) = f(�x) for all �x ∈ Cξ
f .

It follows
⋃

η≤ξ dom(fη) =
⋃

η≤ξ Cη
f , and (+) is fulfilled. �

Proposition 3.4. A real function is resolvable iff it is α-continuous for some
α ∈ CII. More precisely, for any α ∈ CII,

∇H
α = {f : f is a resolvable real function, and udepth(f) ≤ α } .

This only summarizes some results obtained so far. �
A sequence of real functions, F = (fξ)ξ<α, is called greedy iff, for the function

f = Φ(F) and any �x ∈ dom(f), �x ∈ dom(fξ) whenever depthf (�x) = ξ.
To give an intuitive background, let us imagine the sequence F as the descrip-

tion of a determination process in stages for the function f , where the stage ξ
of determination consists in applying function fξ. According to the first-value
operator, f(�x) is just equal to fξ�x

(�x) if ξ�x = min{ξ : fξ(�x) ↓}. Then, due to
Lemma 3.2, by a greedy sequence for f , each value f(�x) is just determined at the
earliest possible stage.

Notice that the length α of a greedy sequence for function f can obviously be
restricted to udepth(f). Now Lemma 3.3 can be expressed as follows.

Corollary 3.5. Any resolvable real function can be obtained as Φ(F), with a
greedy sequence F of continuous functions. �

Finally, we mention a result shown by Hertling [10] for total functions over
metric spaces. It stresses that the resolvable functions belong to a rather low level



FUNCTION CLASSES DEFINED BY THE FIRST-VALUE OPERATOR 263

of complexity, within the framework of descriptive set theory. To this purpose, the
notion of Γ-measurable function is employed, cf. [13,17]: given a class of pointsets,
Γ, a real function is called Γ-measurable iff f−1[G] ∈ Γ for all open G ⊆ R.

Lemma 3.6. Any resolvable real function is ∆B
2 -measurable.

This can be proved by means of set resolvability, cf. [10]. Here we give a
direct proof by means of Proposition 2.2, which can be effectivized in a rather
straightforward way, cf. Section 4.

Let f = Φ(F) with a sequence F = (fξ)ξ<α, where α ∈ CII and fξ ∈ Fcont, and
let G ⊆ R be an open set. Then

f−1[G] =
⋃

ξ<α
( f−1

ξ [G] ∩
⋂

η<ξ
dom(fη) ) .

The open pointsets f−1
ξ [G] are unions of countably many closed sets: f−1

ξ [G] =⋃
i<ω Fξ,i , with closed Fξ,i. The sets F ′

ξ =
⋂

η<ξ dom(fη) are closed too. Hence

f−1[G] =
⋃

ξ<α
( (

⋃
i<ω

Fξ,i ) ∩ F ′
ξ ) =

⋃
ξ<α

⋃
i<ω

(Fξ,i ∩ F ′
ξ ) .

This means that f−1[G] ∈ ΣB
2 , as a countable union of closed sets.

A related representation of the complement is obtained analogously. Firstly,

f−1[G] = dom(f) ∪ {�x : f(�x) ↓, f(�x) ∈ G } .

The set dom(f) is closed, and

{�x : f(�x) ∈ G } =
⋃

ξ<α
( f−1

ξ [ G ] ∩
⋂

η<ξ
dom(fη) ) .

We have f−1
ξ [ G ] = dom(fξ)∩f−1

ξ [G]. The open sets dom(fξ) are countable unions
of closed sets: dom(fξ) =

⋃
i<ω Fξ,i , with closed Fξ,i. Hence

{�x : f(�x) ∈ G } =
⋃

ξ<α
( (

⋃
i<ω

Fξ,i ∩ f−1
ξ [G] ) ∩

⋂
η<ξ

dom(fη) )

=
⋃

ξ<α

⋃
i<ω

(Fξ,i ∩ f−1
ξ [G] ∩

⋂
η<ξ

dom(fη) ).

Thus, we have a representation of f−1[G] as a countable union of closed sets, hence
it also belongs to ΣB

2 , and we have shown that f−1[G] ∈ ∆B
2 . �

For any set A ∈ ∆B
2 , A ⊆ R

k, the real function fA = A×{1} is ∆B
2 -measurable.

