RAIRO-Theor. Inf. Appl. 42 (2008) 451-466 Available online at:
DOI: 10.1051/ita:2008009 wWww.rairo-ita.org

SOME ALGEBRAIC PROPERTIES OF MACHINE POSET
OF INFINITE WORDS

ALEKSANDRS BELOVS!

Abstract. The complexity of infinite words is considered from the
point of view of a transformation with a Mealy machine that is the sim-
plest model of a finite automaton transducer. We are mostly interested
in algebraic properties of the underlying partially ordered set. Results
considered with the existence of supremum, infimum, antichains, chains
and density aspects are investigated.

Mathematics Subject Classification. 03D40, 20F10.

INTRODUCTION

A finite automaton can be viewed as a machine model which is as elementary
as possible in the sense that the machine has a memory size which is fixed and
bounded. The number of possible states of such a machine is itself bounded,
whence the notion of a finite-state machine.

A Mealy machine [11,16] is a finite state machine that acts, taking a string on
an input alphabet and producing a string of equal length on an output alphabet.
This model, namely, Mealy machine, is being investigated intensively since the
nineteen fifties (¢f. [3,6,13,19,20]). It is possible to rise similar questions as in
this article for a wider class of finite transducers, but we would like to narrow the
investigation only for Mealy machine as a kind of a canonical case.

A word is a sequence of symbols, finite or infinite, taken from a finite alphabet.
Words are central objects of automata theory, and in fact in any standard model
of computing. Also words themselves is the object of study of the mathematical
discipline. Namely, combinatorics on words is dealing with them. During the last
twenty years many papers and monographs appeared in this field (¢f. [1,7-9]). In
the contest of infinite words it is worth to mention monograph [12].

Keywords and phrases. Infinite words, Mealy machine, poset, algebraic properties.

I Department of Mathematics, University of Latvia, Raina bulvaris 19, Riga, Latvia;
stiboh@inbox.1lv

Article published by EDP Sciences © EDP Sciences 2008

http://dx.doi.org/10.1051/ita:2008009
http://www.rairo-ita.org
http://www.edpsciences.org

452 A. BELOVS

In this article we are interested in the complexity of infinite words from the point
of view of their transformation with Mealy machines. Nowadays, when streams
of information grows enormously, it becomes more homogeneous, but underlying
machines pretends to become as simple as possible, sharpened to the specific task,
such a question can be indeed interesting.

In any case, it is not a radically new point of view. The subject of finite au-
tomata on infinite words was established in the sixties by Biichi [2] and
McNaughton [10]. From this core the theory has developed into many directions.

One of the main aspects of a modern mathematics, as it has been widely noticed,
most known, probably, in the Bourbaki’s “Elements de Mathematique” is not
a study of concrete elements, but rather a study of different arising structures.
In different areas of mathematics people consider a lot of hierarchies which are
typically used to classify some objects according to their complexity.

As an example we can remind a problem of the classification of subsets of the
natural number set N with a relation of a reduction of one set (non-calculable
one in general) to another one. Algebraic properties of this structure is already a
classics and can be found for example in [14]. A similar question for the case of
finite transducers is not studied in such details.

In the world on infinite words similar problems are investigated by the Wagner
hierarchy theory [17]. It deals with the Wadge preorder on w-rational sets, that
is an analogous of regular sets for infinite words. The Wadge preoder arose from
topology, but is turned out that continuity can be replaced by asynchronous se-
quential functions. Interested reader may refer to the fifth chapter of [12] for more
details. As it has been already said, we study possibly a more natural notion from
the computation point of view: the preorder of infinite words themselves using
finite automata.

1. PRELIMINARIES

In this section we present most of the notations and terminology that will be
needed for understanding the foregoing text. Our terminology is more or less
standard (cf. [4,7-9]) so that a specialist reader may wish to consult this section
only if a need arise.

Let A be a finite non-empty set, we shall call alphabet, and A* be a free monoid
generated by A. It is built of finite sequences of elements of A with a concatenation
operation. The identity element of A*, designated as ¢, is called the empty word.

We shall use a notation

k
Hui = UgUiUg * - - Uk
=0

for complex concatenations (here u; are finite words on the same alphabet).

MACHINE POSET OF INFINITE WORDS 453

If w=wow;y... w1 € A* (here w; € A) then [is called length of w and is
denoted as |w|. The length of £ by the definition is equal to zero. We set w® = ¢
and w't! = wiw.

The concatenation of sets of words is understood as a set that consists of all
element wise concatenations. So, for example the notation A¢ stands for the set
of all words, of length ¢, over the alphabet A.

The word w' is a factor of w (notation: w’ < w) if w = ww'v for some u and
vin A*. If u = ¢ or v = ¢ then w’ is called respectively prefiz or suffiz of w. We
denote by F(w), Pref(w) and Suff(w) respectively the sets of all factors, prefixes
and suffixes of the finite word w.

