RAIRO-Theor. Inf. Appl. 42 (2008) 217-236 Available online at:
DOI: 10.1051/ita:2007036 www.rairo-ita.org

BINARY OPERATIONS
ON AUTOMATIC FUNCTIONS*

JUHANI KARHUMAKI!, JARKKO KARI' AND JOACHIM KUPKE?

Abstract. Real functions on the domain [0,1)™ — often used to de-
scribe digital images — allow for different well-known types of binary
operations. In this note, we recapitulate how weighted finite automata
can be used in order to represent those functions and how certain bi-
nary operations are reflected in the theory of these automata. Different
types of products of automata are employed, including the seldomly-
used full Cartesian product. We show, however, the infeasibility of
functional composition; simple examples yield that the class of auto-
matic functions (i.e., functions computable by automata) is not closed
under this operation.

Mathematics Subject Classification. 68Q45, 68Q10, 68U10.

1. INTRODUCTION

The use of finite automata for image representation (and, ideally, compression
and even manipulation) was proposed in [1] and [3]. Later, the model of weighted
finite automata and their basic properties were discussed in [5]. Theoretical aspects
were further studied in [7,10], and [9] while practical importance was discussed,
e.g., in [6]. One important feature of the theory is that many transformations of
images can be performed directly on their compressed automata representation,
see, e.g., [4] and [8]. Some complexity-theoretic aspects were discussed in [11].

The goal of this note is to discuss — in the spirit of a unified survey — different
ways of composing images, and how these operations can be carried out on the
level of their automata representations.

Keywords and phrases. Automatic functions, weighted finite automata, full Cartesian product.

* Research supported by the Academy of Finland grant 54102 and by the Swiss National Fund
grant 200021-107327/1.

I University of Turku, Finland; karhumak@cs.utu.fi, jkari@utu.fi

2 ETH Zurich, Switzerland; joachimk@google.com

Article published by EDP Sciences © EDP Sciences 2007

http://dx.doi.org/10.1051/ita:2007036
http://www.rairo-ita.org
http://www.edpsciences.org

218 J. KARHUMAKI, J. KARI AND J. KUPKE

We consider three essentially different ways of composing digital images. First,
the value of the composed image is defined pointwise, either by taking the sum
or the product of the corresponding pixels of the images. Provided pixel values
are nothing but gray values, these operations permit very natural interpretations.
Another possibility to define the value of a pixel of the composed image is to use
convolution. In all these cases, computing the desired composition is feasible in
terms of standard operations on the automata representing the source images.

The second way of composing two pictures is to combine each pixel of the first
image with each of the second one. More precisely, since pictures do not neces-
sarily consist of discrete pixels in our context, out of an n;-dimensional function
f1:[0,1)™ — R and an na-dimensional function f3: [0,1)"2 — R, we compute the
(n1 + ng)-dimensional function f: [0,1)™ "2 — R, defined by

flu,v) = f1(u) ® fa(v) for some @& € {+,}.

Interestingly, there is a natural, but not often used, operation on automata which
realizes this composition if @& = -, namely the full Cartesian product of automata.
The term full accounts for taking the Cartesian product also of the input alphabets.

The third type of composition of images is obtained by considering these as
functions into their domain and then taking functional composition. Although
this is a very natural operation, the images realized by weighted finite automata
are not closed under this operation, and we will give simple counterexamples.

2. PRELIMINARIES

Definition 2.1 (weighted finite automata). The quintuple A = (Q, X, I, A, F) is
called a weighted finite automaton iff:

Q@ is a finite, non-empty set of states;

2 is a non-empty, finite alphabet;

I: @ — R, the so-called initial distribution, is any function;

A: Q x X x Q — R, the so-called transition distribution, is any function;
F: @Q — R, the so-called final distribution, is any function.

For the reader familiar with non-weighted versions of finite automata, the above is
a straightforward weighted generalization of nondeterministic automata. In fact,
restricting I, A, and F to the range of {0,1} instead of R yields exactly the
definition of nondeterministic finite automata (with multiple initial states).

Definition 2.2. For every o € X let A,: Q x Q — R be defined by A,(q,¢') :=
A(g,0,q"). We will think of A, as a matrix. For a word w € X*, we inductively
define A,, by

AE Z:]lQ,
Agy = Ay - A, for oce X vel”,

BINARY OPERATIONS ON AUTOMATIC FUNCTIONS 219

where 1q is the @ x @ identity matrix, i.e.,

n._ 1 ifg=4q);
lo(e.q) = {0 otherwise.

If we interpret I and F as (column) vectors of dimension |Q|, the output of A on
a word w € X* denoted by A(w), is just the real value I*" - A,, - F. Note that
this, again, generalizes the concept of nondeterministic automata where outputs
in our sense are always natural numbers and where a word is said to be recog-
nized by an automaton iff its output amounts to a non-zero value. (In fact, what
we call “output” here is called “ambiguity” in [13,14].) Accordingly, we have the
following, rather intuitive interpretation of what is a computation of a weighted
finite automaton: for every path with a labeling compatible with the input word,
compute the product of the weights of its edges. Then, compute the sum of these
values over all such paths.

