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TWO SIDED SAND PILES MODEL AND UNIMODAL
SEQUENCES

THI HA DuoNng PHAN!

Abstract. We introduce natural generalizations of two well-known
dynamical systems, the Sand Piles Model and the Brylawski’s model.
We describe their order structure, their reachable configuration’s char-
acterization, their fixed points and their maximal and minimal length’s
chains. Finally, we present an induced model generating the set of uni-
modal sequences which amongst other corollaries, implies that this set
is equipped with a lattice structure.

Mathematics Subject Classification. 68R05, 05A17.

INTRODUCTION

Sand Piles Model (SPM) and several related models such as Chip Firing Game
or Brylawski’s model have been introduced and studied in various contexts. They
were used to illustrate the self-organized criticality paradigm in physics by Bak
et al. [2], and appear in the study of legal game sequences [4], in language theory by
Bjorner and Ziegler [5], and of course, in combinatorics (see, for example, Anderson
et al. [1], Spencer [18] and Goles and Kiwi [11]).

In our study, a discrete dynamical model is defined by the space of configura-
tions and certain transition rule(s). The goal is to investigate whether the model
converges to a stable configuration (called fized point), and if it converges, then
what the number of transitions needed is. It is also important to obtain a criterion
for which a configuration is reachable from another by repeated applications of the
given transition rules. To describe the set of all reachable configurations we use
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combinatorial objects such as partitions, unimodal sequences, and to illustrate the
transitions, we use some special structures such as order and lattice.

In the context of Sand Piles Model, a configuration is a sequence of sand piles
such that their heights are decreasing from left to right. For a given total number
of sand grains n, each configuration can be represented by a partition of n [11].
The transition rule is the following: at each moment, one sand grain can fall
down from one pile to its right neighbor with the condition that the resulted
configuration is still a decreasing sequence. This model defines a partial order
over the set of integer partitions of n. On the other hand, Brylawski’s model (Lpg)
was introduced in 1973 [7] to represent the dominance ordering over the set of all
integer partitions of a given integer. This model can be viewed as a generalization
of SPM by adding one transition rule: at each moment, one sand grain can slide
from one pile to another pile in its right (not necessary its neighbor). The two
posets obtained by SPM and by Lp have lattice structure with many interesting
properties [11-15].

Inspired by the meaningful results of these models, many generalizations of
SPM were introduced and studied. For example, a parallel SPM was studied
in [3], next model IPM was defined by relaxing transition rule [13], and recently
a bidimentional SPM was introduced [9].

In this paper, we generalize these two classical models in a natural way by con-
sidering transitions in both sides, that means one grain can fall down in either
directions, from right to left or also from left to right. The generalized models
are called “General Sand Piles Model” (GSPM) and “General Lg” (GLp) re-
spectively. It turns out that these two models are closely related to the notion of
unimodality, a subject also occurs in many branches of mathematics and computer
science. For a survey of unimodal sequences and their applications, see Brenti [6]
or Stanley [19]. In particular, unlike the case of SPM, where a configuration
is represented by a partition, we show that each configuration in GSPM corre-
sponds to a unimodal sequence. Amongst other results, using general structure
theory of discrete dynamical system, we establish an order structure over the set
of all unimodal sequences of the same weight.

The paper is structured as follows. We first recall some basic definitions of
lattice theory and the theory of unimodal sequences. Basic results about the two
models under study SPM and Lp are reviewed in Section 2. We then concentrate
on the two models GSPM and GLp and study their structures in Section 3.
Finally, we consider a restricted model of GLp which defines a lattice structure
over the set of all unimodal sequences of a given weight.

1. PRELIMINARIES

In this section, we recall basic definitions and results used in the rest of the
paper.
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1.1. LATTICE THEORY

An order relation is a binary relation <over a set, such that for all z,y and z
in this set, © < z (reflexivity), z < y and y < z implies x < z (transitivity), and
x <y and y < x implies * = y (antisymmetry). Such a relation is often called
a partial order (or order). The set is then a partially ordered set or, for short, a
poset.