If w = wow; ...w; then the notation wi, j] (with 0 <4 < j <) stands for the
factor w;w;t1 ... w;. We shall use notation w[i] instead of w[i,i]. An occurrence
of a factor v in w is such a pair (i, j) that v = wli,j]. We use notation (...) to
denote tuples.

An (one-sided) infinite word = on the alphabet A is any map = : N — A.
We write x = xgzi122 ... The set of infinite words on A is denoted A“. All the
definitions made before can be applied to this case also, only the concatenation
operation zy in A* U A is defined if x is finite. Hence, prefixes and factors of an
infinite word are finite, but suffixes are infinite. The suffix x;x;41 ... is denoted
by x[i, ool

A sequence of finite words {w;} converge to an infinite word y, and we write
y = limy,_ o0 wy if

VieN INeN Vm> N :wpyli] =yl

As a special case we have

o0 k

H u; = lim H U,
; k—oo -

i=0 =0

and also we set u*¥ = lim,,_,, u™ for any non-empty u.

An infinite word of the form u* is called periodic. Words of the form uv* are
called ultimately periodic; lengths of the v and v are called respectively pre-period
and period of the ultimately periodic word uv®.

We shall use the same notations for prefixes of ultimately periodic words. Of
course, each finite word is an ultimately periodic (even periodic) one, the matter
is in the sizes of its pre-period and period. We shall get use of the following
theorem [5]

Theorem 1.1 (Fine-Wilf). Let a and b be periodic words of periods m and n
respectively. If a and b agree of prefix of length m +n — ged(m,n) then a = b.

A function p : A* — B* is called morphism if p(e) = € and for all u,v € A*,
p(uv) = p(u)p(v). The morphism is uniquely defined by its values on the letters.
The morphism p is called non-erasing if Va € A : u(a) # . It is called uniform if
Va,b € A:|p(a)] = |p(d)]. It is called literal if Ya € A : |u(a)| = 1. It is clear that
any literal morphism is also an uniform and a non-erasing one. The morphism p

454 A. BELOVS

can be applied also to an infinite word like this

p(x) = lim p(z[0,n]),
n—oo
if the limit exists. It does if u is non-erasing.
In a same way it is possible to define a morphism with more than one argument.
Let A; (i < k), B be alphabets, z; € AY and f be a function from Agx Ay x...x Ay,
to B*. We extend f: Af x ... x Ay — B setting:

f(moaxla v 71']9) = Hf(:co[z],xl[z], e 73:16[7’])
i=0
Such a morphism is called literal if Vao, x1,... 25 ¢ |f(zo,z1,...,2,)] = 1. For

example, we can define a product of two or more words xg X x1 X ...z, taking the
identity morphism in the previous definition (with B = Ag X Ay X ... X Ag).

If u and v are finite words of equal length we can define the (perfect) shuffle ullv
as the finite word w[0]v[0]u[l]v[1]...u[k]v[k] consisting of the alternating u and v
symbols. If x and y are infinite words we can define Uy = limy_, o u[0, k]Uv[0, k].

And vice versa, for each infinite word z on A we can define a blocking B(x)
as B(z) = u x v = (z[0],z[1])(z[2],z[3]) ... € (A%)*, where u LU v is the only
representation of the word z as a shuffle.

Another simple operation on an infinite word is the shift operation. If z € A%
then the result of applying the shift operation is oz = z[1, 0o[. We shall use also
the inverse operation 0~ 'z = Az, where A € A is an arbitrary element and the
product on the right side is a concatenation operation in A“. We shall not care
about the exact value of \.

A 3-sorted algebra V = (Q, A, B, o,x) is called Mealy machine if Q, A, B are
finite non-empty sets and o: Q X A — @, * : Q X A — B are functions. The sets
Q, A and B are called respectively state set, input alphabet and output alphabet.

The mappings o and * can be extended to Q X A* by defining

qgoe=¢(q, qo(ua):(qou)Oa,
gxe=c¢, gx(ua)= (¢gxu)((qou)x*a),

for all ¢ € Q,u € A* and a € A. Henceforth we shall omit parentheses, assuming
that o and * have equal priorities, that is higher than the priority of concatenation
and lower than the one of taking factors. So q o w* z[5,6]y = ((¢ o u) * (x[5,6]))y.
If x is an infinite word and ¢ € @ we put ¢ * x = lim, . g * [0, n].

A 3-sorted algebra Vo = (Q, A, B,qo, 0, *) is called initial Mealy machine if
(Q, A, B,o,*) is a Mealy machine with the initial state g9 € Q. We say the

machine V transforms a word z into a word y (notation: x Yo y)if y = qo*x. We

shall write x — y if there exists such a Mealy machine V' that x Y Y.
Whenever possible we would like to describe appearing Mealy machines infor-
mally, leaving formal constructions to the reader.