We will use alphabets whose symbols correspond to partitions of a given region
of space points. A word over such an alphabet corresponds, in a recursive sense,
to a partition (determined by its last symbol) of a partition (determined by the
word minus its last symbol) — a more precise definition will follow. Consequently,
as words become longer, they correspond to ever-smaller regions, and an infinite
word corresponds to a single point, in each of which, ultimately, a function needs
to be defined. This is why we will need the following definition.

Definition 2.3. Let, as usual, X* be the set of infinite words over Y. We extend
the domain of A, regarded as a function, from X* to X* W X% by

A(z) == klin;o A(pref;(z))

for all w € X* where pref,(z) denotes the first k& symbols of z. Note that this
limit need not always exist, and thus the function A may be undefined for some
infinite words.

In what follows, we will define a subclass of weighted finite automata in order
to guarantee the existence of the limit in Definition 2.3 for all z € X*. We can
think of the automata from this class as acyclic weighted finite automata, plus,
potentially, loops from some states to themselves, which are weighted by some
value less than 1 or, if such a loop is the only transition leaving some state, its
weight will be exactly 1.

Formally, we will use the concept of the spectral radius of a matrix in Defini-
tion 2.4. Recall that the spectral radius of a matrix M is

o(M) := sup{|A| | for some vector v, M -v="v- A},

i.e., the maximum ratio by which eigenvectors of M may be stretched. In contrast,
for any vector norm ||-||, the induced matrix norm is

[|M|| := sup{A | for some vector v, |M -v|| = ||v] - A},

220 J. KARHUMAKI, J. KARI AND J. KUPKE

i.e., the maximum factor by which the norm of any vector may be multiplied as a
result of applying M to it.

Recall that the spectral radius of a triangular matrix is just the maximum
absolute value of its diagonal entries, and recall that by GELFAND’s formula, for
any vector norm || - || and any matrix A, the induced norm of its powers converges
to the respective power of its spectral radius, i.e.,

o(4) = T || AF|1/*.)

Our restrictions may seem grave at first glance, but the resulting class of automata
is expressive enough to compute a wide class of functions. Ongoing research on
the joint spectral radius (e.g., [2]) aims at settling the question to what extent our
restrictions might be relaxed.

Definition 2.4. Let A= (Q, X, I, A, F) be a weighted finite automaton. We say
that A is a level automaton iff

(i) for all ¢ € X, the matrix A, is upper-triangular with non-negative entries
only;
(ii) there is a number ¢ € N such that all the matrices A, have the form

A, | B,
a, = (G5,

where the spectral radius of A, is less than one, i.e.,
0(A4,) <1 ;and

(iii) the final distribution is non-negative, i.e., F'(¢) > 0 for all ¢ € Q.

The last restriction serves simplification purposes and is not essential; any weighted
finite automaton can easily be turned into one that satisfies condition (iii). Simply
enough, we can have a copy of a given automaton compute the same function, but
with initial and final weights negated. By canceling all negatively weighted final
weights, it is then possible to reassemble the originally computed function. This
fact is summarized in Observation 2.5.

Observation 2.5. Let A = (Q, X, I, A, F') be a weighted finite automaton. Define
the weighted finite automaton A, by

Ay = (Q x{1,-1}, X, I,Ay,Fy) where

I(g;b) :=b-I(q),

Fi(g,0) := (b F()+ 1F(@)])/2 , and
As((a,b),0,(d', 1)) = |5] - Ag, 0,4').

Obviously, A and A compute the same function, and A, satisfies condition (iii)
of Definition 2.4.

BINARY OPERATIONS ON AUTOMATIC FUNCTIONS 221
Lemma 2.6. Level automata A, seen as partial functions from X¥, are in fact
complete functions (defined everywhere).

Proof. Let w € X* be any word, and define A,, analogously to A,,. It is easy to

see that N
w B’LU
Ay = <T’T4)) (2)

where B. is the (appropriately-dimensioned) zero matrix and

k—1
By = ;)Awlmijle > (> A4)-B, (3)

—w ocY geXx*
- JyeX*: zoy=w

for all £ > 1. First of all, we will prove that for all infinite words z € X, the
infinite sum

Z Aprefj (z) (4)
=0

converges, which implies that the matrices A, tend to the zero matrix as |w]
tends to infinity. To this end, let A be the entry-wise maximum matrix of the
matrices A,. Naturally, A is upper-triangular and has spectral radius p(4) < 1.
(Note that this would not necessarily hold had we not required the matrices A,
to be triangular.) Likewise, it is straightforward to see that

14wl < (A" (5)

for an arbitrary vector norm | -|| (because A, is entry-wise less-or-equal Al*).
By (1), we have

| AF[|VF < o(A) for sufficiently large k
and hence

| A1 < o(A) for sufficiently long words w, (6)

which means that by the root test for infinite sums [12],

lim sup </|‘Aprefj(z)” <o(A) <1, (7)
j—o0

we know that the infinite sum (4) converges (absolutely).
Consequently, also those sums

in (3) which are infinite converge because they are subsums of (4). Thus, the upper-
right part of the matrices A,, in (2) converges to some matrix as |w| approaches
infinity. At the same time, the upper-left part of the matrices A,, vanishes. O

222 J. KARHUMAKI, J. KARI AND J. KUPKE

As a consequence, the functions A: X* — R induced by level automata are not
only defined everywhere, they are also continuous in all w € X*, where “continu-
ous” in an infinite word w € X* means that for all € > 0 there exists k£ € N such
that |A(pref, (w)w’) — A(w)| < e for all w' € ¥,

Observation 2.7. Level automata A, seen as functions from X“, are continuous
everywhere.