A lattice is a poset such that any two elements a and b have a least upper
bound (called supremum of a and b and denoted by sup(a, b)), and a greatest lower
bound (called infimum of a and b and denoted by inf(a,b)). Lattices are strongly
structured sets, and many results are known about them. For example, efficient
coding and algorithms are known for lattices. For more details, see, e.g., [8,17].

1.2. PARTITIONS AND (GENERALIZED) UNIMODAL SEQUENCE

We recall that a partition of an integer n is a sequence of non-increasing positive
integers a = (ao, . . ., am) such that ag+. . .+a,, = n. The set P(n) of all partitions
of n is equipped with a partial order, called dominance ordering, defined as follows.
Given two partitions a and b of n, we have a > b if the suffix sums of a are
smaller than that of b, i.e. >, a; < 3, ;b for all j > 0 [7]. Note that this
definition still make sense even if a and b are partitions of different integers m and
n respectively, where m > n [16].

By a unimodal sequence of m, we means a positive integers sequence a =
(ag,ai,...,am) such that ag + ... + a, = n, and for some j, ag < a3... <
aj > Gjy1-.. > Gm. We call n the weight of a.

Now define a generalized unimodal sequence of n to be a sequence a = (ag, ag+1,
...,ay) such that the sequence b = (by,...,bj—g), with b; = agy; for all 1 < i <
I — k, is a unimodal sequence of n, (by convention, a; = 0 for all ¢ < k or i > ).
In other words, a is a generalized unimodal sequence of n if a is obtained from
a unimodal sequence b of n by adding all of its indices with the same integer.
In this case, we say b is the form of a. The first index k (which can be positive
or negative) is called the position of a. We define the center c(a) of a to be the
unique integer ¢ such that a,—1 < aq > ag+1, and the height h(a) of a to be
the value a4. It is clear that each generalized unimodal sequence is determined
uniquely by its form and its position, or by its form and its center. For an index
i, the left subsequence a<; (resp. right subsequence a>;) of a at position ¢ is
the sequence (a;—1,a;—2,ai—3,...,ax) (resp. (a;,ai+1,ait2,...,a;)). And one can
write a = (a<;,a>;). If these two sequences are decreasing, we say that a can be
decomposed (to two partitions) at position i.

At the end, we call initial configuration the partition (unimodal sequence) (n)
(at position 0).

1.3. SAND PILES MODEL AND BRYLAWSKI'S MODEL

In the theory of discrete dynamical model, one model is defined by its con-
figurations and by it(s) transition rule(s). A chain is a sequence of transitions.
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A configuration b is called reachable from another configuration a if b is obtained
from a by a chain. Usually, one starts with a distinguished configuration, also
called the initial configuration, and the set of all reachable configurations from it
is called the configuration space of the model under study. A fized point of this
model is a reachable configuration on which no transition can be applied. In this
paper, all models have (n) as the initial configuration.

Let us give here the formal definitions of two famous models Sand Piles Model
(SPM) and Brylawski model (Lp) and their basic properties. Their rules are
defined as follows.

Definition 1. SPM is a discrete dynamical model with the following vertical rule:
(,...,ai,ai_,_l,...) — (,...,CL,L' - 1,ai+1 + 1,) ifai Z Ai4+1 + 2.

Definition 2. Lp is a discrete dynamical model with vertical rule and the follow-
ing horizontal rule: (,....,p+L,p,p,...,p,p—1,...) = (oo ey DDy ooy, DDy - ).

Brylawski proved that the configuration space Lg(n), which contains all reach-
able configurations from (n) by vertical and horizontal rules, is nothing but the
set of all partitions of n.

