From Bi-ideals to Periodicity

Jānis Buls, Aivars Lorencs

Department of Mathematics, University of Latvia, Raiņa bulvāris 19,

Rīga, LV-1586, Latvia

buls@fmf.lu.lv

28.07.06

Abstract

The necessary and sufficient conditions are extracted for periodicity of bi-ideals. By the way two proper subclasses of uniformly recurrent words are introduced.

1 Introduction

The periodicities are fundamental objects, due to their primary importance in word combinatorics [8, 9] as well as in various applications. The study of periodicities is motivated by the needs of molecular biology [6] and computer science. Particularly, we mention here such fields as string matching algorithms [4], text compression [14] and cryptography [12].

In different areas of mathematics, people consider a lot of hierarchies which are typically used to classify some objects according to their complexity. Here we deal with hierarchy

$$\mathfrak{B} \supset \mathfrak{R}_{\mathfrak{u}} \supset \mathfrak{P}$$
, where

3 — the class of bi-ideals,

 $\mathfrak{R}_{\mathfrak{u}}$ — the class of uniformly recurrent words,

 \mathfrak{P} — the class of periodic words.

This hierarchy comes from combinatorics on words, where these classes are being investigated intensively (cf. [2, 8, 9, 10]). Bi-ideal sequences have been considered, with different names, by several authors in algebra and combinatorics [1, 3, 7, 13, 17].

We refine the hierarchy $\mathfrak{B} \supset \mathfrak{R}_{\mathfrak{u}} \supset \mathfrak{P}$ to the chain

$$\mathfrak{B} \supset \mathfrak{R}_{\mathfrak{u}} \supset \mathfrak{B}_{\mathfrak{b}} \supset \mathfrak{B}_{\mathfrak{f}} \supset \mathfrak{P}$$
, where

 $\mathfrak{B}_{\mathfrak{b}}$ — the class of bounded bi-ideals,

 $\mathfrak{B}_{\mathfrak{f}}$ — the class of finitely generated bi-ideals. So we localize the class of uniformly recurrent words by means of bi-ideals. Corollary 7 gives one method how the words of $\mathfrak{B}_{\mathfrak{f}}$ can be generated.

At first we characterize periodic finitely generated bi-ideals: we give one necessary condition [Corollary 8] in prefix—suffix terms and demonstrate this is not sufficient [Example 12]. Then we turn our attention to factors and prove sufficient and necessary condition [Theorem 21], and demonstrate this is not necessary for bounded bi-ideals [Example 34]. Lastly we extract exhaustive description [Theorem 37] of periodicity for all class of bi-ideals (more complicated of course).

2 Preliminaries

In this section we present most of the notations and terminology used in this paper. Our terminology is more or less standard (cf. [10]) so that a specialist reader may wish to consult this section only if need arise.

Let A be a finite non-empty set and A^* the free monoid generated by A. The set A is also called an alphabet, its elements letters and those of A^* finite words. The role of identity element is performed by empty word and denoted by λ . We set $A^+ = A^* \setminus \{\lambda\}$.

A word $w \in A^+$ can be written uniquely as a sequence of letters as $w = w_1 w_2 \dots w_l$, with $w_i \in A$, $1 \le i \le l$, l > 0. The integer l is called the *length* of w and denoted |w|. The length of λ is 0. We set $w^0 = \lambda \wedge \forall i \ w^{i+1} = w^i w$;

$$w^{+} = \bigcup_{i=1}^{\infty} \{w^{i}\}, \qquad w^{*} = w^{+} \cup \{\lambda\}.$$

A positive integer p is called a period of $w = w_1 w_2 \dots w_l$ if the following condition is satisfied:

$$1 \leq i \leq l - p \Rightarrow w_i = w_{i+p}$$
.

We recall the important periodicity theorem due to Fine and Wilf [5]:

Theorem 1. Let w be a word having periods p and q and denote by gcd(p,q) the greatest common divisor of p and q. If $|w| \ge p + q - gcd(p,q)$, then w has also the period gcd(p,q).

The word $w' \in A^*$ is called a *factor* (or *subword*) of $w \in A^*$ if there exist $u, v \in A^*$ such that w = uw'v. The word u (respectively v) is called a *prefix* (respectively a *suffix*) of w. The ordered triple (u, w', v) is called an *occurrence* of w' in w. The factor w' is called *proper* factor if $w \neq w'$. We denote respectively by F(w), Pref(w) and Pref(w) the sets of w factors, prefixes and suffixes.

An (indexed) infinite word x on the alphabet A is any total map $x: \mathbb{N} \to A$. We set for any $i \geq 0$, $x_i = x(i)$ and write

$$x = (x_i) = x_0 x_1 \dots x_n \dots$$

The set of all the infinite words over A is denoted by A^{ω} .

The word $w' \in A^*$ is a factor of $x \in A^{\omega}$ if there exist $u \in A^*$, $y \in A^{\omega}$ such that x = uw'y. The word u (respectively y) is called a prefix (respectively a suffix) of x. We denote respectively by F(x), Pref(x) and Suff(x) the sets of x factors, prefixes and suffixes. For any $0 \le m \le n$, both x[m, n] and x[m, n+1) denote a factor $x_m x_{m+1} \dots x_n$. The indexed word x[m, n] is called an occurrence of w' in x if w' = x[m, n]. The suffix $x_n x_{n+1} \dots x_{n+i} \dots$ is denoted by $x[n, \infty)$.

If $v \in A^+$ we denote by v^{ω} the infinite word $v^{\omega} = vv \dots v \dots$ This word v^{ω} is called a *periodic* word. The concatenation of $u = u_1 u_2 \dots u_k \in A^*$ and $x \in A^{\omega}$ is the infinite word

$$ux = u_1u_2\dots u_kx_0x_1\dots x_n\dots$$

A word x is called ultimately periodic if there exist words $u \in A^*$, $v \in A^+$ such that $x = uv^{\omega}$. In this case, |u| and |v| are called, respectively, an anti-period and a period.