However, it cannot be resolvable if dom(fA) = A �∈ ΣB
1 . It is an open question

whether the conversion of Lemma 3.6 holds for all functions with open domains.
To show this, it would be sufficient to give a proof for total functions. Indeed,

supposed that all total ∆B
2 -measurable functions are resolvable, the resolvability

of all ∆B
2 -measurable functions f with open domains follows. This can be shown

by means of the shrink function gsh : R −→ R defined by gsh(x) = x
1+|x| .
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It is a monotonously increasing homeomorphism mapping the whole real line onto
the open interval (−1, 1) and transforming rational open intervals into rational
open intervals, in an easily computable way. So, the composition gsh ◦ f is ∆B

2 -
measurable too and has the same domain as function f . Let

f(�x) =
{

gsh ◦ f(�x) if �x ∈ dom(f),
2 if �x �∈ dom(f).

f is a ∆B
2 -measurable total real function. Thus, by supposition, it is resolvable.

Then f |dom(f), as a restriction of a resolvable total function to an open set, is
resolvable too, and f = g−1

sh ◦ f |dom(f) is also resolvable.

4. The Hausdorff-Ershov hierarchy for generalized

effective real functions

As in the case of pointsets, the Hausdorff-Ershov hierarchy for functions is
obtained by a suitable combination of ingredients both of Ershov’s hierarchy for
discrete functions and of the Hausdorff hierarchy for real functions. One feature
of effectivity, that we take over from Ershov’s setting, consists in the restriction
to constructive ordinals as order types and indices of sequences of real functions.
Moreover, these functions have to be computable now, and this is defined within
the framework of computable analysis, cf. [22]. Since several systems of notations
are here still in use, and in order to keep this paper self-contained to some extent,
we briefly recall some basic ideas and notations. For more details within our
framework, see [7–9].

Real numbers (and tuples of them) are represented by fast converging Cauchy
sequences of (tuples of) rational numbers. Let be fixed a total standard numbering
νQ = (qn : n ∈ N) of the set of rational numbers Q = {qn : n ∈ N}. It is
extended to Q

k via Cantor’s k-tuple function such that Q
k = {�qn : n ∈ N}. For

points of Euclidean spaces, �x = (x1, . . . , xk) ∈ Rk, we prefer the maximum norm
‖�x‖ = maxk

κ=1 |xκ | instead of the topologically equivalent Euclidean norm. So we
have ‖�x‖ ∈ Q for all �x ∈ Q

k. The natural topology is generated by the base of
all rational open balls , Ballq(�x) = {�y ∈ R

k : ‖�x − �y‖ < q}, q ∈ Q, �x ∈ Q
k. Let a

numbering of them, (balln : n ∈ N), be fixed by ball〈n,m〉 = Ballqn(�qm), for any
dimension k (which is determined by the context), where 〈 · , · 〉 denotes Cantor’s
pairing function.

Computability for partial real functions f : R
k �−→ R can be defined by means

of function-oracle Turing machines. This approach is due to Ko and Friedman
[15], and Kreitz and Weihrauch [16]. The points �x ∈ R

k are represented by
(sequences of indices of) effectively converging Cauchy sequences, i.e., by sequences
of the set CF�x = {σ ∈ Nω : ‖�qσ(n) − �x‖ < 2−n for all n ∈ N }. A function-oracle
Turing machine (OTM) M gets a natural number n as input and a sequence
σ = (i0, i1, i2, . . . ) ∈ N

ω as oracle, and it has produced an output Mσ(n) ∈ N
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when it halts. In the course of its work, it can put oracle queries “ m ? ”, for
m ∈ N, which are answered by the (m + 1)st element im of the sequence σ.

A real function f : Rk �−→ R is said to be (approximately) computable iff there
is an OTM M such that for all �x ∈ R

k:
(1) if f(�x) ↓, then Mσ(n) exists for all σ ∈ CF�x and n ∈ N, and (Mσ(n))n∈N ∈

CFf(�x);
(2) if f(�x) ↑ and σ ∈ CF�x, there is an input n ∈ N for which Mσ(n) remains

undefined.
Ko and Friedman used a more restrictive notion. Instead of condition (2), they

required
(2’) if f(�x) ↑, then Mσ(n) remains undefined for all σ ∈ CF�x and all n ∈ N.

We call a function f KF-computable iff there is an OTM M satisfying condi-
tions (1) and (2’).