In the case of the configuration space SPM (n), we have the following SPM
condition:

Lemma 1 ([13]). A partition is reachable from the initial partition (n) by SPM
transitions if and only if it do not contain any subsequence of the form (p,p,p) or
(ppp—1p—2,...,q+1,q,q) (with0<q<p).

In these two models, we have that a configuration b is reachable from another
one ¢ if and only if b is smaller than or equal to a by dominance ordering and
these models are proved to have a lattice structure [7,13]. Therefore each model
has its own unique fixed point. The unique fixed point of Lp(n) is nothing but
the partition (1,1,...,1). And below there is the SPM fized point condition.

Lemma 2 ([13]). For an integer n, let 0 < k' < k be two unique integers such
that n = @ + k'. Then the fizved point of SPM(n) is the partition (k,k —
L. K+ 1 KK —1,...,1).

2. GENERAL SAND PILES MODEL AND GENERAL
BRYLAWSKI’S MODEL

2.1. DEFINITIONS OF TWO MODELS GSPM AND GLg

It is natural to consider transition rules in two sides, so we defined general
models of SPM and Lp as follows.

Definition 3. The model GSPM has the following (right and left vertical rules
respectively (see Fig. 1):
G @is@igy) = (eeyai — Lagpr +1,.00) if @i > ajp1 +2 or
(,...,ai,l,ai,...) — (,...,ai,1 + 1,ai — 1,) zfaz Z A;—1 + 2.
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Ficure 1. Right vertical transition and left vertical transition.
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)

F1GURE 2. Right horizontal transition and left horizontal transition.

Definition 4. The model GLp has vertical rules and the following right and left
horizontal rules respectively (see Fig. 2):
Goooyp+Lpp,eospp—1,..) = (oo s DDy oo, DD, - ) OT
Goeoyp=10,psc o0+ 1,00) = (oo s DDy ooy, DDy - )

We write a — b for a transition at position i. And for each integer n, we write
GSPM(n) (resp., GLp(n)) for the configuration space of GSPM (resp. GLpg)
with the initial configuration (n).

Moreover, we define horizontal energy of each configuration a the quantity

Eg(a) = pl{ai > p}|-

It is clear that a horizontal transition decreases this energy by exactly one, and
a vertical transition decreases this energy by at least one. This implies that
GSPM(n) and GLp(n) have no cycle and then they have an order structure
as follows. In GSPM (n) (resp. GLp(n)), a configuration b is smaller than a con-
figuration a, and we write b <gspar a (resp. b <gr, a), if b is reachable from a
by iterating GSPM transitions (resp. GLpg transitions). An example of the poset
GSPM for n =6 is given in Figure 3.

2.2. CHARACTERIZATION OF REACHABLE CONFIGURATIONS

Our first result explains that all configurations of the two models considered
can be represented by generalized unimodal sequences.
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FIGURE 3. The poset GSPM(6), for each configuration, the in-
teger at position 0 is parenthesed.

Lemma 3. Any configuration of GSPM(n) (or GLp(n)) is a generalized uni-
modal sequence.

Proof. By noting that the initial configuration of these two models is the general-

ized unimodal sequence (n), it is sufficient to show that for any transition a —— b,
if a is a generalized unimodal sequence, then b is also a generalized unimodal se-
quence. Let g be the center of a. Let us consider the case where the transition

a —— b is a right one, the other case is proved similarly. If i # ¢ then b is a
generalized unimodal sequence of center ¢ and of same height as a. If i = g, b, is
still greater than or equal to by4 1, and because ¢ is the center of a then aqy > aq—1,
hence by > by—1. Thus b is still a generalized unimodal sequence, and of height
h(a) — 1. O

Conversely, note that only certain generalized unimodal sequences are configu-
rations of GSPM (n), and our purpose is to describe the criterion of such config-
urations.

Recall that a generalized unimodal sequence is determined by its form and its
position. We give first the criterion for the form of reachable configurations of
GSPM, called GSPM condition, by generalizing the S PM-condition.