A sequence of words of A^*

$$v_0, v_1, \ldots, v_n, \ldots$$

is called a bi-ideal sequence if $\forall i \geq 0 \ (v_{i+1} \in v_i A^* v_i)$. The term "bi-ideal sequence" is due to the fact that $\forall i \geq 0 \ (v_i A^* v_i)$ is a bi-ideal of A^* .

Corollary 2. Let (v_n) be a bi-ideal sequence. Then

$$v_m \in \operatorname{Pref}(v_n) \cap \operatorname{Suff}(v_n)$$

for all $m \leq n$.

A bi-ideal sequence $v_0, v_1, \ldots, v_n, \ldots$ is called *proper* if $v_0 \neq \lambda$. In the following the term bi-ideal sequence will be referred only to proper bi-ideal sequences.

If $v_0, v_1, \ldots, v_n, \ldots$ is a bi-ideal sequence, then there exists a unique sequence of words

$$u_0, u_1, \ldots, u_n, \ldots$$

such that

$$v_0 = u_0, \quad \forall i \ge 0 \ (v_{i+1} = v_i u_{i+1} v_i).$$

3 The Class of Finitely Generated Bi-ideals

Let us consider the set $A^{\infty} = A^* \cup A^{\omega}$ and $u, v \in A^{\infty}$. Then d(u, v) = 0 if u = v, otherwise

$$d(u,v) = 2^{-n},$$

where n is the length of the maximal common prefix of u and v. It is called a *prefix metric*.

Let $v_0, v_1, \ldots, v_n \ldots$ be an infinite bi-ideal sequence, where $v_0 = u_0$ and $\forall i \geq 0 \ (v_{i+1} = v_i u_{i+1} v_i)$. Since for all $i \geq 0$ the word v_i is a prefix of the next word v_{i+1} the sequence (v_i) converges, with respect to the prefix metric, to the infinite word $x \in A^{\omega}$

$$x = v_0(u_1v_0)(u_2v_1)\dots(u_nv_{n-1})\dots$$

This word x is called a bi-ideal. We say the sequence (u_i) generates the bi-ideal x.

Let x be an infinite word. A factor u of x is called *recurrent* if it occurs infinitely often in x. The word x is called *recurrent* when any of its factors is recurrent.

Proposition 3. (see, e.g., [10]) A word x is recurrent if and only if it is a bi-ideal.

Lemma 4. (see, e.g., [10]) Let $x \in A^{\omega}$ be an ultimately periodic word. If x is recurrent, then x is periodic.

Due to this lemma we can restrict ourselves. Therefore we investigate only the periodicity of bi-ideals and say nothing about ultimately periodicity.

Definition 5. Let (u_i) generates a bi-ideal x. The bi-ideal x is called finitely generated if $\exists m \ \forall i \ \forall j \ (i \equiv j \ (\text{mod } m) \Rightarrow u_i = u_j)$. We say in this situation m-tuple $(u_0, u_1, \ldots, u_{m-1})$ generates the bi-ideal x.

Theorem 6. If $\bigcup_{i=0}^{m-1} \operatorname{Pref}(u_i)$ or $\bigcup_{i=0}^{m-1} \operatorname{Suff}(u_i)$ has at least two words with the same length then a bi-ideal generated by $(u_0, u_1, \dots, u_{m-1})$ is not periodic.

Proof. Let $x \in A^{\omega}$ be a bi-ideal generated by $(u_0, u_1, \dots, u_{m-1})$.

(i) Let $\bigcup_{i=0}^{m-1} \operatorname{Pref}(u_i)$ has at least two words with one and the same length. Then there exist u_i, u_j such that $ua \in \operatorname{Pref}(u_i)$, $ub \in \operatorname{Pref}(u_i)$, where $u \in A^*$, $a, b \in A$ and $a \neq b$.

Let $T_0 = |ua|$ and $t > T_0$. Then we can choose n so great that $|v_n| \ge t$, where $v_{n+1} = v_n u_i v_n$. Hence $v_n ua \in \operatorname{Pref}(v_{n+1})$. Therefore $a = x_s$, where $s = |v_n u|$.

Since the tuple $(u_0, u_1, \ldots, u_{m-1})$ generates the bi-ideal x then $\exists k > n \ v_{k+1} = v_k u_j v_k$. Hence $v_k ub \in \operatorname{Pref}(v_{k+1})$. Therefore $b = x_{\sigma}$, where $\sigma = |v_k u|$. Since k > n then $v_n \in \operatorname{Suff}(v_k)$. Thus $x_{s-t} = x_{\sigma-t}$ but $x_s = a \neq b = x_{\sigma}$. That means that t is not a period of x.

(ii) Let $\bigcup_{i=0}^{m-1} \text{Suff}(u_i)$ has at least two words with one and the same length. Then there exist u_i, u_j such that $au \in \text{Suff}(u_i)$, $bu \in \text{Suff}(u_i)$, where $u \in A^*$, $a, b \in A$ and $a \neq b$.

Let $T_0 = |au|$ and $t > T_0$. Then we can choose n so great that $|v_n| \ge t$, where $v_{n+1} = v_n u_i v_n$. Hence there exists v' such that $v_n u_i = v' a u$. Therefore $a = x_s$, where s = |v'|.

Since the tuple $(u_0, u_1, \ldots, u_{m-1})$ generates the bi-ideal x then $\exists k > n \ v_{k+1} = v_k u_j v_k$. Hence there exists v'' such that $v_k u_j = v'' b u$. Therefore $b = x_\sigma$, where $\sigma = |v''|$. Since k > n then $v_n \in \operatorname{Pref}(v_k)$. Thus $x_{s+t} = x_{\sigma+t}$ but $x_s = a \neq b = x_\sigma$. That means that t is not a period of x.