Recall that Πta
m is the class of complements of members of Σta

m , m ∈ N+ , and
a pointset A belongs to Σta

m iff there is a total recursive function ϕ : Nm −→ N

such that

(∗) A =

{ ⋃
n1∈N

⋂
n2∈N · · · ⋃

nm∈N ballϕ(n1,n2,··· ,nm) if m is odd,⋃
n1∈N

⋂
n2∈N · · · ⋂

nm∈N ballϕ(n1,n2,··· ,nm) if m is even.

If ϕ is allowed to be an arbitrary discrete function herein, we have just a typical
representation of a Borel set A ∈ ΣB

m. Whereas the domains of approximately
computable functions form exactly the class Πta

2 in the effective Borel hierarchy
(Σta

m : m ∈ N+ ), the domains of KF-computable functions are just the r.e. open
sets, i.e., the members of Σta

1 . More precisely, we have

Lemma 4.1. A pointset A is r.e. open iff A = dom(f) for a KF-computable
real function f . An approximately computable real function f is KF-computable
iff dom(f) is r.e. open.

The first part is due to Ko and Friedman [15], the second one follows easily. �
Due to Lemma 4.1 and since computable functions are continuous on their do-

mains, the KF-computable real functions form an appropriate effective counterpart
of the class of continuous functions, Fcont. Thus, we take

FKF = {f : f is a KF-computable real function }

as the basic class of the effective first-value hierarchy. Effectivity of transfinite
sequences of functions from FKF is defined w.r.t. an r.r.u. naming systems α/S.
More precisely, a sequence of real functions, F = (fξ)ξ<α, is said to be S-KF-
computable iff there is an OTM M such that, for all points �x and ordinals ξ < α,

(1) if fξ(�x) ↓, then Mσ(〈m, n〉) ↓ for all σ ∈ CF�x and all n ∈ N, where
m = ν−1

S (ξ), and it holds (Mσ(〈m, n〉))n∈N ∈ CFfξ(�x);
(2) if fξ(�x) ↑, then Mσ(〈m, n〉) ↑ for all σ ∈ CF�x, all n ∈ N and m = ν−1

S (ξ).
Obviously, it follows fξ ∈ FKF for all ξ < α.
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A real function f is called α/S-toprecursive iff f = Φ(F) for an S-KF-comput-
able sequence F = (fξ)ξ<α. The notation-independent version, α-toprecursivity
means α/S-toprecursivity w.r.t. some r.r.u. naming system α/S. The denotation
“toprecursive” is simply a short form of “topologically recursive” indicating com-
putability in the sense of effective analysis w.r.t. the natural topology of Euclidean
spaces. The 1-toprecursive functions are just the KF-computable ones. Each α-
toprecursive function is α-continuous. Analogously to the discrete case, it follows
that dom(f) is r.e. open, for any α-toprecursive real function f .

For constructive ordinals α (and r.r.u. systems α/S), the notation-dependent
and notation-independent, respectively, versions of the Hausdorff-Ershov classes
of functions are defined as

∇HE
α(/S) = {f : f is an α(/S)-toprecursive real function}.

By reasons of cardinality, we have immediately the strict inclusions ∇HE
α(/S) ⊂ ∇H

α ,
for α �= 0, and even

⋃ {∇HE
α : α is a constructive ordinal number } ⊂ ⋃

α∈CII
∇H

α .
As for the preceding hierarchies of function classes, the results obtained for the
related hierarchy of classes of pointsets can immediately be applied to show the
strict hierarchy property.

Proposition 4.2. For all constructive ordinals α, constructive limits λ (and cor-
responding r.r.u. naming systems (α + 1)/S and λ/S, respectively),

∇HE
α(/S) ⊂ ∇HE

(α+1)(/S) and ∇HE
<λ(/S) ⊂ ∇HE

λ(/S) .

Indeed, a pointset A ⊆ R
k belongs to ∆HE

α(/S) in the sense of [9] iff its total charac-
teristic function χA belongs to ∇HE

α(/S). Thus, by Corollary 2 and Theorem 1 from
[9], we get the strict inclusions. �

To localize the functions occurring in classes of the Hausdorff-Ershov hierarchy,
Lemma 3.6 can straightforwardly be effectivized within the framework of com-
putable analysis. We sketch this briefly. For details of the definitions and proof
techniques, the reader is referred to [1].

