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Abstract

The necessary and sufficient conditions are extracted for periodicity of bi-ideals. By the way two
proper subclasses of uniformly recurrent words are introduced.

1 Introduction

The periodicities are fundamental objects, due to their primary importance in word combinatorics [8, 9] as
well as in various applications. The study of periodicities is motivated by the needs of molecular biology [6]
and computer science. Particularly, we mention here such fields as string matching algorithms [4], text
compression [14] and cryptography [12].

In different areas of mathematics, people consider a lot of hierarchies which are typically used to classify
some objects according to their complexity. Here we deal with hierarchy

B DOR, DOP, where

B — the class of bi-ideals,

R, — the class of uniformly recurrent words,

P — the class of periodic words.

This hierarchy comes from combinatorics on words, where these classes are being investigated intensively
(cf. [2, 8,9, 10]). Bi-ideal sequences have been considered, with different names, by several authors in
algebra and combinatorics [1, 3, 7, 13, 17].

We refine the hierarchy B D R, D ‘B to the chain

B DR, DBy DB OB, where

B, — the class of bounded bi-ideals,

B5 — the class of finitely generated bi-ideals. So we localize the class of uniformly recurrent words by
means of bi-ideals. Corollary 7 gives one method how the words of 9B; can be generated.

At first we characterize periodic finitely generated bi-ideals: we give one necessary condition [Corollary §]
in prefix—suffix terms and demonstrate this is not sufficient [Example 12]. Then we turn our attention to
factors and prove sufficient and necessary condition [Theorem 21}, and demonstrate this is not necessary
for bounded bi-ideals [Example 34]. Lastly we extract exhaustive description [Theorem 37] of periodicity
for all class of bi-ideals (more complicated of course).
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2 Preliminaries

In this section we present most of the notations and terminology used in this paper. Our terminology is
more or less standard (cf. [10]) so that a specialist reader may wish to consult this section only if need
arise.

Let A be a finite non-empty set and A* the free monoid generated by A. The set A is also called an
alphabet, its elements letters and those of A* finite words. The role of identity element is performed by
empty word and denoted by X\. We set AT = A*\{\}.

A word w € AT can be written uniquely as a sequence of letters as w = wiws ... w;, with w; € A,
1 <i<1I,1>0. The integer [ is called the length of w and denoted |w|. The length of X is 0. We set
wl =X A Vi wt! =wiw;

o0
wt = U{wl}, w* =wt U{A}.
i=1
A positive integer p is called a period of w = wyws ... w; if the following condition is satisfied:
1<i<i—p = w; =Witp-
We recall the important periodicity theorem due to Fine and Wilf [5]:

Theorem 1. Let w be a word having periods p and q and denote by ged(p, q) the greatest common divisor
of p and q. If |lw| > p+ q — ged(p, q), then w has also the period ged(p, q).

The word w’ € A* is called a factor (or subword) of w € A* if there exist u,v € A* such that w = uw'v.
The word u (respectively v) is called a prefiz (respectively a suffiz) of w. The ordered triple (u,w’, v) is
called an occurrence of w’ in w. The factor w’ is called proper factor if w # w’. We denote respectively
by F(w), Pref(w) and Suff(w) the sets of w factors, prefixes and suffixes.
An (indexed) infinite word x on the alphabet A is any total map z : N — A. We set for any ¢ > 0,
x; = x(i) and write

x=(;) =T0T1... T ...

The set of all the infinite words over A is denoted by A“.

The word w’ € A* is a factor of x € A if there exist u € A*, y € A“ such that x = uw’y. The word u
(respectively y) is called a prefiz (respectively a suffiz) of . We denote respectively by F(z), Pref(z) and
Suff(x) the sets of x factors, prefixes and suffixes. For any 0 < m < n, both z[m, n] and z[m,n+1) denote
a factor &, Tmy1 - .. Ty, The indexed word z[m, n] is called an occurrence of w' in z if w' = x[m,n|. The
suffix £, Tp41 ... ZTnyi... is denoted by x[n, 0o).