(iii) Let us suppose that T is a period of x. Then $\forall n \in \mathbb{Z}_+$ nT is a period too. This denies (i) and (ii) as well.

Corollary 7. Let A be an alphabet and every letter $a \in A$ is chosen with one and the same probability $p(a) = \frac{1}{|A|}$. Let p be a probability that a bi-ideal generated by (u_0, u_1, \ldots, u_m) is ultimately periodic. If $\forall i \mid u_i \mid \geq n$ then $p \leq \frac{1}{|A|^{mn}}$.

Remarks. (i) Let $A=\{0,1\}$ and m=n=10 then probability $p\leq \frac{1}{2^{100}}$. This is practically negligible value.

(ii) Let a tuple (u_0, u_1, \ldots, u_m) has been generated. Let u be the longest word of this tuple. There is only one dubious situation by Theorem 6 if we like a bi-ideal that is not periodic. This happens if all words of the tuple (u_0, u_1, \ldots, u_m) are prefixes and suffixes of u. This can be easy verified by deterministic algorithm. Thus we have indeed practical method how to generate a bi-ideal that is not periodic.

Corollary 8. If a bi-ideal generated by $(u_0, u_1, \dots, u_{m-1})$ is periodic then

$$\forall i \ \forall j \ (u_i \in \operatorname{Pref}(u_j) \cap \operatorname{Suff}(u_j) \vee u_j \in \operatorname{Pref}(u_i) \cap \operatorname{Suff}(u_i)).$$

Corollary 9. The class of periodic words \mathfrak{P} is the proper subclass of the class of finitely generated bi-ideals $\mathfrak{B}_{\mathfrak{f}}$.

The following two lemmata are very easy, but those turn out to be extremely useful:

Lemma 10. If $x = w^{\omega}$ and T is the minimal period of the word x, then $T \setminus |w|$, i.e. T divides |w|.

Proof. Let n = T|w|, then both T and |w| are periods of the word x[0,n). Hence [Theorem 1] $t = \gcd(T,|w|)$ is a period of x[0,n). Now we have

$$\forall i \ x[0,n) = x[ni,(n+1)i).$$

Therefore t is a period of x. Since T is the minimal period of the word x, then $t \ge T \ge \gcd(T, |w|) = t$. Hence $T = \gcd(T, |w|)$, thereby $T \setminus |w|$.

Lemma 11. If $x = w^{\omega} = uvy$ and |w| = |v|, then $vy = y = v^{\omega}$.

Proof. Let |w| = t and |u| = k + 1, then $v = x_{k+1} x_{k+2} \dots x_{k+t}$, since |v| = |w|. We have $\forall i \ x_{i+t} = x_i$, therefore

$$\forall j \in \overline{1,t} \ \forall s \ x_{k+j} = x_{k+j+st}$$
.

Example 12. The bi-ideal generated by (0,010) is not periodic.

Proof. (i) Let x be the bi-ideal generated by (0,010), and

. . .

in other words $x = \lim_{k \to \infty} w_k$.

Let t be a period of x. Then t > 3, otherwise the period of w_2 must be less than or equal to 3. Contradiction. So we have a word w such that |w| = t > 3 and $x = w^{\omega}$.

(ii) Now choose n so large odd number that $t < |w_n|$. Then

$$x = w_n 0 w_n \dots$$

and

$$w_n = (uv)^s u,$$

where $s \ge 1$, uv = w and $u \ne \lambda$. (If $u = \lambda$ or $v = \lambda$, then t divides $|w_n|$. We shall analyse this situation later.) From Lemma 11 we conclude that

$$x = w_n 0 w^{\omega} = w_n 0 (uv)^{\omega} = w_n 0 x.$$

Thus

$$(uv)^s uvuvu \dots = (uv)^s u0uvuv \dots$$

Hence

$$vuvu \dots = 0uvuv \dots$$

Since $u \neq \lambda$ and $u \in \operatorname{Pref}(x)$, then u = 0u'. Hence

$$vu \dots = 00u'v \dots$$

Thus, if $|v| \geq 2$, then v = 00v'.

(iii) Note that

$$w_n 0x = x = w_n 0w_n 010w_n \dots$$

Therefore $x = w_n 010w_n \dots$ and

$$(uv)^{\omega} = x = (uv)^s u010\dots$$

Hence v = 01v'' but v = 00v'. Contradiction.

(iv) It remains to check that $|v| \leq 1$. Note

$$u010\ldots = uvu\ldots$$

Hence, if |v| = 1, we can conclude that the first letter of u is 1. Contradiction! Otherwise $v = \lambda$, then u = 01u''. Again contradiction, since $w_1 = 00100$, therefore the first two letters of u must be 00. Finally, if $u = \lambda$, then it remains to interchange u with v in the last two sentences of the proof. Now turn our attention to Corollary 8. We have proved that condition

$$\forall i \ \forall j \ (u_i \in \operatorname{Pref}(u_i) \cap \operatorname{Suff}(u_i) \vee u_j \in \operatorname{Pref}(u_i) \cap \operatorname{Suff}(u_i))$$

is necessary for periodicity of finitely generated bi-ideals. Nevertheless Example 12 demonstrates that this condition is not sufficient.

The following lemma is crucial:

Lemma 13. If a bi-ideal x generated by $(u_0, u_1, \ldots, u_{m-1})$ is periodic, then

$$\forall i \,\forall j \,\, u_i x = u_j x \,.$$

Proof. (i) Since x is a bi-ideal generated by $(u_0, u_1, \ldots, u_{m-1})$, then

$$x = \lim_{k \to \infty} v_k \,;$$

where
$$v_0 = u_0, \quad v_{k+1} = v_k u_{k+1} v_k,$$

and $u_{k+1} = u_i, \text{ if } k+1 \equiv i \pmod{m}.$

Let t be a period of x and choose n so large that $t < |v_n|$. For every $i \in \overline{0, m-1}$ we can find $s_i > n$ such that

$$v_{s_i+1} = v_{s_i} u_i v_{s_i} .$$

Hence, by Corollary 2,

$$\forall i \,\exists v_i' \, v_{s_i} = v_n v_i' v_n \,.$$

Therefore

$$x = v_{s_i} u_i v_{s_i} \dots = v_n v_i' v_n u_i v_n \dots$$

(ii) We suppose that x is periodic, thereby

$$x = v^{\omega}$$
, where $v = x[0, t)$.