MACHINE POSET OF INFINITE WORDS 455

A set L, with a defined binary relation > on it, is called a partially ordered set
(poset) or just an order, if it fulfills the following three axioms:

x>z (reflexivity)
r>y,y>z=x>z (transitivity)
x>y y>xr=x=y (anti-symmetry).

Whenever x > y and x # y we write z > y. If a relation fulfills only the reflexivity
and the transitivity axioms then such an algebraic structure is called a preorder.

Let (L,>) be some partially ordered set and a be an element of L, a is called
the largest element iff Vo € L : a > x; a is called the smallest element iff Vo € L :
r > a; ais called maximal iff Vo € L : x > a = = = a; a is called minimal iff
VreL:a>rx=x=a

For each two elements x and y of L their upper bound is such an element z that
z > x and z > y. The supremum is the smallest upper bound, i.e. such an element
z = x V y that not only z > x,y, but for any other element ¢t > x,y holds ¢t > z.
Similarly, z is an lower bound if x,y > z; the largest lower bound is called the
mfimum.

Such a poset that every two elements have a supremum is called an upper semi-
lattice. If every two elements have infimum, it is called a lower semi-lattice. A
poset that is both an upper and a lower semi-lattice is called a lattice.

2. MACHINE POSET OF INFINITE WORDS

Our main object of investigation is the machine poset of infinite words. In order
to avoid some set-theoric problems we shall make some assumptions. Let us take
the set

(o]
N=[J{0.1,....k}*.

k=0
We shall assume that all the states of the Mealy machine, the input and the output
alphabets are from the set N. But if we shall use another input or output alphabet
O, we shall assume that there is a bijection k : O — {0,1,...,|0| — 1} fized, and
this bijection is applied to the input or the output word respectively.

We would like to explore — as an algebraic relation on 1.

Proposition 2.1. The algebraic structure (N, —) is a preorder.

Proof. In other words, the relation — is reflexive and transitive. Indeed, = can
be transformed into itself using a machine with one state that outputs exactly the

symbol it gets on the input. If z M y and y N2 then z — 2 with a machine
consisting of the machines M and N. It moves the input symbol to M, its output
redirects to the input of N and, finally, the output of N redirects as its own
output.]

We can make a canonical transformation to the order, defining x ~ y iff (v —
y)V (y —), and defining & = 91/~. The set K is build up of equivalence classes

456 A. BELOVS

of 91 under the relation ~. We shall say A — B, where A, B € R, if for at least
one pair (and then for all such pairs) z € A and y € B holds — y (as it has been
defined in the poset 7).

Thus, the algebraic structure (R, —) is a poset. This is the poset we shall
explore in this article. It consists of the sets of words, but we shall freely switch
from the set to an arbitrary its element.

The main technique that can be applied is the cycling of finite automata. As
an easy example we shall mention the following theorem due to Yablonsky [18].

Theorem 2.2 (Yablonsky). The set of ultimately periodic words forms one equiv-
alence class in N and, henceforth, one element of R. It is the smallest element
of R.

We shall give the proof of this theorem because technics of this proof will be
used further in this paper.

Proof. Let us take an ultimately periodic word x = uv* and a machine M with n
states and the initial state ¢p. Consider its states

go © U, go © UV, gy o UV, ..., qo o uv". (1)

Applying Pigeonhole principle, we can state there are two equal states, say goouv®
and go ouv! (0 < k < | < n). Now using induction it is easy to prove go o
z[0, [uvk| +m] = go o [0, |[uv'| +m)] for any m > 0, and hence, (go * z)[|uv®| +m] =
(qo*x)[|uv!|+m)]. So, go*x is an ultimately periodic word with a period (I — k)|v|.
On the other hand, any word (non-periodic as well) can be transformed into an
arbitrary ultimately periodic word uv®, using a machine that outputs « (denote
its state after this operation with ¢), then ad infinitum outputs v stating itself into
the state ¢ after that. O

We say that a machine M cycles on an ultimately periodic word uv™ if some
two states of (1) are equal. Using the proof of the previous theorem, it is easy to
see that the following result holds. We shall widely use it further in the paper.

Lemma 2.3. If M is a Mealy machine with n states and x is an ultimately periodic
word with pre-period k and period | then the result of transformation of x with the
machine M is an ultimately periodic word with pre-period < k+In and period < In.

Of course, the same result holds for finite ultimately periodic words as well. In
this case we shall be mostly interested in the estimations of pre-period and period.
Let us make one more definition:

Definition 2.4. Let uv® be a finite ultimately periodic word and M such a ma-
chine that cycles on it when starts its procession in state ¢ (f.e., such that satisfies
the conditions of Lem. 2.3). We say that a symbol b # v[0] breaks the periodicity
if ¢ * uv®b # q * uvkv[0].