If v € AT we denote by v* the infinite word v = vv...v... This word v* is called a periodic word. The
concatenation of u = uqus ... up € A* and x € A% is the infinite word

Ur = uUiuU2 ... UL, ... Ty ...

A word z is called ultimately periodic if there exist words u € A*, v € AT such that z = wv*. In this
case, |u| and |v| are called, respectively, an anti-period and a period.
A sequence of words of A*

Vo, V1yevesUny...

is called a bi-ideal sequence if Vi > 0 (v;41 € v;A*v;). The term ”bi-ideal sequence” is due to the fact
that Vi > 0 (v;A*v;) is a bi-ideal of A*.

Corollary 2. Let (v,,) be a bi-ideal sequence. Then
U, € Pref(vy,) N Suff(vy,)

for allm < n.
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A bi-ideal sequence vy, v1, ..., Un, ... is called properif vg # A. In the following the term bi-ideal sequence
will be referred only to proper bi-ideal sequences.
If vg,v1,...,Vn,... is a bi-ideal sequence, then there exists a unique sequence of words

UQy ULy e vy Upy---

such that
vo =up, Vi>0 (Vig1 = vitli110;).

3 The Class of Finitely Generated Bi-ideals
Let us consider the set A*® = A* U A¥ and u,v € A*°. Then d(u,v) = 0 if u = v, otherwise
d(u,v) =27",

where n is the length of the maximal common prefix of u and v. It is called a prefiz metric.

Let vg,v1,...,v, ... be an infinite bi-ideal sequence, where vy = up and Vi > 0 (v;41 = v;u;4+1v;) . Since
for all ¢ > 0 the word v; is a prefix of the next word v; 11 the sequence (v;) converges, with respect to the
prefix metric, to the infinite word x € A%

x = vo(u1vg)(uav1) . .. (UnVp—1)...

This word z is called a bi-ideal. We say the sequence (u;) generates the bi-ideal x.
Let x be an infinite word. A factor u of x is called recurrent if it occurs infinitely often in z. The word
x is called recurrent when any of its factors is recurrent.

Proposition 3. (see, e.g., [10]) A word x is recurrent if and only if it is a bi-ideal.
Lemma 4. (see, e.g., [10]) Let x € A% be an ultimately periodic word. If x is recurrent, then x is periodic.

Due to this lemma we can restrict ourselves. Therefore we investigate only the periodicity of bi-ideals
and say nothing about ultimately periodicity.

Definition 5. Let (u;) generates a bi-ideal . The bi-ideal x is called finitely generated if ImViVj (i =
j (modm) = u; = uy;). We say in this situation m—tuple (uo,u1,...,Umn—1) generates the bi-ideal x.

Theorem 6. If UZZ_Ol Pref(u;) or UZZ_Ol Suff (u;) has at least two words with the same length then a
bi-ideal generated by (uo, U1, ..., Um—1) is not periodic.

Proof. Let x € A“ be a bi-ideal generated by (uo, w1, ..., Um—1)-

(i) Let U;Z_Ol Pref(u;) has at least two words with one and the same length. Then there exist u;, u; such
that ua € Pref(u;), ub € Pref(u;), where u € A*, a,b € A and a # b.

Let Ty = |ua| and ¢ > Ty. Then we can choose n so great that |v,| > t, where v,11 = vyu;v,. Hence
vpua € Pref(v,41). Therefore a = x5, where s = |v,ul.

Since the tuple (uo,u1,...,um—1) generates the bi-ideal = then 3k > n viy1 = vpu;ve. Hence vyub €
Pref(vgy1). Therefore b = x,, where o = |vgu|. Since k > n then v,, € Suff(vg). Thus z,_; = x5 but
Ts = a # b = x,. That means that ¢ is not a period of x.