Note $v \in \text{Pref}(v_n)$, therefore [Lemma 11]

$$x = v_n v_i' x = v_n v_i' v_n u_i x.$$

Hence, $\forall i \ x = v_n u_i x$, thereby $\forall i \ \forall j \ u_i x = u_j x$.

Examples 14.

(i) First, we reexamine Example 12 in light of the above lemma. Let us suppose that a bi-ideal x generated by (0,010) is periodic then 0x = 010x. This contradicts the fact that the first letter of x is not 1 but 0. The same arguments show that a bi-ideal generated by (010,0) is not periodic too.

(ii) Both bi-ideals generated by $((01)^{n-1}0, (01)^n0)$ and $((01)^n0, (01)^{n-1}0)$ are not periodic. Indeed, if we suppose that a bi-ideal x generated by $((01)^{n-1}0,(01)^n0)$ is periodic then by Lemma 13

$$(01)^{n-1}0x = (01)^n0x = (01)^{n-1}010x$$
.

Hence x = 10x. This contradicts the fact that the first letter of x is not 1 but 0.

The same arguments show that a bi-ideal generated by $((01)^n0, (01)^{n-1}0)$ is not periodic too.

We now present some useful observations concerning the periodicity. We start with the following lemma.

Lemma 15. If $\exists u \in A^+ \ ux = x \in A^\omega$, then a word x is periodic with the minimal period $T \setminus |u|$.

Proof. Let $u = a_1 a_2 \dots a_{t-1}$, where $\forall j \ a_j \in A$, and y = ux, then $\forall i \ x_i = y_{i+t}$. Let

$$y = ux = x$$
.

Hence

$$\forall i \ y_i = x_i = y_{i+t} \,.$$

This means that y is periodic with a period t. Since y = x, then x is periodic with a period t too. Let T is the minimal period of x, then by Lemma 10 $T \setminus t$, i.e. $T \setminus |u|$.

Proposition 16. A word $x \in A^{\omega}$ is periodic if and only if

$$\exists u \in A^+ \ ux = x \in A^\omega.$$

Proof. \Rightarrow If x is periodic then $\exists u \in A^+ \ x = u^\omega$. Hence $x = uu^\omega = ux$. \Leftarrow Lemma 15.

Corollary 17. Let $u \in \{u_0, u_1, ..., u_{m-1}\}$ and

 $|u| = \max\{|u_0|, |u_1|, \dots, |u_{m-1}|\}$. If T is the minimal period of a periodic bi-ideal x generated by $(u_0, u_1, \dots, u_{m-1})$ then T < |u|.

Proof. If only $u \neq \lambda$ then $u = u_0$ and $x = u^{\omega}$. Hence the minimal period T < |u|.

Otherwise, there exists $v \in \{u_0, u_1, \dots, u_{m-1}\}$ such that $u \neq v \neq \lambda$. Now by Lemma 13 ux = vx. Hence

$$\exists v' \neq u \ u = vv'.$$

Thus vv'x = vx, therefore v'x = x. Since 0 < |v'| then $T \setminus |v'|$. This follows immediately from Lemma 15. Thereby T < |v'| < |u|.

Proposition 18. (see, e.g., [10]) Let $u, v \in A^+$ be such that uv = vu. Then there exists $w \in A^+$ such that $u, v \in w^+$.

Lemma 19. Let $u, v \in A^+$ be such that $u^k v = vu^k$ for any positive integer k. Then there exists $w \in A^+$ such that $u, v \in w^+$.

Proof. If k = 1 then it is Proposition 18. Now we assume that k > 1; by Proposition 18

$$\exists x \in A^+ \ (u^k, v \in x^+).$$

- (i) If $|x| > |u^{k-1}|$, then $x = u^k$, because $|x^2| > |u^k|$ and $u^k \in x^+$. Hence $x \in u^+$, therefore $v \in u^+$. Thus $\exists w \in A^+ \ (u, v \in w^+)$; here w = u.
- (ii) If $|x| \leq |u^{k-1}|$, then $l = \gcd(|x|, |u|)$ is period of u^k by Theorem 1. Let

$$w \in \operatorname{Pref}(u) \wedge |w| = l$$

then $u \in w^+$. Since $u^k \in x^+$ then $u^k = x^m$ for any m. Hence $x^m \in w^+$. Since $|w| \setminus |x|$ then $x \in w^+$. Therefore $v \in w^+$.

Theorem 20. If x is a periodic bi-ideal generated by (u_0, u_1) then $\exists w \ u_0, u_1 \in w^*$.

Proof. Obviously, if $u_0 = u_1$ then a bi-ideal generated by (u_0, u_1) is periodic. Now suppose that $u_0 \neq u_1$. Then by Lemma 13 $u_0 x = u_1 x$.

(i) Let $u_0 \in \operatorname{Pref}(u_1)$, then $u_1 = u_0 u$, where $u \neq \lambda$, and $u_0 x = u_1 x = u_0 u x$, therefore x = u x. Thus

$$x = u_0 u_1 \dots = u_0 u_0 u \dots$$

$$x = u x = u u_0 u_0 \dots$$

Hence $u_0^2u = uu_0^2$, and by Lemma 19 $\exists w \ u_0, u_1 \in w^*$.