Proof. Let w € X* be a finite word, and let z,z’ € X be infinite words. The
idea is to prove that |A(wz) — A(wz’)| becomes arbitrarily small for sufficiently
long words w, which implies that A is continuous in wz, which implies that A is
continuous everywhere. Since the upper-left part of the matrices A,, in (2) tends
to the zero matrix, it is sufficient to prove that the upper-right parts, matrices B,,,
remain close to one another. But we have practically already seen this, since

LIEO Bprefj (wz) — jli>nolo Bprefj (wz") ,EH(;O(Bprefj (wz) — Bprefj ('wz')) H

J

o0
= 11D (Apret; we) Blaw) o0 — Apret (wz) Bluwz 1)

Jj=0

9
= Z (Aprefj(wz)B(wz)j+1 - Aprefj(wz’)B(wz’)j+1)
J=|wl

J

oo
= ||Aw - Z(Aprefj(z)BZJ+1 - Aprefj(z’)Bz;+1)
=0

< Awl - D | Apret,)l 1By ol + 1l Apres, 2l - 1Bz,
§=0

(5) ad .

< . .9 J

< [[Awll - max|| Bo|| - 2 _§O|\A I,
j:

where we have equality in (x) because for j € {0,...,|w| — 1}, the (j + 1)-prefixes
of wz and wz’ match, and thus the term Aprefj(wz)B(wz)j+l — Aprefj(wzl)B(wz/)j+1
vanishes.

By (6), we know that on the one hand, ||A4,]| becomes arbitrarily small for
sufficiently long words w. On the other hand, we know by (7) that the infinite sum

>4
j=0

converges, and obviously, the value it converges to is not dependent on z or 2’. [

BINARY OPERATIONS ON AUTOMATIC FUNCTIONS 223

Observation 2.8. Let A = (Q, X, I, A, F) be a level automaton. If we are only
interested in the function A: ¥* — R, we may assume, w.l.0.g., that F(q) = 1
for all g € Q.

Proof. Let P C @ be the {-set of states such that A, |pxp = 1, (for all o € X).
By the last sentence of the proof of Lemma 2.6, the weights F(q) are irrelevant
for all states ¢ € @\ P. Moreover, states ¢ € P with F(q) = 0 are useless and
can be removed (because they cannot be left and can thus not contribute to final
weight). Now, for any ¢ € P with F(q) # 1, we simply define

which gives us the automaton A" = (Q, X, I', A’ F’). On infinite words, A" com-
putes the same values as A, but on finite words, their outputs may differ since in
A, states from @ \ P may have been assigned a final weight # 1. O

In what follows, we will restrict ourselves to the case of X' = {0,1}"*! for some
n € N\ {0}, i.e., our input alphabet consists of all binary columns of a fixed
height n where n is the dimension of the domain of the functions of our predomi-
nant interest. In particular, X* is the set of all infinite-to-the-right matrices over
{0,1} of height n.

Definition 2.9. Define)*° C X“ to be the set of those matrices from X“ where
every row contains an infinite number of zeros. The reason for this provision is
that we intend to view (finite and infinite) words as binary representations of real
numbers from [0, 1), and real numbers with finite representation are well-known
to have another, infinite representation. (For example, the number % has the two
binary representations 0.1000. . .9y and 0.0111...(5).) We would like to avoid any
confusion that this fact may cause.

Definition 2.10 (Average-preserving property). Let A be a weighted finite au-
tomaton. If, for every word w € X*, we have

A(w) = ﬁ Z A(wo),

ceX

then we say that A is average-preserving.

Preserving the average weight is important for our automata for two reasons.
First, it is practical: If we want to produce the represented picture as a matrix of
gray values at a given resolution, we simply feed the automaton in question with
shorter or longer coordinate words, and this yields a sensibly shrunk or enlarged
version of the picture in question, respectively.

Second, when it comes to computing integrals of the functions computed by
finite automata, their average-preserving property is the essential building block

224 J. KARHUMAKI, J. KARI AND J. KUPKE

in ensuring that a finite automaton to compute the integral function can be con-
structed easily.

Observation 2.11. Every level automaton A = (Q, X, I, A, F) can be assumed
to be average-preserving, w.l.o0.g.