(ii) Let U?;_Ol Suff (u;) has at least two words with one and the same length. Then there exist u;, u; such
that au € Suff(u;), bu € Suff(u;), where u € A*, a,b € A and a # b.

Let Ty = |au| and ¢t > Tp. Then we can choose n so great that |v,| > t, where v,+1 = vyu;v,. Hence
there exists v’ such that v,u; = v'au. Therefore a = x5, where s = |v/|.
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Since the tuple (ug, u1, ..., Um—1) generates the bi-ideal « then 3k > n vi11 = viu; . Hence there exists
v” such that vyu; = v”’bu. Therefore b = x,, where o = |[v”|. Since k > n then v,, € Pref(vi). Thus
Tstt = To4t DUt 3 = a # b = x,. That means that t is not a period of x.

(iii) Let us suppose that T' is a period of z. Then Vn € Z4 nT is a period too. This denies (i) and (ii) as
well.

Corollary 7. Let A be an alphabet and every letter a € A is chosen with one and the same probability
pla) = ‘7%‘, Let p be a probability that a bi-ideal generated by (ug,u1,...,un) is ultimately periodic. If

Vi Ju;| > n then p < W,

Remarks. (i) Let A = {0,1} and m = n = 10 then probability p < . This is practically negligible
value.

(ii) Let a tuple (ug, w1, ..., U ) has been generated. Let u be the longest word of this tuple. There is only
one dubious situation by Theorem 6 if we like a bi-ideal that is not periodic. This happens if all words
of the tuple (ugp,u1,...,u,) are prefixes and suffixes of u. This can be easy verified by deterministic
algorithm. Thus we have indeed practical method how to generate a bi-ideal that is not periodic.

Corollary 8. If a bi-ideal generated by (ug,u1, ..., Un—1) is periodic then
ViVj (u; € Pref(u;) NSuff(u;) vV u; € Pref(u;) N Suff(u;)) .

Corollary 9. The class of periodic words B is the proper subclass of the class of finitely generated
bi-ideals Bs.

The following two lemmata are very easy, but those turn out to be extremely useful:
Lemma 10. If z = w* and T is the minimal period of the word x, then T\|w|, i.e. T divides |w|.

Proof. Let n = T|w|, then both T and |w| are periods of the word z[0,n). Hence [Theorem 1] ¢t =
ged(T, |w|) is a period of z[0,n). Now we have

Vi z[0,n) = z[ni, (n + 1)i).

Therefore ¢ is a period of z. Since T' is the minimal period of the word x, then t > T > ged(T, |w|) = t.
Hence T = ged(T), |w|), thereby T\ |w].

Lemma 11. If z = w* = wvy and |w| = |v|, then vy =y = v¥.
Proof. Let |w| =t and |u| = k4 1, then v = Ty 11Tk y2 ... Tpte, since |v| = |w|. We have Vi x4 = 25,
therefore

V] S H Vs Tk+j = Thtj+st -
Example 12. The bi-ideal generated by (0,010) is not periodic.
Proof. (i) Let x be the bi-ideal generated by (0,010), and

wy = O,

w, = 00100,

wy = 00100 0 00100,
Wan = an—loan—la

Wont1 = w2, 010wsy,,
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in other words z = lim wy.
k

—00
Let ¢t be a period of z. Then t > 3, otherwise the period of w, must be less than or equal to 3.
Contradiction. So we have a word w such that |w| =¢ > 3 and z = w®.

(ii) Now choose n so large odd number that ¢ < |w,,|. Then

r = w,0w,...
and
wy, = (uww)’u,

where s > 1, wv = w and u #Z A. (If u = X or v = A, then ¢ divides |w,|. We shall analyse this situation
later.) From Lemma 11 we conclude that

z = w,0w* =w,0(uw)* = w,0z.
Thus
(wo)’uvuvu ... = (uwv)*uluvuv. ..
Hence
vuvw ... = Ouvuv...