Let Nm denote the set of all discrete total functions of arity m, ϕ : N
m −→ N,

m ∈ N+ . Notice that the functions ϕ ∈ Nm can be represented by sequences
σϕ ∈ N

ω in a canonical, bijective way. For example, put σϕ(n) = ϕ(γm(n)), where
γm is an effective standard bijection of N onto Nm. Thus, the sets A ∈ ΣB

m can
be represented by the sequences σ ∈ N

ω too, namely if σ = σϕ for a function
ϕ ∈ Nm satisfying the typical equation (∗) given above. Accordingly, a real
function f is called effectively ΣB

m-measurable iff there is a function g : Nω −→ Nω

(approximately) computable in the related sense such that, whenever a sequence σ

represents an open set A ∈ ΣB
1 , A ⊆ R, the sequence g(σ) represents the preimage

f−1[A] as a member of ΣB
m.

Analogously, we call a real function f effectively ∆B
m-measurable iff there are

(approximately) computable functions g, g : Nω −→ Nω such that, whenever a se-
quence σ represents an open set A ⊆ R, the sequence g(σ) represents the preimage
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f−1[A] and g(σ) represents the complement, f−1[A], both as a members of ΣB
m.

By the effective analogue of the proof of Lemma 3.6, with some technical effort
using tools prepared in [1], one shows

Lemma 4.3. If a real function is α/S-toprecursive w.r.t. some r.r.u. naming
system α/S, then it is effectively ∆B

2 -measurable.

For classes of pointsets, relationships between the Hausdorff-Ershov hierarchy
and the Ershov hierarchy have been obtained by considering the discrete parts
A ∩ N

k of pointsets A ⊆ R
k. For functions, the situation is not so simple, since

the restrictions of real functions f : R
k �−→ R to N

k are not necessarily discrete,
i.e., the ranges are not necessarily subsets of N. Conversely, non-empty discrete
functions, f : Nk �−→ N, if they are considered as real ones, are not continuous
in the sense of Section 3, since the domains are not open. Nevertheless, the
Ershov hierarchy of discrete functions can be embedded into the Hausdorff-Ershov
hierarchy by means of the operator � assigning to a discrete function f : N

k �−→ N

the continuous function �(f) : Rk �−→ R defined as �(f) =
⋃ {Ball 1

3
(�x)×{f(�x)} :

�x ∈ dom(f) }, i.e.,

�(f)(�y) �
{

f(�x) if �x ∈ N
k and �y ∈ Ball 1

3
(�x) ,

↑ otherwise .

Proposition 4.4. For any function f : N
k �−→ N and any r.r.u. naming system

α/S,
f ∈ ∇E

α/S iff �(f) ∈ ∇HE
α/S .

Indeed, for an S-computable sequence F = (fξ)ξ<α of discrete functions fξ,
the sequence of real functions �(F) = (�(fξ) )ξ<α is S-KF-computable. More-
over, Φ(�(F) ) = �(Φ(F) ). Conversely, if �(f) = Φ(F) for an S-KF-computable
sequence F = (fξ)ξ<α of k-ary real functions, then the sequence F ′ = (f ′

ξ)ξ<α,
where f ′

ξ = fξ|Nk , consists of discrete functions and is S-computable in the sense
of Section 2. Moreover, Φ(F ′) = f . �

So, the Hausdorff-Ershov hierarchy of function classes is at least as rich as the
related Ershov hierarchy. Propositions 2.1 and 4.4 show that each class ∇HE

α/S

contains continuous functions which do not belong to any lower class ∇HE
α′/S for

α′ < α. In other words, for any r.r.u. naming system α/S there are real functions
of Hausdorff level 1, f ∈ ∇H

1 = Fcont, which have the level α/S in the notation-
dependent Hausdorff-Ershov hierarchy, i.e., f ∈ ∇HE

α/S \ ∇HE
<α/S . So the level of

toprecursivity of a real function can be arbitrarily higher than its level of continuity.
(Here it seems indeed to be more appropriate to speak of the levels or degrees of
non-toprecursivity and of dis-continuity, respectively.)

Those functions which admit computable greedy sequences, representing them
by means of the first-value operator, are of special interest. For such a function,
its level in the Hausdorff hierarchy coincides with that in the Hausdorff-Ershov
hierarchy. Moreover, for each point �x from the domain, the computation of the



268 A. HEMMERLING

function value in �x can be performed by computing fξ(�x), just at the first stage ξ
which is possible at all, by topological reasons.