Proof. We first note that by Observation 2.8, we may assume a constant final
weight of 1. It is sufficient to guarantee that for all states ¢ € @, we have

S Alg,0,q) = |5, (+)

q'€qQ

ceX
Call any state ¢ € @ which satisfies condition (%) average-preserving. Let P be
defined as in Observation 2.8. All states in P are trivially average-preserving.
For ¢ € Q \ P, we can compute the number

X = > Alg,0,9)
oecX

> Alg,oq)’
q'€Q\{q}
oeX

th =

which is the ratio by which the weight of outgoing edges has to be adjusted so
as to yield condition (x). Like in Observation 2.8, if we multiply outgoing edges
by oy, we need to divide incoming ones, as well as the value I(g), by og # 0 in
order to preserve the computed output.

This procedure, applied to a state ¢, potentially destroys the average-preserving
property of in-neighbors of ¢, but does nothing to this property of out-neighbors
of ¢q. Hence, we can propagate the average-preserving property using breadth-first
search from P to Q. O

From now on, we will be interested in average-preserving level automata only.
Let us therefore abbreviate these as “finite automata”.

Definition 2.12 (Words and space points). For every (infinite) word w € X,
we define its associated n-dimensional space point x(w) € [0,1)™ by

x(ov) := =(c+z(v)) (for o € X, v € X)),

N =

or, equivalently, for w = g10503 . . .,
x(o10905...) = E o; - 27"
i>1

We naturally extend the domain of z to X*° W X* by padding finite words with
infinitely many zero bits, i.e.,

z(w) == 2(w((0,...,0)")¥) for all w € X*.

BINARY OPERATIONS ON AUTOMATIC FUNCTIONS 225

Nevertheless, for any y € [0,1)", we will use 271(y) in order to denote the single
infinite word w € X“° which satisfies z(w) = y.

Definition 2.13. We extend the domain of A, regarded as a function, from X* &
XY to X*w XY w0,1)" by

Aly) == Az~ ()

for every y € [0,1)™ whenever A is defined on 27 (y).

Definition 2.14 (Automatic functions). Let f: [0,1)” — R be any function. Call
the class of functions of this kind the class of real functions. Every (average-
preserving weighted level) finite automaton computes a real function. Call the
class of functions that can be computed by finite automata the class of automatic
functions.

Example 2.15. Consider the one-dimensional identity function
Fi00) - R, f@) =

A finite automaton can compute it in the following natural way. Nondeterminis-
tically, find all bits which are set to one; weight every such bit according to its
position; and finally, take the sum of all these weights. This gives us the following
automaton.

0/%,1/% 0/1,1/1

1

1(q) = 5 I(q1) =0 Flgo) = F(q1) = 1.
Note that F(gyp) = 1 so as to make the automaton average-preserving. Indeed,
adding the value 271! to the value x(w) for finite words w € {0,1}* yields the
middle z(wl) of the interval [z(w), z(wl®)), which w represents.
For example, % = 0.011(3), but the word 011 is the common prefix of the binary
representations of numbers from [%, %), and in fact, it does not only admit the
paths

0 1 1 0 1 1
qo — qo — qo — q1 g0 — qo — q1 — Q1

weight%~i~1=§ weight%~%~1:

in this automaton, the sum of whose weights is, indeed, %. But the path

N

0 1 1
qgo — 4o — qo — 4o

weight%-%-l:l—lﬁ
L
16
from the interval delimited by) % and %

contributes another adding up to %, which is the average of (all the numbers

226 J. KARHUMAKI, J. KARI AND J. KUPKE

Unlike in the preceding example, automatic functions need not be continuous,
but points of discontinuities can only occur when all coordinates have finite binary
representations. The reason is that it is exactly (rational) numbers with finite
binary representations which allow for two possible infinite binary representations,
namely one with almost only zeros and one with almost only ones. We have
formally forbidden the latter, but we can get arbitrarily close to, for instance, the
value % = 0.1000. . .2y by the sequence

0.01000. . .(),0.01100 .. .(5), 0.01110 . . .3} , . ..

This fact can easily be exploited in order to construct finite automata computing
functions with discontinuities.

Lemma 2.16. An automatic function can be discontinuous only in points whose
coordinates have finite binary representations (in some dimensions).

Proof. Obvious from Observation 2.7. O

There is even more known about automatic functions. In particular, an auto-
matic function is derivable everywhere and arbitrarily often iff it is a polynomial
function. On the other hand, every polynomial function of degree d can be com-
puted by an automaton with O(d) states. Hence, automatic functions can be
either

e polynomial functions (in a natural way, i.e., without investing a huge num-
ber of states);

e continuous functions that somewhere are only finitely often derivable; or

e functions with discontinuities at points with finite binary representations.

In practical applications such as signal processing (e.g., image processing, with
possible extensions to movie processing and/or sound processing), automatic func-
tions and the underlying theory of weighted finite automata have been discovered
to be excellent tools [6]. Hence, the reader should focus on situations where n < 2
and function values are interpreted as shades of gray. This is, however, no limit
to our considerations, but merely an illustrative help.

In this note, we capitalize on binary operators on automatic functions. In fact,
we would like to classify operators into four kinds, namely

(1) point-wise operations such as addition and multiplication;

(2) local but not point-wise operations;

(3) coordinate-wise operations that usually enlarge the value n;

(4) operations assuming same topology of domain and range — such as com-
position.