Let us also note some relations between the transformation relation and oper-
ations on words.

MACHINE POSET OF INFINITE WORDS 457

Proposition 2.5. Let B;, C be alphabets. If v — y; for y; € B;, i =0,1,...,k

and f : By x BY x --- x BY — C is an arbitrary literal morphism then x —
f(yoayla .. 7yk)
Proof. Obvious. O

Transformation relation goes on with the shuffle operation.

Proposition 2.6. If x1 — y1 and xo — ys then x1 Uxe — y1 Uys. If u is an
ultimately periodic word then the mapping x — x U w is an isomorphism of & on
its subset.

Proof. Indeed, if x; M y; then x1 Uxs is transformable into y; Uys using a machine
that simulates M7 and My and in the alternating way gives the input symbol on
the input of one of them, changing its state, and outputs its output.

The fact that = — x LU u is a morphism follows from the previous paragraph.

Suppose z Ll u M y Uu. Then we can transform x into y using a machine that
contains the machine M and the machine N that produces u (its existence follows
from Th. 2.2). It takes a symbol of x, gives it to the input of M, its output
redirects to the output tape, gets the output of N, gives it to M ignoring the
output, and so on. O

Remark 2.7. Substituting the machine N in the proof of proposition 2.6 with

an arbitrary machine N: =z N u, we can get that the mapping x — z Uw is an
isomorphism of {z € R | © — u} onto a subset of {x € R | x — v u}.

As an inversion of the previous proposition, the following result holds:
Proposition 2.8. If x — y then the same is for their blockings: B(x) — B(y).
Proof. Obvious. O

3. MAIN PROPERTIES

Theorem 3.1. The partially ordered set R is an upper semi-lattice.

Proof. For any © € A“ and any y € B“ as its supremum we can take the word
x Xy € (Ax B)¥ defined with (z x y)[i] = (z[i], y[i]). That it is an upper bound
of x and y and its minimality easy follows now from Proposition 2.5. 0

In the proof of the previous result we enlarged the alphabet to A x B in order
to get the supremum. It is possible to proof this enlargement is indeed needed.

Theorem 3.2. Let us consider three alphabets A, B and C with |C| < |4]| - |B].
Then there exist two infinite words x € A“ and y € B* such that for any z € C¥
either z /- x or z /- y.

Proof. We will use the diagonalization method. The set of all Mealy machines S
that work from the input alphabet A to the output alphabet C is an enumerable

458 A. BELOVS

one. The same is for the set T' of machines working from B to C'. Hence the set
S'x T is also an enumerable one. Let us fix one of its enumerations r,ra, ..., 7%, . ..

The words x and y will be build inductively. Let us start with zyp = yo = €.
Now let us assume there are two words x,, € A' and y,, € B of equal length [that

Yo e O (Mg, M) € {r1,...,rn}: (Mgxv #2,)V (M v # yn).

Now we will construct the words z,41 and y,+; with the same properties. Let
us denote rp41 = (Mg, My). There are |C|™ words of length m over the alphabet
C. Also there are (|A| - |B|)™~! pairs of words from A™ x B™ that start with z,,
and y,, respectively. For a sufficiently large m: (|A|-|B[)™~! > |C|™. Using the
pigeonhole principle we conclude

i1 € z, AT FYnt1 € ynB™ 7l Vze o™ (Mg 2z, My * 2) # (Tpt1, Ynt1)-

The same property for r1,79,...,r, follows from the inductive assumption and a
fact that x,, and y,, are prefixes of x, 41 and y,41 respectively.

From the last statement it also follows that there exist x = lim,,_ o x, and
y = limy, o0 Yn. It is not hard to see they are the words we are actually looking
for. O

Theorem 3.3. The partially ordered set R is not a lower semi-lattice.

Proof. Tt is sufficient to find two words x and y such that for every z satisfying
x,y — z there exists t with =,y — ¢t and z /4 t.
Let v be a fast growing function, f.e. y(n) = 3""2. We shall define:

Lt 35 =~());

o] = 0, otherwise;
_ max{k €N | n=0 (mod 2%)}, if n #0;
T = 1o, if n=0;
q = [L =10 0
y 0, otherwise;
il = 4L i 3l = (2 02 + 1)
! 0, otherwise

where [> 0. Note (¢[i] = 1) = (y[i] = 1).

It is easy to see x — t; and y — t;. Let us suppose that x M, and Y M z,
where M; has m; states and m = max{m1, ma}.