Lemma 4. A unimodal sequence a of n is the form of a configuration of GSPM (n)
if and only if a has a decomposition a = (a<;,a>;) where a<; and a>; are two
partitions satisfying SPM condition.

Proof. Let a be a unimodal sequence satistying GSPM condition. We prove that
there exists a generalized unimodal sequence b of form a such that b € GSPM (n).
Let n — k be the weight of a~; and k£ be the weight of a>;. Because a; satisfies
SPM condition, then this partition is reachable from the partition (n — k) by
SPM rule. Similarly, a>; is reachable from the partition (k). If n — k < k, we
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choose b to be the generalized unimodal sequence of the form a and of position i,
then b is reachable from the generalized unimodal sequence of the form (n — k, k)
at position —1, which is reachable from the intimal (n) (at position 0). Otherwise,
we chose b of position ¢ — 1, and b is reachable from (n) also.

For the converse, we prove that GSPM condition is invariant under GSPM

transitions. Let a —— b be such a transition where a satisfies GSPM condition,
we need to prove that b also satisfies GSPM condition. Without loss of generality,
we can assume that this transition is a right one. There are two possible cases:
j>iorj<i. Ifj>i,itis easy to see that b is decomposed to (b<;,b>;) where
bei = a<; and b>; = a>y —,. Then b<; and b>; satisfy SPM condition, and
then b satisfies GSPM condition. Consider now the case when j < i. We have
aj+1 < aj — 2, 50 ajy1 is not in the partition a~;, which implies that j = ¢ — 1
and j + 1 = i. We take the decomposition (b<;_1,b>;—1) where b<;_1 = a<i—1
and b>;—1 = (ai—1 —1,a;+1,ai+1, @iy2,...). One can verify that bo;,_; and b>;_;
satisfy SPM condition, then b satisfies GSPM condition. g

For a unimodal sequence (resp. generalized unimodal sequence) a, a decomposi-
tion at position ¢ of a that satisfies GSPM condition is called a GSPM decompo-
sition. Note that a may have some different GSPM decompositions. For example,
if a = (1,3,4,5,5,2,1), a has three GSPM decompositions, at position 4, 5, 6.
But we can also claim that maxz(a;—1,a;) is always the height of a.

Having a criterion on the possible forms of a reachable configurations, we now
turn to their possible positions.

Let a be a generalized unimodal sequence satisfying GSPM condition, and let
a = (a<;,a>;) be a GSPM decomposition. We want to give a limit for the index i.
For this, we introduce the following function w(i,a):

Definition 5. Let a = (a<;,a>;) be a GSPM decomposition of a generalized
unimodal sequence a. If i > 0, we define f(i,a) the partition s = (so,81,...) of
mianimal weight such that s satisfies SPM condition and that s>; = a>;. Similarly,
if i < 0, we define f(i,a) the generalized unimodal sequence (...,s_2,5_1) of
minimal weight such that s<q satisfies SPM condition and that s<; = a<;. The
weight of f(i,a) is denoted by w(i,a).

We state the following condition.

Lemma 5. Let a be a generalized unimodal sequence, a belongs to GSPM (n) if
and only if a has a GSPM decomposition at a position i such that w(i,a) < n.

Proof. We prove for the case i > 0, the second case will be derived immediately.
To prove the necessary condition for elements of GSPM (n), it is sufficient to show
that if @ has a GSPM decomposition at position ¢ such that w(i,a) < n and if

a -1 b is a GSPM transition, then b has a similar decomposition too. By using
arguments in the proof of Lemma 3, it is easy to see that we can decompose b at
position 7 or ¢ — 1, in any case w(i,b) or w(i — 1,b) are still smaller than or equal
to w(i,a).
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Conversely, let us consider a generalized unimodal sequence a satisfying the
Lemma condition. Let ¢ = (to,¢1,...) be a sequence defined by: for all j > 1,
t; = s;, and tg = so + n — w(i,a). By hypothesis, to is greater than sg, and ¢
is a partition of n satisfying SPM condition (see Lemma 1), hence ¢ is reachable

from (n). It is easy to check that one can move grain of ¢ at position 0,1,...,i—1
from right to left, to obtain configuration a. So a is reachable from ¢ by GSPM
transition, and then reachable from (n). O