Since u # A and u € Pref(z), then u = Ou’. Hence
vu... = 00u'v...

Thus, if |v| > 2, then v = 00v'.
(iii) Note that
wy,0x = r = w, 0w, 010w, ...

Therefore x = w, 010w, ... and
(w)® =z = (uv)*u010. ..

Hence v = 01v” but v = 00v’. Contradiction.
(iv) It remains to check that |v| < 1. Note

u010...=uvu...

Hence, if |v| = 1, we can conclude that the first letter of uw is 1. Contradiction! Otherwise v = A, then
u = 01u”. Again contradiction, since w; = 00100, therefore the first two letters of v must be 00. Finally,
if w = A, then it remains to interchange v with v in the last two sentences of the proof.

Now turn our attention to Corollary 8. We have proved that condition

Vi Vj (u; € Pref(u;) NSuff(u;) V u; € Pref(u;) N Suff(u;))

is necessary for periodicity of finitely generated bi-ideals. Nevertheless Example 12 demonstrates that
this condition is not sufficient.
The following lemma is crucial:

Lemma 13. If a bi-ideal x generated by (wo,u1,...,Um—1) s periodic, then

ViVi iz = ujx.
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Proof. (i) Since x is a bi-ideal generated by (ug,u1, ..., Um—1), then

= lim vg;
k—oo

where Vo = UQ, Vg4l = VkUk+1Vk,
and Ugtr1 = u;, if  k+1=i(modm).

Let ¢ be a period of z and choose n so large that ¢ < |v,,|. For every i € 0,m — 1 we can find s; > n such
that

Vs;+1 = VUs,; UiUsg; -

Hence, by Corollary 2,
Vi Jv} vs, = vpvivy, .

Therefore
!
T = Vs, UiVs; + .. = VpUUnUiVp . . .

(ii) We suppose that x is periodic, thereby

x =v*, where v = z[0,1).

Note v € Pref(v,), therefore [Lemma 11]

T = UpULT = UpULURUT
Hence, Vi x = vyu;x, thereby ViVj u;z = ujx.
Examples 14.

(i) First, we reexamine Example 12 in light of the above lemma. Let us suppose that a bi-ideal x generated
by (0,010) is periodic then Ox = 010x. This contradicts the fact that the first letter of z is not 1 but 0.
The same arguments show that a bi-ideal generated by (010, 0) is not periodic too.

(ii) Both bi-ideals generated by ((01)"~10, (01)"0) and ((01)™0, (01)"~!0)are not periodic. Indeed, if we
suppose that a bi-ideal x generated by ((01)"~10, (01)"0) is periodic then by Lemma 13

(01)" 0z = (01)"0z = (01)"'010z.

Hence x = 10z. This contradicts the fact that the first letter of = is not 1 but 0.
The same arguments show that a bi-ideal generated by ((01)"0, (01)"~10)is not periodic too.
We now present some useful observations concerning the periodicity. We start with the following lemma.

Lemma 15. If Jue At uz =x € A¥, then a word x is periodic with the minimal period T'\|u].

Proof. Let uw = ajaz...a;—1, where Vj a; € A, and y = ux, then
Vi x; = Yitt. Let
y=ur==x.

Hence
Viyi =i = Yive -

This means that y is periodic with a period t. Since y = z, then z is periodic with a period t too. Let T’
is the minimal period of z, then by Lemma 10 T\¢, i.e. T\|u|.

Proposition 16. A word x € A% is periodic if and only if
Jue AT ux =z € AY.
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Proof. = 1If x is periodic then Ju € AT x = u*¥. Hence x = uu® = ux.
< Lemma 15.

Corollary 17. Let  we€ {ug,u1,...,um-1} and
lu| = max{|uol, |u1l,-..,|um—-1|}. If T is the minimal period of a periodic bi-ideal x generated by
(wo, Uty -« vy Um—1) then T < |ul.