Since y A2 - then the word 2[y(s28 — 1) +1,~(s2") +1 — 1] is ultimately periodic

with period and pre-period < m. But also x i 2, so the word z[y(s2!)+1,v(s2! +
1) — 1] is ultimately periodic with period and pre-period < m. These two periodic
sequences overlap by the segment z[y(s2!) + 1,7(s2!) +1 — 1], so, for [> 3m + 2
we can glue them together with the help of Theorem 1.1 and state that the word
2[y(s28 — 1) 4+ 1,~(s2! + 1) — 1] is ultimately periodic with period and pre-period
< m. So, for sufficiently large odd s it is not possible to output the symbol 1 in
the word t; at the position v(s2!) +1. So, z / . |

MACHINE POSET OF INFINITE WORDS 459

Let us remind that an antichain in a poset (L,>) is a set of elements S such
that for every two different elements = and y from S neither x > y, nor y > x.
Also let us remind that ¢ denotes the cardinality of the set R of real numbers, it
is equal to 20,

Theorem 3.4. There exists an antichain with a cardinality ¢ in R.

Proof. We shall construct an injective function T': {0,1}* — {0,1}* and prove
that its full image forms an antichain.

Let f : Nx N — N be an arbitrary one-to-one mapping. Then T transforms
x € {0,1}* to y, where

1, (n=m?) A(f(a,b) =m)A(za =b (mod 2
vl :{ 0, (otherwige. te.t) (()

It is obvious that T is injective.
Let us take two distinct words « and v from {0,1}*. There exists k such that
uy # vi. We can suppose that uy = 1. Then for any [

T(u) [(f(k,20) —1)* + 1, f(k,20)°]
consists only of zeroes, but
T(v) [(f(k,20) = 1)* +1, f(k, 21)’]

is of a form 0°1. Since s grows with the growth of [no machine can transform
T'(u) into T'(v). The case of ux, = 0 is the same.

The cardinality of the antichain is ¢ because the same is the cardinality of
{0,1}~. O

Theorem 3.5. If t — y andy /4 x then x — yV o 'z, but stillyV o 'z £ .

Proof. Tt is possible to transform z into ¢~ 'z using a machine that remembers

symbol it has received on the input and outputs it on the next step, then, by
Theorem 3.1, x — y Vo 'x.

Let us assume there exists an initial Mealy machine M that transforms yVo~'x
into z. In such a case it is possible to transform y into x using the machine M
and giving to its input the symbol of the word y together with the symbol it has
just produced. O

Corollary 3.6. For every not ultimately periodic word x, x — o~ 'x, but o~ 'x /£
x.

Corollary 3.7. For any not ultimately periodic word x there exists an order pre-
serving injection p : (Z,<) — (R, —) such that p(0) = z.
Proof. We can take the mapping p(a) = o~ z. O

From the last corollary it also follows that poset & has no maximal element and
has no atom, i.e. such an element that covers (see the next section) the smallest
element of K.

460 A. BELOVS
4. SOME RESULTS ON DENSITY

It seems interesting to know whether the poset R is dense. Let us remind that
a poset (L, >) is called dense iff for every two its elements x,y, with « > y, there
exists a third element z such that x > z > y. We shall call z intermediate element
between x and y. If this doesn’t hold, we shall say that x covers y.

We would like to give some equivalent ways how to express the density in K.

Up to the end of this section let z € A“ and y € B“ be two fixed arbitrary
elements from the poset & with a property * — y and y 4 x. We shall be
interested to know whether there exists an intermediate element between = and .

At first, we can assume that y can be got from x using a literal morphism

v. Indeed, if x M y then we can take the universal output ¢ of the machine M
proceeding x. That is:

ti+ 1] = (x[i + 1], g0 0 [0,),

where qq is the initial state of M. The word t is obviously equivalent to x, and y
can be got from it with a literal morphism (a, ¢) — ¢ * a.

Moreover, if we like, we can assume that the preimage of every element in
B except at most one is a one-element set, and it is a two-element set for this
exceptional element. We can show this expressing the morphism v as a composition
of morphism with such a property.

Let us make some definitions. A binary string u is a word from {0, 1}*. We can
identify it with a subset U C N, assuming that ¢ € U iff u[i] = 1. So, further we
shall freely use a set-theoretical notation, taking in mind this correspondence, for
example, we shall talk about non-intersecting binary strings, binary strings that
are subsets of other binary strings and so on.

We are interested only in such binary strings u that can be got from z, i.e.
x — u. A binary string u shall be called (z,y)-calculable or simply calculable if
y — u. Otherwise (if y /4 wu, but still x — u) we shall call it (x, y)-non-calculable
or just non-calculable.

Proposition 4.1. If x — y and y / x then there always exist two non-intersecting
(x,y)-non-calculable binary strings.