3
4

Typically, local, point- and coordinate-wise operations are feasible, i.e., the class
of automatic functions is closed under these operations, and there are efficient
algorithms that compute an appropriate automaton out of automata representing
the operands. On the other hand, and this amounts to our first observation, the
domain and the range of automatic functions are inherently different, i.e., even if

BINARY OPERATIONS ON AUTOMATIC FUNCTIONS 227

we restrict ourselves to automatic functions whose range is a subset of [0, 1), the
resulting class of functions is not closed under composition.

3. NON-CLOSEDNESS OF AUTOMATIC FUNCTIONS
UNDER COMPOSITION

Observation 3.1. There are automatic functions
f1:00,1) =R and f2:[0,1) =R

such that f1([0,1)) € [0,1) and fao f1 (i.e., the function that maps x to fa(f1(x))
for all z) is not automatic.

Proof. Let

0 fo<az<i;
T) =
f2(@) {% otherwise.

This function is clearly automatic since only the first digit of its argument (which

represents whether it is > %) needs to be taken into account in order to decide

whether its value is 0 or %

The following automaton, consequently, computes fs.

0/1,1/1

(D7 3
1/2

o) =7 Ha)=0 Fla)=Fla) = 1

Note that reading the second through the last digit always yields a weight of 1.
It is hence easy to see that the automaton computes no other function than fs.
Now, let fi(z) := %:L’. Since fi is a polynomial function, it is an automatic

function. Obviously,

0 if 0<z<3

(fao fi)(x) = {1

5 otherwise,

and consequently, fso f1 is non-continuous in x = % Since % = 0.1010101010.. . .2y,
it has no finite binary representation, and so, by Lemma 2.16, f; o f; is not
automatic.

Note that one might argue that by changing the arity of the input represen-
tation, this obstacle could be overcome. In fact, % = 0.23), and for any rational
number ¢, there is an arity of input representation such that ¢ may be repre-
sented finitely. But even for a possible extension of automaticity of functions,

228 J. KARHUMAKI, J. KARI AND J. KUPKE

the corresponding class of functions is not closed under composition. In order to
see this, let

which is still automatic since it is a polynomial function. Obviously,

0 ifo<z<ive
(f2 © fl)(x) —931 . 2
5 otherwise,
and consequently, fo is non-continuous in z = %\/5, which for every arity of input
representation is non-periodic and therefore has only infinite representations. [

If we ask whether smooth automatic functions (i.e., automatic functions that
are derivable everywhere) are closed under composition, however, the answer is
“yes,” since the only smooth automatic functions are polynomial functions and all
polynomial functions are automatic.

But it is natural to ask whether the class of continuous automatic functions is
closed under composition. The answer is negative, again.

Observation 3.2. There are continuous automatic functions f1:[0,1) — R and
f2:[0,1) — R such that f1([0,1)) C [0,1), and fz o fi is not automatic.

Proof. Let
0 ifo<az<i;
fQ(I) ::{ 1 2

T—3 otherwise.

This function is easily seen to be automatic if we combine the idea from Exam-
ple 2.15 with that from the automaton for the function f; in Observation 3.1.
More specifically, depending on the first bit of input, we should either output zero
or compute the identity on the remainder of the input. This gives us the following
automaton.

0/%,1/% 0/1,1/1

@ 0/0 Qq 1/1 p
0 > 1 2
N

172

A 4

1
Ha) =5 Ila)=Ie)=0 Flo)=Fla)=Fe)=1
Again, let fi(z) := 3z. Obviously,

if0< <2

T — otherwise.

(fao fi)(@) = {0

1
2

BINARY OPERATIONS ON AUTOMATIC FUNCTIONS 229

Of course, fa 0 f1 is continuous even in x = % since the composition of continuous
functions yields, again, a continuous function. Suppose, however, f; o f; were
automatic. By [4], we know that then, (f2 o f1)’, i.e., its derivative, would also
be automatic. But (f2 o f1)" is non-continuous in z = %, which contradicts its
automaticity.

Again, as in Observation 3.1, by replacing f; with fi(z) := 2%, we deduce that
even changing the arity of input representation does not remedy the non-closedness

of automatic functions under composition. O

2

4. ADDITIONS

Point-wise addition is presumably the easiest operation on finite automata.
Constructing an automaton to compute the sum of two automatic functions, given
in terms of the automata computing them, is immediate: just take the (disjoint)
union of the two sets of states and extend I, A, and F' in the natural way.

For coordinate-wise operations, assume we have an ni-dimensional automatic
function f; and an mo-dimensional function fo. Now let n := ny + no, and, for
some @ € {+, -}, define the n-dimensional function f by

fl@1, oo @y, Ty 1y e oy @) i= f1(@1, oo Ty) @ fo(Tny 1,0y Tn)- (8)

In this section, @& = +, of course. In order to accomplish coordinate-wise addition,
extend fi and f to [0,1)™ as appropriate. Do so by extending A;, i = 1,2, in the
straightforward way: let

o~

Ai (Q7 87 q/) = Az (Qa 05 (8)7 q/)a

where o7 is the projection of & to the first n; and where o2 is the projection of &
to the last no coordinates. Secondly, perform point-wise addition.