Proof. If only u # X\ then u = ug and z = u*. Hence the minimal period T < |u].
Otherwise, there exists v € {ug,u1,...,umn—1} such that v # v # A\. Now by Lemma 13 ux = va.
Hence

W #u u=vv.
/|.

Thus vv'z = vz, therefore v’z = x. Since 0 < [v/| then T'\|v’|. This follows immediately from Lemma 15.

Thereby T < |v| < |ul.

Proposition 18. (see, e.g., [10]) Let u,v € A" be such that uv = vu. Then there exists w € AT such
that u,v € wt.

Lemma 19. Let u,v € A" be such that u*v = vu® for any positive integer k. Then there exists w € A+
such that u,v € wt.

Proof. If k =1 then it is Proposition 18. Now we assume that k > 1; by Proposition 18
3z € At (kv e at).

(i) If |z| > |uF~1|, then & = u*, because 22| > |u*| and u* € 2+. Hence = € u™, therefore v € u*. Thus
Jw € AT (u,v € wh); here w = w.
(ii) If |z| < [u*~!], then | = ged(|z|, |u|) is period of u* by Theorem 1. Let

w € Pref(u) A |w| =1

then u € wt. Since u* € oF then uF = 2™ for any m. Hence 2™ € w*. Since |w|\|z| then # € w*.
Therefore v € wt.

Theorem 20. If z is a periodic bi-ideal generated by (uo,u1) then
Jw ug, u; € w*.

Proof. Obviously, if ug = u1 then a bi-ideal generated by (ug, u1) is periodic. Now suppose that ug # ug.
Then by Lemma 13 ugx = u;z.
(i) Let ug € Pref(uy), then uy = upu, where u # A, and upx = u1z = uouz, therefore x = ux. Thus
X uoy ... = UgUoU . . .
T = uUT = ulgug...

Hence udu = uu3, and by Lemma 19 Jw ug, u; € w*.
(ii) Let uy € Pref(ug), then up = uiu, where u # A, and upz = wjuz. Since upx = urx then wjuxr = uqz,
therefore x = uxz. Thus

= Uy...=UuULU...

= UT =UUg... = UULU...
Hence uiu = uui, and by Proposition 18 Jw w,u; € w*. Since ug = uiu then ug € w*.
Theorem 21. A bi-ideal x generated by (uo, U1, ..., Um—1) i periodic if and only if

JwvVie 0,m—1 u; € w*.
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Proof. Since zx is a bi-ideal generated by (ug, w1, ..., Um—1), then

= lim vg;

k—o0
where Vo = UQ, Vg1 = VkUk+1Vk,
and Ugy1 = u;, if  k+1=i(modm).
= We have wupx =wix=...=upn_1x by Lemma 13.
(i) First, we shall prove that 3w wg,u; € w*.
a) If u; = X\ or ug = ug, then w = uy.
Now we shall consider the situation A # u; # uo.
b) Let ug € Pref(u;) then
up = wupu, where wu# )\, and
upr = w1 x = ugux, therefore r = ux.
r = UgUyg...=UuguoU...
T = UT = UlUgUg ...

Hence udu = uug, and by Lemma 19 Jw ug,u € w*. Since u; = uou then u; € w*.
¢) Let uy € Pref(ug) then

ug = wuiu, where wu# )\, and
u1r = uUpx = uiux, therefore r = ux.
r = Ug...=UU...
T = UT=UUY...=UUL...

Hence uju = uuy, thereby [Proposition 18] Jw u,u; € w*. Since ug = uju, then uy € w*.

(ii) Further, we shall prove the theorem by induction on n, i.e., suppose that JoVi € 0,n u; € v*. Let
Uy F Upy1 7 A, otherwise u, 41 € v*.

a) Let u,, € Pref(u,+1) then

Upt1 = Upu, where wuw# A\ and
UpT = Upp1T = uyux, therefore x = ux.
T = Uplptl--- = Uplpl...
T = UT = UVpUp ..