Proof. At first we shall construct one non-calculable binary string. Let us fix an
arbitrary injection u : A — {0, 1}* for some k, 2¥ > |A|. Then we can take binary
strings m;u(x) for i = 1,2,..., k, where m; is a projection (a1, as, ..., a;,...,ax) —
a;. If all w;u(x) are calculable, then (using proposition 2.5) y — z, so at least one
mip(z) is non-calculable. We can take its complement as a second non-calculable
binary string. O

Theorem 4.2. If t — y and y # x then there exists an intermediate element
between x and y if and only if there exist three pairwise non-intersecting (x,y)-
non-calculable binary strings.

Proof. First, let us assume there exists an intermediate element z such that z — z,
z 4 x, 2z — Yy, y /- z. Applying proposition 4.1 to the pair (z,z) we get a binary

MACHINE POSET OF INFINITE WORDS 461

string w such that * — w, @ (the complement binary string) and z /4 u,w. In a
same way we can find v with a property z — v,7 and y /4 v,v. Obviously, v # u
and v #£ a.

If v C u we can take three binary strings v, v\ v and @ satisfying the conclusion.
Indeed, if y — u\v, a fortiori z — u\v, and then z — u = (u\v)Uv that contradicts
z 47 u. In a similar way we act if v C .

If neither holds, then v N v and @ N v are nonempty and at least one of them
can’t be got from y. Assume y /4 uNwv. If z — uNov we can take u N v as a new
v. If it is not, we can take uNv as a new u and T as a new v.

Now we shall consider the case where there are three non-calculable pairwise
non-intersecting binary strings wuj, us,us. Let us denote with /V; machines such

that = 5 u;. We may assume y = v(z) with a literal morphism v and also
ANB = (), where z € A* and y € B“. We shall construct three words z; €
(AU B)“,i=1,2,3 defined as

{ xj], j€u

Obviously, © — z; — y. Moreover, y +/ z;, because otherwise y — u;.

Let us assume z; M: 4 for all i. We will use this fact, but we have to ensure that
each of M; gets the input it has been expected for. We make it with the following
machine.

It simulates three machines M; and three machines IV;. An input symbol b gets
redirected to the input of all three M;. At least two machines will output a correct
symbol of x because u; are pairwise non-intersecting. So, we can take a majority
of all these three outputs (denote it a) and output it. After that we give a to all
three N; and check if any machine M; has been waiting for a symbol of = instead
of a symbol of y. If there has been any we reset its state to the one, it had before
this step, and give a to its input.

So, at least one z; is with a property z; /4 x. O

Definition 4.3. Let © € A“ be a word and z be a binary string. Then the masking
of x with z is a word ¢ defined with

4] { xfi], if z[i] =1,

A, otherwise,

where \ ¢ A.

Theorem 4.4. If an intermediate element between x andy does not exist then for
any set S of pairwise non-intersecting (x,y)-calculable binary strings all maskings
of x with elements of S except at most one can be got from y.

Proof. By contradiction, let us assume that there are two maskings with the binary
strings w1 and us with a desired property. Using as in the proof of Proposition 4.1
an injection g : AU {\} — {0, 1}* such that u(\) = (0,0,...,0) we can state that
there is a non-calculable binary string v;; C u;. As u; is a calculable binary string,

462 A. BELOVS

a binary string v;2 = u; \ v is also a non-calculable one. So, we have four pairwise
non-intersecting non-calculable binary strings, that contradicts Theorem 4.2. [

Corollary 4.5. If there is no intermediate element between x and y then for each
U there exists k such that y — t, where the word t is defined by

. zlil, t#k (mod ?),
t[’]:{ [>]\, zik Emodeg, 2)

satisfies y — t.
In other words, one can get almost the whole word z.

Proof. Obviously, for any integer j satisfying 0 < j < £ the binary string u; defined

with
. [1, i=j (mod),
usli] = { A, otherwise,
is (z,y)-calculable, and any two of them do not intersect. From Theorem 4.4 it
follows there exists & such that for all j # k all masking of x with u; can be got
from y. It is a straightforward check that ¢ from (2) can be got from the supremum
of these words. |

All the previous results seem very natural: they mean that the difficulty of
transforming the word y into the word z is one whole entity that cannot be par-
titioned into several ones.

Let us remind that, as it was shown by a classical result by Sacks [15] that the
recursively enumerable degrees are dense. It may seem that there always exists an
intermediate element in our case too, but it is not true.

Proposition 4.6. Consider the following recurrence sequence
il il
ro=1, x;=uz;_,0%,

and its limit x = limy_.o xi. There is no intermediate element between x and

y=o"tx.

Proof. At first, note that z is not ultimately periodic, so from Corollary 3.6: x — y,

but y /£ x.
Let us take an arbitrary Mealy machine M that performs a transformation

™ 5 for some word 2. Let go be its initial state and n be the number of states
of M. Then for any state ¢ of M and any k > n: qo 0™ = go 0™** (indeed,
M cycles on such a long sequence of zeros. Let ¢ denote the length of this cycle.
Because n! = n!+ k! (mod ¢) and n! is larger than the pre-period, the state of M
after processing both these words is the same).