(ii) Let $u_1 \in \text{Pref}(u_0)$, then $u_0 = u_1 u$, where $u \neq \lambda$, and $u_0 x = u_1 u x$. Since $u_0 x = u_1 x$ then $u_1 u x = u_1 x$, therefore x = u x. Thus

$$x = u_0 \dots = u_1 u \dots$$

 $x = ux = uu_0 \dots = uu_1 u \dots$

Hence $u_1u = uu_1$, and by Proposition 18 $\exists w \ u, u_1 \in w^*$. Since $u_0 = u_1u$ then $u_0 \in w^*$.

Theorem 21. A bi-ideal x generated by $(u_0, u_1, \ldots, u_{m-1})$ is periodic if and only if

$$\exists w \forall i \in \overline{0, m-1} \ u_i \in w^*$$
.

Proof. Since x is a bi-ideal generated by $(u_0, u_1, \ldots, u_{m-1})$, then

$$x = \lim_{k \to \infty} v_k \,;$$

where
$$v_0 = u_0, \quad v_{k+1} = v_k u_{k+1} v_k,$$

and $u_{k+1} = u_i, \text{ if } k+1 \equiv i \pmod{m}.$

- \Rightarrow We have $u_0x = u_1x = \ldots = u_{m-1}x$ by Lemma 13.
- (i) First, we shall prove that $\exists w \ u_0, u_1 \in w^*$.
- a) If $u_1 = \lambda$ or $u_1 = u_0$, then $w = u_0$.

Now we shall consider the situation $\lambda \neq u_1 \neq u_0$.

b) Let $u_0 \in \operatorname{Pref}(u_1)$ then

$$u_1 = u_0 u$$
, where $u \neq \lambda$, and $u_0 x = u_1 x = u_0 u x$, therefore $x = u x$. $x = u_0 u_1 \dots = u_0 u_0 u \dots$ $x = u x = u u_0 u_0 \dots$

Hence $u_0^2u = uu_0^2$, and by Lemma 19 $\exists w \ u_0, u \in w^*$. Since $u_1 = u_0u$ then $u_1 \in w^*$.

c) Let $u_1 \in \operatorname{Pref}(u_0)$ then

$$u_0 = u_1 u$$
, where $u \neq \lambda$, and $u_1 x = u_0 x = u_1 u x$, therefore $x = u x$. $x = u_0 \dots = u_1 u \dots$ $x = u x = u u_0 \dots = u u_1 \dots$

Hence $u_1u = uu_1$, thereby [Proposition 18] $\exists w \ u, u_1 \in w^*$. Since $u_0 = u_1u$, then $u_0 \in w^*$.

- (ii) Further, we shall prove the theorem by induction on n, i.e., suppose that $\exists v \forall i \in \overline{0,n} \quad u_i \in v^*$. Let $u_n \neq u_{n+1} \neq \lambda$, otherwise $u_{n+1} \in v^*$.
- a) Let $u_n \in \operatorname{Pref}(u_{n+1})$ then

$$u_{n+1} = u_n u$$
, where $u \neq \lambda$, and
$$u_n x = u_{n+1} x = u_n u x$$
, therefore $x = u x$.
$$x = v_n u_{n+1} \dots = v_n u_n u \dots$$
$$x = u x = u v_n u_n \dots$$

Hence $v_n u_n u = u v_n u_n$. We have by induction $\exists k \ v^k = v_n u_n$ and $k \ge 1$, since $u_0 \ne \lambda$. Thus $v^k u = u v^k$, and by Lemma 19 $\exists w \ v, u \in w^*$.

Thereby $v \in w^*$, and by induction $\forall i \in \overline{0,n} \ u_i \in v^*$. Hence $\forall i \in \overline{0,n} u_i \in w^*$. Since $u_{n+1} = u_n u$ and $u_n, u \in w^*$, then $u_{n+1} \in w^*$.

b) Let $u_{n+1} \in \operatorname{Pref}(u_n)$ then

$$u_n = u_{n+1}u$$
, where $u \neq \lambda$, and $u_{n+1}x = u_nx = u_{n+1}ux$, therefore $x = ux$.
$$x = v_{n-1}u_n \dots = v_{n-1}u_{n+1}u \dots$$
$$x = ux = uv_{n-1}u_{n+1}\dots$$

Hence $v_{n-1}u_{n+1}u = uv_{n-1}u_{n+1}$, therefore by Proposition 18 $\exists w_0 \ v_{n-1}u_{n+1}, u \in w_0^*$. We have by induction $\exists k \ v^k = v_{n-1}, \ k \geq 1$, since $u_0 \neq \lambda$. Thus

$$|v_{n-1}u_n| = |v_{n-1}u_{n+1}u| > |v_{n-1}| + |u| \ge |v| + |w_0|$$

and $v_{n-1}u_n \in v^*$, $v_{n-1}u_n = v_{n-1}u_{n+1}u \in w_0^*$. This means that both |v| and $|w_0|$ are periods of $v_{n-1}u_n$. Now by Theorem 1 $l = \gcd(|v|, |w_0|)$ is the period of $v_{n-1}u_n$. Let

$$w \in \operatorname{Pref}(v_{n-1}) \wedge |w| = l$$

then $v_{n-1}u_n \in w^+$ because $l \setminus |v_{n-1}u_n|$.

The word $v_{n-1}u_n = u_{i_1}u_{i_2}\dots u_{i_{\kappa}}$, where all $u_{i_s} \in \{u_0, u_1, \dots, u_n\}$, besides,

$$\forall j \in \overline{0, n} \; \exists \nu \in \overline{1, \varkappa} \quad u_j = u_{i_\nu}.$$

Since $\forall i \in \overline{0, n} \ u_i \in v^*$ then $\forall i \in \overline{0, n} \ l \setminus |u_i|$. Thus $\forall i \in \overline{0, n} \ u_i \in w^*$.

Finally, $u_n = u_{n+1}u$ and $u_n \in w^*$, therefore l is the period of u_{n+1} . Since $u \in w_0^*$ then $l \setminus |u|$. Hence $l \setminus |u_{n+1}|$. Thus $u_{n+1} \in w^*$.