Hence v,upu = uv,u,. We have by induction 3k ¥ = vu, and k > 1, since ug # A. Thus vhu = wok,

and by Lemma 19 Jw v,u € w*.

Thereby v € w*, and by induction Vi € 0,n u; € v*. Hence Vi € 0,nu; € w*. Since u,y1 = u,u and
Up,u € w*, then u,41 € w*.

b) Let upy1 € Pref(u,) then

Up = Uppiu, where w# A\, and
Up41T = UpT = Uppiux, therefore z = ux.
r = Up—1Up...=VUp_1Up4+1U...

T = UT = UVp—1Up4]--.
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Hence vp—1Up41% = uVp—1Up+1, therefore by Proposition 18 Jwg vy—1un11,u € w§. We have by induction
3k v* = v,_1, k > 1, since ug # A. Thus

|Un—1ufn| - |vn_1un+1u| > |Un—1| + |u| Z |U| + |w0|

and vp_1Uy € V¥, Up_1Up = Up_1Unpt1u € w§. This means that both |v| and |wp| are periods of v,—1uy.
Now by Theorem 1 I = ged(|v]|, |wp]) is the period of v, _q1u,. Let

w € Pref(v,—1) A |w] =1

then v,_1u, € wT because I\ |vy_1uy|.
The word vy, —1Up = Wiy Wiy - . . u;,,, where all u;, € {ug,u1,...,u,}, besides,

VielOndvel,»x uj=u,,.

Since Vi € 0,n u; € v* then Vi € 0,n [\ |u;|. Thus Vi € 0,n u; € w*.

Finally, u, = upy1u and u, € w*, therefore [ is the period of uy41. Since uw € w{ then I\|u|. Hence
I\|tunt1]|- Thus u,y1 € w*.

This completes the induction.

= Since Vn v, € w* then z = w*.

4 The Class of Bounded Bi-ideals

Definition 22. Let (u;) generates a bi-ideal x. The bi-ideal = is called bounded if 31 Vi |u;| <.

Proposition 23. The class of finitely generated bi-ideals By is the proper subclass of the class of bounded
bi-ideals By .

Proof. Note card{(u;) | Vi u; € {0,1}} = ¢ — the cardinality of the set of real numbers. Let (u;),
(v;) be two different sequences of letters in the alphabet {0,1} that generate bi-ideals (z;), (y;) respec-
tively. Since (x;) # (y;) then card{ (z;) | there is a sequence (u;) of letters in the alphabet {0,1} that
generate a bi-ideal (x;)} = card{(u;) | Vi u; € {0,1}} =c.

Let $,, = {(uo,u1, ..., Um—1) | Vi u; € {0,1}*} then cardJ; _, U, = Ng, where Ny is the first infinite
cardinality. Therefore the cardinality of the set of all finitely generated bi-ideals in the alphabet {0, 1} is
equal to Rg. Since Ny < ¢ then B; C By.

Let w = uqwyv1 = ugwavs. We define a meet wq Nwo as follows. If there exists an occurrence (us, ws, v3) of
ws in word w such that w = ugwsvs, where |us| = max(|us|, |uz|), |vs| = max(|vi], |vs|), then wiNws = ws.
Otherwise, w1 Nws = A.

Lemma 24. Let (u;) generates a bi-ideal x, vo = ug, Vi (Vi1 = viuip10;) and Vi|u;| < 1. If v € F(x)
and |v| = 2|vy,| +1 for some m, then vy, € F(v).

Proof. Since v € F(z) then v € F(v,,) but v ¢ F(v,_1) for some n. Moreover, v, _1upvn—1 = v, = v'00"
for some v, v".
Since v ¢ F(vy—1) then u, Nv # A. Hence, |v,—1 Nv| > |vy,| because of |u,| < I. Therefore v, € F(v)
by Corollary 2.