Consider occurrences of x,, in x as they naturally appear from the definition of
x. Note, that x, ends with 0™ and gaps between two consecutive occurrences of
x, are of the form 0*" with k > n. Using the claim of the previous paragraph one
can see that the states in which machine M starts processing blocks z,, of x are

MACHINE POSET OF INFINITE WORDS 463

the same as the corresponding states in word %, on which M cycles. Moreover,
in go * 2% the sizes of both pre-period and period are bounded by n|x,,|.

Let us take word v = :Eslnﬂ)! (it is a part of z,,41). From the previous paragraph
it follows that machine M ends processing each v in x in one and the same state
g2 and starts processing each v except the first one in one and the same state ¢;.

Let us enumerate all the occurrences of v in x: ylig,ji] = v, k = 0,1,... Tt
is obvious there is an infinite number of such occurrences. Again, gaps between
them are filled with zeros. Applying Lemma 2.3 one can state the fragments
x[jk + 1, ik4+1 — 1] are ultimately periodic all with the same pre-period and period,
both bounded with n.

Because processing of all v except the first one starts in state q1, there are only
two possibilities. All the symbols z[ix] (k > 0) break the periodicity, or they all
do not.

In the first case it is possible to get x from the resulting word z. It can be done
by a machine that repeat the following cycle:

e Outputs v.
e Goes on outputting zeros until it meets a symbol that breaks the period-
icity (the periodic fragment is known, so it is not the problem).

In the second case z can be got from y = o 'z using a machine that acts as

follows. At first it outputs ¢g * v. Then it repeats the following cycle:

e Goes on outputting ultimately periodic word g9 * 0“ until it meets 1 that
is the beginning of v (shifted one position to the right).

e Outputs ¢; * v omitting the first symbol (the machine already produced it
on the previous step). a

In the previous proposition each word that can be got from z either can be got
from o~ ' or is equivalent to x itself. It seems an interesting question whether
this result can be improved:

Open Problem 4.7. Does there exist a binary string x € {0,1}* such that, for
each y satisfying x — y and y C x, either y is equivalent to x ory is an ultimately
periodic word?

So, R is not dense. But there are some ways to get something like it. Let us
remind the mapping y — yUA“ is an isomorphism of & on a subset of itself. Using
such a map it is possible to insert intermediate elements.

Theorem 4.8. If t — y and y / x then z = y U x is an intermediate element
between ¥’ = xUNY and y' = yUNY. Moreover, if there is no intermediate element
between x and y then z is the only intermediate element between x’' and 3.

Proof. Everything in the first statement of the Theorem except 3’ /4 z follows
from Proposition 2.6 and Theorem 3.5. Let us prove the remaining claim.

If we assume that y’ M 2 then we can get o’ from y’ with a following machine.
If it gets a symbol of ¥’ that is not A, we know that the next symbol of y’ is \. We
give these two symbols to the input of M and we get a symbol of y followed by a

464 A. BELOVS

symbol of . Then we output the symbol of z. If machine gets A on the input, it
gives it to the output, but gives nothing to M.

Now we shall suppose x covers y and z = u LU v is an intermediate element
between x LI A* and y U A¥. Using proposition 2.8, we have z ~ £ X * — u X v —
yx A ~y. If uxov~ythen yU N — 2. It is a contradiction, so u X v ~ x,
hence, u U v — A Uz. Now it is almost obvious that z — y U x.

By blocking o~ '2’ = M Uz, 07'2 = oo Uw and o~y = A\ Uy we have
r— o vxu—y Fromo lvUu A X Uz it follows that u x o~ 'v 4 z, so
ux o~ lv ~y, hence y — w. Finally, y Uz — u v = z.

So, we we have z ~ y U z. O

Corollary 4.9. The mapping x — x U A* is not a bijection onto K.

Let A be an alphabet with A ¢ A. A word of a form [[;2(a;A*"), with a; € A
and limy_. oo k; = 00, is called a rear word in a standard form. A word equivalent to
such a word is a rear word. A complezity of a rear word x is the smallest cardinality
of A that z is equivalent to a rear word in a standard form from (A U {A})¥.

As a contrast to proposition 4.6 we may have the following theorem.

Theorem 4.10. If x is a rear word of complexity 1 then {y € &| (x — y) A (y
x)} is without a maximal element.

Proof. Let x € {\,1}* be a rear word in a standard form and x M y, where M
is a machine with n states. Taking suffix, we may assume that x does not have a
sequence of \’s shorter than 3n.

It is not hard to describe the structure of y. If x has a symbol 1 at position ¢
then y has a periodic fragment starting from ¢ +n with a period < n. It continues
up to the next occurrence of 1 in z. We shall say that there is a hold if this periodic
fragment continues further (in other words, if symbol 1 in = does not break the
periodicity).