This completes the induction.

 \Rightarrow Since $\forall n \ v_n \in w^*$ then $x = w^{\omega}$.

4 The Class of Bounded Bi-ideals

Definition 22. Let (u_i) generates a bi-ideal x. The bi-ideal x is called bounded if $\exists l \forall i | u_i| \leq l$.

Proposition 23. The class of finitely generated bi-ideals $\mathfrak{B}_{\mathfrak{f}}$ is the proper subclass of the class of bounded bi-ideals $\mathfrak{B}_{\mathfrak{b}}$.

Proof. Note $\operatorname{card}\{(u_i) \mid \forall i \ u_i \in \{0,1\}\} = \mathfrak{c}$ — the cardinality of the set of real numbers. Let (u_i) , (v_i) be two different sequences of letters in the alphabet $\{0,1\}$ that generate bi-ideals (x_i) , (y_i) respectively. Since $(x_i) \neq (y_i)$ then $\operatorname{card}\{(x_i) \mid \text{there is a sequence } (u_i) \text{ of letters in the alphabet } \{0,1\}$ that generate a bi-ideal (x_i) = $\operatorname{card}\{(u_i) \mid \forall i \ u_i \in \{0,1\}\} = \mathfrak{c}$.

Let $\mathfrak{U}_m = \{(u_0, u_1, \dots, u_{m-1}) \mid \forall i \ u_i \in \{0, 1\}^*\}$ then $\operatorname{card} \bigcup_{m=1}^{\infty} \mathfrak{U}_m = \aleph_0$, where \aleph_0 is the first infinite cardinality. Therefore the cardinality of the set of all finitely generated bi-ideals in the alphabet $\{0, 1\}$ is equal to \aleph_0 . Since $\aleph_0 < \mathfrak{c}$ then $\mathfrak{B}_{\mathfrak{f}} \subset \mathfrak{B}_{\mathfrak{b}}$.

Let $w = u_1w_1v_1 = u_2w_2v_2$. We define a meet $w_1 \cap w_2$ as follows. If there exists an occurrence (u_3, w_3, v_3) of w_3 in word w such that $w = u_3w_3v_3$, where $|u_3| = \max(|u_1|, |u_2|), |v_3| = \max(|v_1|, |v_2|)$, then $w_1 \cap w_2 = w_3$. Otherwise, $w_1 \cap w_2 = \lambda$.

Lemma 24. Let (u_i) generates a bi-ideal x, $v_0 = u_0$, $\forall i (v_{i+1} = v_i u_{i+1} v_i)$ and $\forall i |u_i| \leq l$. If $v \in F(x)$ and $|v| = 2|v_m| + l$ for some m, then $v_m \in F(v)$.

Proof. Since $v \in F(x)$ then $v \in F(v_n)$ but $v \notin F(v_{n-1})$ for some n. Moreover, $v_{n-1}u_nv_{n-1} = v_n = v'vv''$ for some v', v''.

Since $v \notin F(v_{n-1})$ then $u_n \cap v \neq \lambda$. Hence, $|v_{n-1} \cap v| \geq |v_m|$ because of $|u_n| \leq l$. Therefore $v_m \in F(v)$ by Corollary 2.

Definition 25. It is said a factor u of an infinite word x occurs syndetically in x if there exists an integer k such that in any factor of x of length k there is at least one occurrence of u. A word x is called uniformly recurrent, or with bounded gaps, when all its factors occur syndetically in x.

Proposition 26. Bounded bi-ideals are uniformly recurrent.

Proof. Let x be a bounded bi-ideal generated by (u_i) then there exists l such that $\forall i | u_i | \leq l$. Let $u \in F(x)$, $v_0 = u_0$ and $\forall i (v_{i+1} = v_i u_{i+1} v_i)$ then there exists m such that $u \in F(v_m)$.

Let $v \in F(x)$ and $|v| = 2|v_m| + l$ then $v_m \in F(v)$ by Lemma 24. Therefore $u \in F(v)$. So the factor u of xoccurs syndetically in x.

Let $\phi: A^* \to A^*$ be a nonerasing morphism (namely, $\phi(A^+) \subseteq A^+$) such that there exists a letter $a \in A$ such that

$$\phi(a) = au$$
, with $u \in A^+$.

For all $n \geq 0$ one has

$$\phi^{n+1}(a) = \phi^n(au) = \phi^n(a)\phi^n(u),$$

so that $\phi^n(a)$ is a proper prefix of $\phi^{n+1}(a)$. Thus the sequence $(\phi^n(a))$ converges to a limit denoted by $\phi^{\omega}(a)$, that is,

$$\phi^{\omega}(a) = \lim_{n \to \infty} \phi^n(a) .$$

One says that $x = \phi^{\omega}(a)$ is the infinite word obtained by iterating the morphism ϕ on the letter a. Moreover, one has $x = \phi(x)$, that is, x is a fixed point for ϕ .

Very famous infinite word is Thue–Morse word t on two letters

$$t = 0110 \, 1001 \, 1001 \, 0110 \dots$$

t can be introduced by iterating, on the letter 0, the morphism

$$\tau: \{0,1\}^* \to \{0,1\}^*, \text{ defined as } \tau(0) = 01, \ \tau(1) = 10.$$

The word t was introduced by Thue in two papers [15, 16] of 1906 and 1912 and, subsequently, rediscovered by Morse [11] and several other authors. Thue–Morse word is uniformly recurrent (see, e.g., [10]).

Definition 27. A factor u of a word $x \in A^{\infty}$ is called an overlapping factor of x if u = avava, with $a \in A$ and $v \in A^*$. We say that x is overlap-free, if x does not contain overlapping factors.

Corollary 28. Let $y \in A^{\infty}$. If $x \setminus y$ and x = uvuvu, where $u \neq \lambda$, then both x and y contain an overlapping factor.