Definition 25. [t is said a factor w of an infinite word x occurs syndetically in = if there exists an
integer k such that in any factor of © of length k there is at least one occurrence of u. A word x is called
uniformly recurrent, or with bounded gaps, when all its factors occur syndetically in x.

Proposition 26. Bounded bi-ideals are uniformly recurrent.
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Proof. Let x be a bounded bi-ideal generated by (u;) then there exists I such that Vi|u;| < . Let
u € F(x), vg = ug and Vi (v;41 = vju;41v;) then there exists m such that u € F(vy,).

Let v € F(z) and |v| = 2|vy,| + 1 then v, € F(v) by Lemma 24. Therefore u € F(v). So the factor v of =
occurs syndetically in x.

Let ¢ : A* — A* be a nonerasing morphism (namely, #(A+) C AT) such that there exists a letter a € A
such that

¢(a) = au, with uc AT,
For all n > 0 one has

¢" " (a) = ¢" (au) = ¢"(a)9" (u),
so that ¢"(a) is a proper prefix of ¢"*1(a). Thus the sequence (¢™(a)) converges to a limit denoted by
@“(a), that is,

¢(a) = lim 6"(a).

One says that © = ¢“(a) is the infinite word obtained by iterating the morphism ¢ on the letter a.

Moreover, one has © = ¢(z), that is, x is a fixed point for ¢.
Very famous infinite word is Thue—Morse word ¢ on two letters

t=0110100110010110...
t can be introduced by iterating, on the letter 0, the morphism
7:{0,1}* — {0,1}*, defined as 7(0) =01, 7(1) =10.

The word ¢ was introduced by Thue in two papers [15, 16] of 1906 and 1912 and, subsequently, rediscovered
by Morse [11] and several other authors. Thue-Morse word is uniformly recurrent (see, e.g., [10]).

Definition 27. A factor u of a word x € A 1is called an overlapping factor of x if u = avava, with
a € A and v € A*. We say that x is overlap-free, if x does not contain overlapping factors.

Corollary 28. Let y € A®. If x\y and x = wvuvu, where u # A, then both x and y contain an
overlapping factor.

Proof. Since u # A, then exist a letter a € A and a word w € A* such that v = aw. Hence x =
(aw)v(aw)v(aw) = a(wv)a(wv)aw. Thus x contains the overlapping factor a(wv)a(wv)a.

Proposition 29. (see, e.g., [10]) The Thue — Morse word t is overlap-free.
Lemma 30. Ifovoi u; = A then a bi-ideal x generated by (u;) is periodic.

Proof. Let vg = wp, viy1 = v;u;41v;. Since OV? i u; = A then InVe > n wu; = A\
Hence v, 11 = UpUpn 1V, = V2.

Further, we shall prove the lemma by induction on j, i.e., suppose that v,4; = v¥, where k = 27, then
Untjl = Untjlnaj+10ntj = Unyj = U, where 2k = 227 = 27+,

Thus z = lim v; = lim vf =¥,

17— 00 k—oo

Lemma 31. If A is a finite alphabet then every bounded bi-ideal x € A¥ contains an overlapping factor.

Proof. Let x € A be a bi-ideal generated by the sequence ug, u1, ..., Un, .. ..

(i) If Y i w = A then az is periodic [Lemma 30]. Therefore [Corollary 28]
x contains an overlapping factor.

(ii) If EL w; # A, then 3i3j (1 < j Au; = u;), because A is finite and Vi |u,;| < . Since z is the bi-ideal
generated by the sequence ug,ui,...,Un,... then x = lim v,, where vg = up and v,4+1 = VpULL1V,.

n—oo
Hence by Corollary 2 v; = vj_1ujvj_1 = v'u;v;—1u;v;—1uv”. Thus w;v;_1u;v;—1u;\z, therefore [Corol-
lary 28] x contains an overlapping factor.
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Proposition 32. The Thue-Morse word t is not a bounded bi-ideal.