Lemma 4.11. With the previous assumptions, y + x if and only if there is an
infinite number of holds.

Proof. If there are infinitely many holds then y 4 x due to Lemma 2.3.

If there is a finite number of holds, taking suffices again, we can suppose that
there are no hold at all. Moreover, we may suppose x starts with a sequence
of zeros longer than n. Then it is possible to transform y into x using a Mealy
machine with a following algorithm.

It simulates machine M and on each step sends symbol X\ to its input. If the
output of M is equal to the current symbol of y then the machine outputs A.
If they are not equal then the periodicity is broken and x has 1 in the current
position. So, the machine outputs 1 and recalculates the state of M, i.e. sets the
state of M to g * 1, where ¢ is the state of M before this step and * is the output
function of M. g

MACHINE POSET OF INFINITE WORDS 465

So, if y /4 x then there is an infinite number of holds. Let us enumerate all
holds and construct word z as follows:

1, if z[¢]=1 and the hold has an odd number or there is no hold at all
z[i] =< 2, ifz[i —1] =1 and the hold has an even number
A, otherwise.

The word z can be got from the word x by a Mealy machine that simulates machine
M, counts the parity of the number of holds, and depending on it produces the
output. The word y can be got from the word z by a machine that also simulates
behaviour of the machine M, remembers its last and previous states, and getting a
symbol 2, moves one position back and recalculates its state. Note, that the output
on the previous step is no affected by such a recalculation. It is not possible to
transform z into x and y into z due to the infinite number of holds. O

Note that the word y in Theorem 4.6 is not a rear one, although it contains
long fragments consisting only of zeros, the lengths of them do not tend to the
infinity.

Acknowledgements. The author is thankful to the anonymous referees for their thoughout
reports.

REFERENCES

[1] J. Berstel and J. Karhuméki, Combinatorics on Words — A Tutorial. TUCS Technical
Report (No 530, June) (2003).

[2] J.R. Biichi, On a Decision Method in Restricted Second Order Arithmetic, in Proc. Internat.
Congr. on Logic, Methodology and Philosophy of Science, edited by E. Nagel et al., Stanford
Univ. Press, Stanford, CA (1960) 1-11.

[3] J. Dassow, Completeness Problems in the Structural Theory of Automata. Mathematical
Research (Band 7), Akademie—Verlag, Berlin (1981).

[4] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order. Cambridge University
Press (2002).

[5] N.J. Fine and H.S. Wilf, Uniqueness theorem for periodic functions. Proc. Amer. Math. Soc.
16 (1965) 109-114.

[6] J. Hartmanis and R.E. Stearns, Algebraic Structure Theory of Sequential Machines.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1966).

[7] M. Lothaire, Combinatorics on Words. Encyclopedia of Mathematics and its Applications,
Vol. 17, Addison-Wesley, Reading, Massachusetts (1983).

[8] M. Lothaire, Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its
Applications, Vol. 90, Cambridge University Press, Cambridge (2002).

[9] A. Luca and S. Varricchio, Finiteness and Regularity in Semigroups and Formal Languages.
Springer-Verlag, Berlin, Heidelberg (1999).

[10] R. McNaughton, Testing and generating infinite sequences by a finite automaton. Inform.
Control 9 (1966) 521-530.

[11] G.H. Mealy, A method for synthesizing sequential circuits. Bell System Tech. J. 34 (1955)
1045-1079.

[12] D. Perrin and J.-E. Pin, Infinite words: automata, semigroups, logic and games. Pure Appl.
Math. 141 (2004).

466 A. BELOVS

[13] B.I. Plotkin, I.Ja. Greenglaz and A.A. Gvaramija, Algebraic Structures in Automata and
Databases Theory. World Scientific, Singapore, New Jersey, London, Hong Kong (1992).

[14] H. Rogers, Theory of recursive functions and effective computability. McGraw-Hill Book
Company (1967).

[15] G.E. Sacks, The recursively enumerable degrees are dense. Ann. Math. 80 (1964) 300-312.

[16] S. Seshu, Mathematical models for sequential machines. IRE Mat. Convent, Rec. 7 (1959)
4-16.

[17] K. Wagner, On w-regular sets. Informatics and Control 43 (1979) 123-177.

[18] V.B. Kudryavcev, S.V. Aleshin and A.S. Podkolzin, An introduction to the theory of au-
tomata. Moskva Nauka (1985) (Russian).

[19] A.A. Kurmit, Sequential decomposition of finite automata. Riga Zinatne (1982) (Russian).

[20] B.A. Trahtenbrot and Ya.M. Barzdin, Finite automata, behaviour and synthesis. Moskva
Nauka (1970) (Russian).

	Introduction
	Preliminaries
	Machine poset of infinite words
	Main properties
	Some results on density
	References