Both of these procedures, if applied to level automata, yield level automata in
turn. This also holds for the procedures in the next two sections.

5. MULTIPLICATIONS

Point-wise multiplication can be performed using a very well-known construc-
tion in automata theory, namely the standard Cartesian product of two automata
A = (Qi, X, I;, Ay, Fy), for i € {1,2}, which is

A::A1®A2 = (Ql XQQazaIaAvF)
where

I(q1,q2) == Ii(q1) - I2(q2),
A((Q17q2)707 (qllaqg)) = Al(qlaga qll) : AQ(q2707 qé)aand
F(q1,q2) := Fi(q1) - F2(q2)-

230 J. KARHUMAKI, J. KARI AND J. KUPKE

It is immediate that A computes the point-wise product of the functions which A;
and Ay compute.

Intriguingly, coordinate-wise multiplication corresponds to a similarly natural,
if maybe less well-known, construction from automata theory, namely the full
Cartesian product of two automata. Suppose we are given two automata A; =
(Qi7 i I, A, Fz)7 for i e {1, 2}, then let

A=A ®c Az = (Q1 X Q2,51 x X5, [, A F)
where

Iq1,92) :==T(q1) - I2(q2),
A((q1,92), (01, 02), (qlp%)) = A1(Q1,U17q/1) : Ag(q2,02,q;),and
F(q1,q2) := Fi(q1) - F(q2).

It is immediate to see that what A computes is the function f, as defined by
equation (8), where & = -.

Point-wise multiplication can also be thought of as a special case of coordinate-
wise multiplication in the following sense: after performing coordinate-wise multi-
plication, project the image to its “diagonal”. That is, if the resulting automaton
is input the space point (y1, ..., yn), it simulates the automaton we currently have
by feeding it with (y1,...,Yn, Y1, -+, Yn)-

To this end, it is sufficient to remove all transitions labeled with some symbol
(Y1s ey Yns 215 - - - 20) " where (y1,...,yn) # (21,...,2n). For the remaining tran-
sitions, we delete the last n components of the labeling of each, which gives us
n-dimensional labelings, as desired.

6. LOCAL OPERATIONS

As the only representative of local operations, we will discuss the convolution
of two functions. Convolutions naturally arise in image manipulation on the one
hand. On the other hand, convolution is used broadly throughout mathematics as
an operation in its own interest.

The convolution of two functions f; and f2 (of the same dimension n), denoted
by f1 * fa2, is defined as follows:

(1% fo)(z) = / fi(w(— 1) fo(t)dt,
[O,l)n

where w is the coordinate-wise wrap-around function, i.e.,

w(T1, ..oy mn) = (21 — (21,0, 20 — |20]).

BINARY OPERATIONS ON AUTOMATIC FUNCTIONS 231

f1
1— 3—
08 —
0.6 — o
04— .
02— ;
0— 0— 2
I I I I I | I I I I i |
0 02 04 06 08 1 0 02 04 06 08 1
1= fi1#f2
06—
04—
02—
0_

Ficure 1. Convolution of two functions fi, fo.

Example 6.1. Consider the functions fi, f2: [0,1) — R, given by their function
graphs as in Figure 1.

The idea is that the convolution fi* fo should cancel the ripple of fi because the
effect of f5 is to average out the values of f; in a 0.2-ball around every x coordinate
where values within a 0.1-ball receive double weight. Note that fol fa(t)dt = 0.9,
which means that the average value of f1 x fo will be 10% smaller than that of fi.

The fact that convolution, too, belongs to the class of feasible operators for
automatic functions, is a corollary from these facts:

(1) For any n-dimensional automatic function f, given by the automaton com-
puting f, we can construct an automaton computing the (2-n)-dimensional
function f*(z,t) := f(w(x —t)).

(2) We can extend an automatic function to a higher dimension, i.e., we can
construct an automaton computing fo(x,t) := fa(t).

(3) Point-wise multiplication is feasible.

(4) The integral is an operation that can be carried out directly (i.e., exactly
and with almost negligible complexity) on an automaton.

An explanation of the first fact will be deferred to the end of this section. Fact two
is an easy observation, and the third fact has been pointed out in the preceding
section.

For the last fact, the reader is referred to [5]. Note, however, that the integral
in [5] is defined as a unary operation on automatic functions, or, to be precise,

232 J. KARHUMAKI, J. KARI AND J. KUPKE

as the following transformation of functions:

[+ f=Jf

(S N)(@) == [f(t)dt.
Ogtéxl
OStn:Smn

In fact, [5] only deals with n = 1, but it is straightforward to generalize the idea
to arbitrary values of n. In this notation, if we set

fo(t) = fi(w(z = 1)) - fo(t)

for all z € [0,1), we would need to evaluate [f, in the point (1,...,1) in order to
compute f1 * fo in x. Formally,

(fi+ fo)(@) = (J fo)(L;- -5 1)
——

n times

(Note that it is not significant for an integral whether it is computed over [0,1)"
or over [0,1]™.)

Hence, the difficulty lies in the fact that we aim at integrating a parametrized
function whose parameter is the input, which — naturally — may vary. This is,
however, a problem which can easily be overcome.