Proof. Since $u \neq \lambda$, then exist a letter $a \in A$ and a word $w \in A^*$ such that u = aw. Hence x = aw(aw)v(aw)v(aw) = a(wv)a(wv)aw. Thus x contains the overlapping factor a(wv)a(wv)a.

Proposition 29. (see, e.g., [10]) The Thue — Morse word t is overlap-free.

Lemma 30. If $\forall i \ u_i = \lambda \ then \ a \ bi-ideal \ x \ generated \ by (u_i) \ is periodic.$

Proof. Let $v_0 = u_0$, $v_{i+1} = v_i u_{i+1} v_i$. Since $\overset{\infty}{\forall} i \ u_i = \lambda$ then $\exists n \, \forall i > n \ u_i = \lambda$. Hence $v_{n+1} = v_n u_{n+1} v_n = v_n^2$.

Further, we shall prove the lemma by induction on j, i.e., suppose that $v_{n+j}=v_n^k$, where $k=2^j$, then $v_{n+j+1}=v_{n+j}u_{n+j+1}v_{n+j}=v_{n+j}^2=v_{n+j}^2=v_n^{2k}$, where $2k=2\cdot 2^j=2^{j+1}$. Thus $x=\lim_{i\to\infty}v_i=\lim_{k\to\infty}v_n^k=v_n^\omega$.

Lemma 31. If A is a finite alphabet then every bounded bi-ideal $x \in A^{\omega}$ contains an overlapping factor.

Proof. Let $x \in A^{\omega}$ be a bi-ideal generated by the sequence $u_0, u_1, \ldots, u_n, \ldots$

(i) If $\forall i u_i = \lambda$ then x is periodic [Lemma 30]. Therefore [Corollary x contains an overlapping factor.

(ii) If $\exists i \ u_i \neq \lambda$, then $\exists i \exists j \ (i < j \land u_i = u_j)$, because A is finite and $\exists l \forall i \ |u_i| \leq l$. Since x is the bi-ideal generated by the sequence $u_0, u_1, \ldots, u_n, \ldots$ then $x = \lim_{n \to \infty} v_n$, where $v_0 = u_0$ and $v_{n+1} = v_n u_{n+1} v_n$. Hence by Corollary 2 $v_j = v_{j-1} u_j v_{j-1} = v' u_i v_{i-1} u_j v_{i-1} u_i v''$. Thus $u_i v_{i-1} u_j v_{i-1} u_i \setminus x$, therefore [Corollary 2) lary 28 x contains an overlapping factor.

Proposition 32. The Thue–Morse word t is not a bounded bi-ideal.

Proof. Let us suppose that t is a bounded bi-ideal generated by (u_i) then by Lemma 31 t contains an overlapping factor. This is contradiction [Proposition 29].

Theorem 33. The class of bounded bi-ideals $\mathfrak{B}_{\mathfrak{b}}$ is the proper subclass of the class of uniformly recurrent words $\mathfrak{R}_{\mathfrak{u}}$, that is, $\mathfrak{B}_{\mathfrak{b}} \subseteq \mathfrak{R}_{\mathfrak{u}}$ and $\mathfrak{B}_{\mathfrak{b}} \neq \mathfrak{R}_{\mathfrak{u}}$.

Proof. The class of bounded bi-ideals $\mathfrak{B}_{\mathfrak{b}}$ is the subclass of the class of uniformly recurrent words $\mathfrak{R}_{\mathfrak{u}}$ by Proposition 26. The Thue–Morse word is uniformly recurrent as mentioned above. Therefore $\mathfrak{B}_{\mathfrak{b}} \neq \mathfrak{R}_{\mathfrak{u}}$ by Proposition 32.

Example 34. Let x be the bi-ideal generated by (u_i) , where

$$\begin{array}{rcl} u_0 & = & 0, \\ u_1 & = & 1, \\ \forall i > 1 & u_i & = & 00100 \,. \end{array}$$

Then

$$\begin{array}{rcl} v_0 & = & 0, \\ v_1 & = & 010, \\ v_2 & = & 010\ 00100\ 010, \\ v_3 & = & 01000100010\ 00100\ 01000100010, \\ & \cdot & \cdot & \cdot \end{array}$$

and $x = \lim_{i \to \infty} v_i$. Thus x is the bounded bi-ideal, besides $x = (0100)^{\omega}$. This demonstrates that straightforward generalization of Theorem 21 for bounded bi-ideals is not valid.

Convention Let x be a bi-ideal generated by (u_i) , then $x = \lim_{i \to \infty} v_i$, where $v_0 = u_0$ and $v_{i+1} = v_i u_{i+1} v_i$. We adopt this notational convention henceforth.

Lemma 35. If $v_n u \in v^*$ and $\forall i \in \mathbb{Z}_+ u_{n+i} \in uv^*$, then

$$\forall i \in \mathbb{N} \ v_{n+i} \in v^* v_n \ .$$

Proof. If i = 0 then $v_{n+i} = v_n = \lambda v_n \in v^* v_n$.

Further, we shall prove the lemma by induction on i, i.e., suppose that $v_{n+i} \in v^*v_n$, namely,

$$\exists k \in \mathbb{N} \ v_{n+i} = v^k v_n$$
.

By assumption, $v_n u \in v^*$ and $u_{n+i+1} \in uv^*$, i.e.

$$\exists l \in \mathbb{N} \ v_n u = v^l \ \land \ \exists m \in \mathbb{N} \ u_{n+i+1} = u v^m.$$

Hence

$$v_{n+i+1} = v_{n+i}u_{n+i+1}v_{n+i} = (v^k v_n)(uv^m)(v^k v_n)$$

= $v^k (v_n u)v^{m+k}v_n = v^k v^l v^{m+k}v_n \in v^* v_n$.

This completes the induction.