Proof. Let us suppose that ¢ is a bounded bi-ideal generated by (u;) then by Lemma 31 ¢ contains an
overlapping factor. This is contradiction [Proposition 29].

Theorem 33. The class of bounded bi-ideals By, is the proper subclass of the class of uniformly recurrent
words Ry, that is, By C Ry and By # Ry.

Proof. The class of bounded bi-ideals 2By is the subclass of the class of uniformly recurrent words R,, by
Proposition 26. The Thue-Morse word is uniformly recurrent as mentioned above. Therefore B, # R,
by Proposition 32.

Example 34. Let x be the bi-ideal generated by (u;), where

Uy = O,
Uy = 17
Vi>1 wuw; = 00100.
Then
vy = O,
vy = 010,
ve = 01000100 010,
vg = 01000100010 00100 01000100010,

and x = lim v;. Thus z is the bounded bi-ideal, besides 2z = (0100)¢. This demonstrates that straight-

forward g«s_;leralization of Theorem 21 for bounded bi-ideals is not valid.

Convention Let x be a bi-ideal generated by (u;), then = lim v;, where vg = ug and v;41 = ViU;+10;.
71— 00

We adopt this notational convention henceforth.
Lemma 35. If vou € v* and Vi € Zy un4i € uwv™, then
Vi € N vyt € v vy, .

Proof. If i = 0 then v,1; = v, = Av, € V¥,
Further, we shall prove the lemma by induction on 4, i.e., suppose that v,; € v*v,, namely,

Jk e Nv,y; = Ukvn .
By assumption, v,u € v* and uyp4iy1 € uv®, i.e.

EIZEanuzvl

A Im e Ny = uv™.
Hence

Ungidl = Ungillngis1Vngi = (050n)(uo™) (v v,)

vk(vnu)varkvn = vFly™m TRy, € v, .

This completes the induction.
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Lemma 36. Ift is the period of the bi-ideal x and |v,| > t, then
Vi € Zg Upg1T = UpiT .

Proof. We have vy, 1; = Upti—1Un+iUnti—1. Hence, if i € Z; then [Corollary 2]

Vi € Zy ] vpry = vpvivy, .
Now, by definition of z

UpUnt1Un - - -

= Uppilniit1VUnti--- = UpUiUplniit1Un - - -
By assumption, z is periodic, therefore

x=v", where |v]=t¢.
Since v € Pref(v,,) then by Lemma 11

VpUnt1
= UpUnt+it1T.
Hence Vi € Z1 x = vpupyx. Thus Vi € Zy up1X = UpiT .
Theorem 37. A bi-ideal x is periodic if and only if
In € NJuv (vyu € v*° A Vi € Zy upyi € uv™).

= Let T be the minimal period of the word z, then In € N |v,,| > T. Thus by Lemma 36

Vi € Zy Upt1® = Up4il .
Let u be the longest word of the set (;—, Pref(u,;) then

Vi € ZyFu) (upyi = uul).
Particularly, 3k w4+, = u. This means that

Vi € 2y  UULE = UpiiT = Up )T = UT .

Thus

VieZy ux=umx.
Hence by Lemma 15

VieZ, T\|u).
Thereby

Vi€ Zy wu€vt,
where v = 2[0,7T). Thus

Vi €Zy Upti = uu € uv*.
Note
T = UpUni1Vp - . . = VpUUL Uy, . . .

Since u} € v* and v € Pref(v,,), then [Lemma 11] = = v,uz. Hence [Lemmma 15] v,u € v*.
<« By Lemma 35
Vi e Ndk; € Noggy = vkivn.

Since lim |vg| = oo then lim k; = oo. Thus
k—o00 1—00

= lim vy = lim v,4; = lim v, = 0¥,
k—oo 17— 00 i—00
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