Note that by the average-preserving property, computing, for any finite automa-
ton A, the value

/A@&Z/A@&:A@

tef0,1)n te[0,1]™

is easy: A(e) is exactly the average of A (as a function) over all of [0,1)", and this
is what an integral expresses (multiplied by the measure of the set over which to
integrate).

Likewise, for example, we have:

1/2 3/4
/A@wzémv)am /A@&:EAMM
t=0 t=1/2

where ‘0’ and ‘10" denote the words 0 and 10, respectively (and none of the real
values of zero or ten).

In fact, [5] (without mentioning it explicitly) combines this with the fact that
every interval [0,y) can be expressed as the (possibly infinite) disjoint union of
intervals whose lengths are powers of two (with a negative exponent) and whose

BINARY OPERATIONS ON AUTOMATIC FUNCTIONS 233

boundaries have finite binary representations. Formally,

[0,9) = |H [z(prefy,_ (27" (1)), z(prefy (2" (1)))).
keN\{0}
prefy (2~ (4))€{0,1}" {1}

For example, 2 = 0.1010101010.. . .(2), and hence,

02—01L+J15L+JS21LJ:J
3] 772 2’8 8732
N N N —

1st digit 3rd digit 5th digit

It is thus possible to conclude that

/A(t)dt = /x(wl) A(tydt = 3727111 A(wo)

we{o,1}* 7= (w) we{0,1}*
wl€ePref(z~1(y)) wl€ePref(z~1(y))

where Pref(z) is the set of all finite prefixes of some infinite word z, i.e.,
Pref(z) := {pref,(z) | k € N}.
Note that A(w0) is the average function value of A in the interval
[#(w0), z(wl)) = {y € [0,1) | w0 € Pref(z~'(y))}.

This yields the natural construction of the integral automaton (in one dimension):
for every factorization w = ulv of the input word w, simulate the original automa-
ton’s work on the word u0, but weight its output by 240l (and add these outputs
up). This can be achieved by halving the weight of every existing transition and
by additionally introducing “exit transitions”, labeled 1 and of a weight by which
it would have been possible to read the symbol 0 (as the last symbol of a word) in
the original automaton.
Formally, for A = (Q,{0,1},I, A, F), set Ay := (Qr,{0,1}, Iy, As, Fy) where

Qr:=Qu{g}
_JI@) qe@
Ii(a) = {0 otherwise;

1 g=q

Fi(q) :=1 (cf. Obs. 2.8); or equivalently, Fj(q) :=)
0 otherwise;

234 J. KARHUMAKI, J. KARI AND J. KUPKE

1 A(q,0,q) {¢.4} CQ

I3 0 Aq,0,¢)VF(¢") q€Q,¢d =qp,ando =1
Af(q70'7 ql) = 2 @ /

1 q=q =qs

0 otherwise.

What we need here, however, is slightly different: we are given a finite automa-
ton A that computes the (n; + nz)-dimensional function g: [0,1)" "2 — R, and
we would like to construct an automaton computing the ni-dimensional function
f:10,1)™ — R, defined by:

f(z) = /g(x,t)dt.

te[0,1)m2

For ny = 0, this task collapses to computing A(¢), as pointed out above. For
ny > 0, it is only slightly more involved: let A = (Q,{0,1}" "2 I, A F). Then,
define A’ := (Q,{0,1}™, I, A’, F) where

Alg.oq) =273 Alg,(0.0').4)

0"6{071}"2

for all ¢,¢' € Q and all o € {0,1}™. In other words, A’ computes the average
of the function g with respect to the last ny components. This coincides with the
function f.

The only thing left to show is that for an automaton A = (Q, {0,1}",I, A, F)
computing the function f: [0,1)" — R, we can construct an automaton that com-
putes f¥:[0,1)>™ — R. The idea is to simulate the subtraction of the two input
values. For n = 1, imagine that the input word is

_ ! Sp
w=o1...op=1{,) (7).
s} s,

A written subtraction of s} . ..s; from s;...s, amounts to finding carry bits
bo, ..., b, and then computing the result bits my, ..., m, according to the defi-
nition of m: {0,1}* — {0,1, L} in Table 1, where b denotes the carry bit “to the
left” and o’ the one “to the right” of the current column.

In other words, the school method of subtracting would allow us to write a
computation like this:

S1 S92 cee Sp—1 Sp
/ / . / /
bo S1 by So b bp—a Sp—1 bp_1 Sp by s
mq meo s mp—1 my

where by = b, = 0. If we waive the requirement that by = 0, we may subtract
greater values from lesser ones (by means of the wrap-around function).