So, a real function f is called weakly (α/S-)computable iff there is an S-KF-
computable greedy sequence F = (fξ)ξ<α with f = Φ(F).

A still sharper condition is obtained by requiring, moreover, that the distance
errors for any function fξ of sequence F can be made arbitrarily small. This means
that if fξ(�x) ↓, then there is a point �y close to �x such that depthf (�y) = ξ and,
therefore, f(�y) = fξ(�y) ↓.

More precisely, a real function f is called safely (α/S-)computable iff there is
an S-KF-computable double sequence D = (fn,ξ)n<ω, ξ<α such that the sequences
Fn = (fn,ξ)ξ<α are greedy and Φ(Fn) = f , for all n ∈ N, and whenever fn,ξ(�x) ↓,
then there is a point �y ∈ Ball2−n(�x) with depthf (�y) = ξ. S-KF-computability of
D means that there is an OTM M such that, for all points �x, numbers n ∈ N and
ordinals ξ < α,

(1) if fn,ξ(�x) ↓, then Mσ(〈n, m, l〉) ↓ for all σ ∈ CF�x, n, l ∈ N and m =
ν−1

S (ξ), and it holds (Mσ(〈n, m, l〉))l∈N ∈ CFfn,ξ(�x);
(2) if fn,ξ(�x) ↑, then Mσ(〈n, m, l〉) ↑ for all σ ∈ CF�x, all n, l ∈ N and m =

ν−1
S (ξ).

In [9], Section 6, we considered the analogous notions concerning decidability of
pointsets A, the weak and approximate decidability, which just mean the weak
and safe computability, respectively, of the characteristic function χA. By the
examples constructed there, we have

Lemma 4.5. To any r.r.u. naming system α/S, there is a real function
fα/S : R −→ {0, 1} which is safely α/S-computable and has the global depth
udepth(fα/S) = α.

So, fα/S witnesses that there are safely α/S-computable, hence also weakly
α/S-computable functions that are of level α in the (non-effective) Hausdorff hier-
archy. From discussions in [7,9] it follows that there are weakly computable (total)
functions which are not safely computable.

By means of the notion of r.e. closed set, the safely computable functions can be
characterized among the weakly computable ones. Recall that a pointset A ⊆ Rk

is said to be r.e. closed iff A = ∅ or there is a total recursive function ϕ : N
2 −→ N

such that there is a sequence (�xn)n∈N of points �xn ∈ Rk satisfying ‖�qϕ(n,m)−�xn‖ <

2−m for all n, m ∈ N, and A = cl({�xn : n ∈ N}), where cl denotes the closure of
a set.

If a real function f is safely α/S-computable, then the closures of the domains of
continuity, i.e., the sets cl(Cξ

f ) , ξ < α, are uniformly r.e. closed . This means that
there is a recursive function ϕ : N

3 �−→ N such that the functions ϕξ : N
2 �−→ N,

defined by ϕξ(n, m) � ϕ(ν−1
S (ξ), n, m), are total and witness that the sets cl(Cξ

f )
are r.e. closed sets in the above sense. This follows easily from the definition of
safe computability.
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Conversely, given a weakly α/S-computable function f such that the sets cl(Cξ
f ) ,

ξ < α are uniformly r.e. closed, the safe α/S-computability can be shown.
So we have

Lemma 4.6. A weakly α/S-computable function f is safely α/S-computable iff
the sets cl(Cξ

f ), ξ < α, are uniformly r.e. closed. �

5. Concluding remarks

The notions and results presented in this paper provide a unified framework for
non-effective and effective hierarchies of classes of real functions which all are ∆B

2 -
measurable and effectively ∆B

2 -measurable, respectively. This establishes a useful
tool in classifying certain functions both from the viewpoint of descriptive set
theory as well as of computable analysis. Nevertheless, we know only some basic
facts and relationships so far, whereas a lot of questions has been left open. As an
example, we mention the problem whether there are conversions of Lemmas 3.6
and 4.3, for functions with (r.e.) open domains. This would nicely characterize
the functions of the Hausdorff and Hausdorff-Ershov hierarchy, respectively, within
the framework of (effective) descriptive set theory.
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