Lemma 36. If t is the period of the bi-ideal x and $|v_n| \geq t$, then

$$\forall i \in \mathbb{Z}_+ \ u_{n+1}x = u_{n+i}x.$$

Proof. We have $v_{n+i} = v_{n+i-1}u_{n+i}v_{n+i-1}$. Hence, if $i \in \mathbb{Z}_+$ then [Corollary 2]

$$\forall i \in \mathbb{Z}_+ \,\exists v_i' \, v_{n+i} = v_n v_i' v_n \,.$$

Now, by definition of x

$$x = v_n u_{n+1} v_n \dots$$

$$x = v_{n+i} u_{n+i+1} v_{n+i} \dots = v_n v_i' v_n u_{n+i+1} v_n \dots$$

By assumption, x is periodic, therefore

$$x = v^{\omega}$$
, where $|v| = t$.

Since $v \in \operatorname{Pref}(v_n)$ then by Lemma 11

$$x = v_n u_{n+1} x,$$

$$x = v_n u_{n+i+1} x.$$

Hence $\forall i \in \mathbb{Z}_+ \ x = v_n u_{n+i} x$. Thus $\forall i \in \mathbb{Z}_+ \ u_{n+1} x = u_{n+i} x$.

Theorem 37. A bi-ideal x is periodic if and only if

$$\exists n \in \mathbb{N} \ \exists u \exists v \ (v_n u \in v^* \ \land \ \forall i \in \mathbb{Z}_+ \ u_{n+i} \in uv^*) \ .$$

 \Rightarrow Let T be the minimal period of the word x, then $\exists n \in \mathbb{N} |v_n| \geq T$. Thus by Lemma 36

$$\forall i \in \mathbb{Z}_+ \quad u_{n+1}x = u_{n+i}x$$
.

Let u be the longest word of the set $\bigcap_{i=1}^{\infty} \operatorname{Pref}(u_{n+i})$ then

$$\forall i \in \mathbb{Z}_+ \exists u_i' (u_{n+i} = uu_i').$$

Particularly, $\exists k \ u_{n+k} = u$. This means that

$$\forall i \in \mathbb{Z}_+ \quad uu_i'x = u_{n+i}x = u_{n+k}x = ux.$$

Thus

$$\forall i \in \mathbb{Z}_+ \quad u_i' x = x.$$

Hence by Lemma 15

$$\forall i \in \mathbb{Z}_+ \quad T \backslash |u_i'|.$$

Thereby

$$\forall i \in \mathbb{Z}_+ \quad u_i' \in v^* \,,$$

where v = x[0, T). Thus

$$\forall i \in \mathbb{Z}_+ \quad u_{n+i} = uu_i' \in uv^*.$$

Note

$$x = v_n u_{n+1} v_n \dots = v_n u u_1' v_n \dots$$

Since $u_1' \in v^*$ and $v \in \operatorname{Pref}(v_n)$, then [Lemma 11] $x = v_n ux$. Hence [Lemma 15] $v_n u \in v^*$. \Leftarrow By Lemma 35

$$\forall i \in \mathbb{N} \,\exists k_i \in \mathbb{N} \, v_{n+i} = v^{k_i} v_n$$
.

Since $\lim_{k\to\infty} |v_k| = \infty$ then $\lim_{i\to\infty} k_i = \infty$. Thus

$$x = \lim_{k \to \infty} v_k = \lim_{i \to \infty} v_{n+i} = \lim_{i \to \infty} v^{k_i} v_n = v^{\omega}.$$

References

- D. B. Bean, A. E. Ehrenfeucht and G. McNulty. (1979) Avoidable Patterns in Strings of Symbols. Pacific J. Math. 85, 261–294.
- [2] J. Berstel, J. Karhumäki. (2003) Combinatorics on Words A Tutorial. TUCS Technical Report (No 530, June).
- M. Coudrain and M. P. Schützenberger. (1966) Une condition de finitude des monoïdes finiment engendrés.
 C. R. Acad. Sc. Paris, Sér. A, 262, 1149–1151.
- [4] M. Crochemore and W. Rytter. (1995) Squares, cubes, and time-space efficient string searching. Algorithmica 13, 405-425.
- [5] N.J. Fine, H.S. Wilf. (1965) Uniqueness Theorem for Periodic Functions. Proc. Amer. Math. Soc. 16, 109– 114
- [6] D. Gusfield. (1997) Algorithms on Strings, Trees, and Sequences. Cambridge University Press.
- [7] N. Jacobson. (1964) Structure of Rings. American Mathematical Society, Providence, RI.
- [8] M. Lothaire. (1983) Combinatorics on Words. Encyclopedia of Mathematics and its Applications, Vol. 17, Addison-Wesley, Reading, Massachusetts.
- [9] M. Lothaire. (2002) Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applications, Vol 90, Cambridge University Press, Cambridge.
- [10] Aldo de Luca, Stefano Varricchio. (1999) Finiteness and Regularity in Semigroups and Formal Languages. Springer-Verlag, Berlin, Heidelberg.
- [11] M. Morse. (1921) Recurrent geodesics on a surface of negative curvature. Trans. Amer. Math. Soc. 22, 84–110.
- [12] R. A. Rueppel. (1986) Analysis and Design of Stream Ciphers. Springer-Verlag, Berlin.
- [13] I. Simon. (1988) Infinite Words and a Theorem of Hindman. Rev. Mat. Apl. 9, 97–104.
- [14] J. A. Storer. (1988) Data compression: methods and theory. Computer Science Press, Rockville, MD.
- [15] A. Thue (1906) Über unendliche Zeichenreihen. Norske Vidensk. Selsk. Skrifter. I. Mat.-Nat. K1., Christiania Nr 7, 1–22.
- [16] A. Thue (1912) Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vidensk. Selsk. Skrifter. I. Mat.—Nat. K1., Christiania Nr 10, 1–67.
- [17] А. И. Зимин. (1982) *Блокирующие множества термов*. [*Blocking Sets of Terms*.] Матем. сб., т.**119**, № 3, с. 363–375. (Russian)