BINARY OPERATIONS ON AUTOMATIC FUNCTIONS 235

TABLE 1. Subtraction of bits according to known carry bits. May
be undefined (L) for quadruples which cannot appear.

b s s b |m(bs,s,b) b s s b0 |m(bs,s,b)
00 0 O 0 1 0 0 O T
00 0 1 il 1 0 0 1 1
00 1 O 1 1 0 1 0 1
00 1 1 il 1 0 1 1 0
01 0 O 1 1 1 0 0 L
01 0 1 0 1 1 0 1 L
01 1 0 0 1 1 1 0 L
01 1 1 1 1 1 1 1 1

In multiple dimensions, we naturally extend m to
M {0, 1347 2= {0, 1} x {0,1}27 x {0,1}" — {0,1}" w {1}
by setting

/ / / / R
M1, .o oy bpy Sty ey Sny STy ey S0, b)) =

TN

(m(blvsla Sllvbll)a . 'am(bnvsna Simbiz)) it L g {m(bivsia ngb;) | 1 < i < Tl}
L otherwise.

We are now ready to give a formal definition of A", the wrap-around automaton
that is to compute f™. For it to keep track of the carry bit only means to double
the set of states (for every dimension). Note, however, that we are fed our input
from left to right, and consequently, dealing with the carry bit can be viewed as a
nondeterministic process. Set

Aw = (Q X {0’ 1}”7 {0’ 1}2.,’1/’ Iw’ Aw’Fw)7
I%(q,b):
,b)

F*“(q

I(q),
F(q) ifb=(0,...,0)
0 otherwise , and
0

if M(b,o,0') =L
Aw((‘]ab)vav (qlvb/)) = A (:)
A(g, M (b,o,V),q") otherwise
for all b,b’ € {0,1}" and o € {0, 1}?".
Note that ignoring the leftmost carry bit is realized by setting I(¢,b) := I(q)
(which contrasts with the definition of F'*).

236 J. KARHUMAKI, J. KARI AND J. KUPKE
7. CONCLUSION

Automatic functions are a phenomenon as natural in the context of computing
as are polynomial functions in the context of physics (where the notion of “be-
ing natural” is determined, e.g., by asymptotic growth, derivability, etc.). Every
polynomial function is automatic but not vice versa, a fact that invites further
research on this intriguing class of functions. Their practical use in the context
of signal processing can only underline their importance. It is a neat but rather
immediate fact that the class of automatic functions is closed under operations
such as the sum or the product. A more important structural observation is that
it is closed under convolution. Convolutions play both an important and a natural
role throughout mathematics, which suggests that the class of automatic functions
deserves further investigation which would be geared toward its theoretical prop-
erties and thus extend our conception of its role even beyond its applicability in
image and signal processing.

REFERENCES

[1] J. Berstel and M. Morcrette, Compact representation of patterns by finite automata, in Proc.
Pixim ’89, Paris (1989) 387-402.

[2] V. Blondel, J. Theys and J. Tsitsiklis, When is a pair of matrices stable? Problem 10.2
in Unsolved problems in Mathematical Systems and Control Theory. Princeton Univ. Press
(2004) 304-308.

[3] K. Culik IT and S. Dube, Rational and affine expressions for image descriptions. Discrete
Appl. Math. 41 (1993) 85-120.

[4] K. Culik IT and I. Fris, Weighted finite transducers in image processing. Discrete Appl.
Math. 58 (1995) 223-237.

[5] K. Culik IT and J. Karhuméki, Finite automata computing real functions. SIAM J. Comput.
23 (1994) 789-814.

[6] K. Culik IT and J. Kari, Image compression using weighted finite automata. Comput. Graph.
17 (1993) 305-313.

[7] K. Culik IT and J. Kari, Efficient inference algorithms for weighted finite automata, in Fractal
Image Compression, edited by Y. Fisher, Springer (1994).

[8] K. Culik IT and J. Kari, Digital Images and Formal Languages, in Handbook of Formal
Languages, Vol. 111, edited by G. Rozenberg and A. Salomaa, Springer (1997) 599-616.

[9] D. Derencourt, J. Karhuméki, M. Latteux and A. Terlutte, On computational power of
weighted finite automata, in Proc. 17th MFCS. Lect. Notes Comput. Sci. 629 (1992) 236-
245.

[10] D. Derencourt, J. Karhuméki, M. Latteux and A. Terlutte, On continuous functions com-
puted by finite automata. RAIRO-Theor. Inf. Appl. 29 (1994) 387-403.

[11] J. Karhumiki, W. Plandowski and W. Rytter, The complexity of compressing subsegments
of images described by finite automata. Discrete Appl. Math. 125 (2003) 235-254.

[12] K. Knopp, Infinite Sequences and Series. Dover publications (1956).

[13] J. Kupke, On Separating Constant from Polynomial Ambiguity of Finite Automata, in
Proc. 32nd SOFSEM. Lect. Notes Comput. Sci. 3831 (2006) 379-388.

[14] J. Kupke, Limiting the Ambiguity of Non-Deterministic Finite Automata. PhD. Thesis.
Aachen University, 2002. Available online at
http://www-il.informatik.rwth-aachen.de/~joachimk/ltaondfa.ps

Communicated by J. Hromkovic.
Received September 9, 2005. Accepted May 2, 2006.

http://www-i1.informatik.rwth-aachen.de/~joachimk/ltaondfa.ps

	Introduction
	Preliminaries
	Non-closedness of automatic functions under composition
	Additions
	Multiplications
	Local operations
	Conclusion
	References