In order to give a complete characterization of configurations of GSPM (n), let
us calculate exactly the value w(i,a) here. For that, we need to define two new
notions. A step is a sequence of the form (p,p—1,...,¢+1,¢q) and a slide step is a
sequence of the form (p,p—1,...,¢+1,q,q), with p > ¢ > 0. By regarding SPM
condition, for a generalized unimodal sequence a with a GSPM decomposition at
a position ¢ > 0, one can chose f(i,a) as:

e if a>; begins with a slide step then (sg,...,s;) is a step, that means
fG,a) = (a; +1,...,a; +1,a>;). And w(i,a) = ia; + @ + 2551 45
e otherwise, (sg,...,s;) is a slide step, that means f(i,a) = (a; + i —

i(i

1,...,a; +1,a4,a>;). And w(i,a) = ia; + ;1) + ZjZi a;.
Similarly, in the case a has a GSPM decomposition at a position ¢ < 0, one can
calculate w(i,a) = —ia;—1 + @ + > ,<iaj if ac; begins with a slide step, and
w(i,a) = —ia;—1 + @ +>_,<; aj otherwise.

We give finally the following GSPM characterization.

Theorem 1. A generalized unimodal sequence a belongs to GSPM (n) if and only
if a has a GSPM decomposition at some position i such that:
e if i >0 then: ia; + @ + ZPi a; <n if a>; begins with a slide step, or
ia; + 00 4 D j>i @ < n otherwise;
o ifi <0 then: —ia;1+5+5
or —ia;_1 + i(igl) + Zj« a; < n otherwise.

a; < n if ac; begins with a slide step,

2.3. FIXED POINTS OF GSPM (n)

Regarding the configuration space GSPM (6) in Figure 3, one can see that the
poset GSPM (n) is not a lattice and it has several fixed points. In this section, we
will describe all its fixed points.

Let P be a fixed point of GSPM (n). By Proposition 1, P can be decomposed
as (P<i, P>;) where Po; and Ps; satisfy SPM condition. If Ps; (resp. P<;) is
not a SPM fixed point then one can apply on it a right (resp. left) transition.
Moreover, if |P; — P;,_1| > 2 then one grain can move from the higher column to
the lower column (between two columns ¢ and ¢ — 1). Hence, if P<; and P>; are
SPM fixed points and |P; — P;,—1| < 1, then there exist a fixed point of the same
form as P. For a complete characterizations about the form and the position of
fixed points we state following result.
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Theorem 2. A generalized unimodal sequence P is a fized point of GSPM (n) if
P has a GSPM decomposition at some position i such that:

— P.; and P>; are SPM fized points and |P; — P,_q1| < 1;

— the height k of P is either |\/n] or |\/n] —1; and

— the position i satisfies k + |i| < |v/2n].

Proof. Let k be the height of P. The GSPM fixed point of height k of smallest
sumis Pp = (1,2,...,,k—1,k, k—1,...2,1), and the GSPM fixed point of greatest
sum is P = (1,2,...,k — 1,k k, k,k,k—1,...,2,1) because of Lemma 1 and 4.
Their sum are respectively k? and k(k + 3). So the value of k may be |/n] or
Wil - 1.

Let us consider w(i, P) in the case ¢ > 0, the other case is similar. We have
w(i, Py) = $HZDEED 4 g and w(i, Py) = $HEHED 4 g And for all other
GSPM fixed point P, w(i, P1) < w(i, P) < w(i, Py). On the other hand, we know
that w(i, P) < n, then we prove that k +i < |v/2n]. In fact, if k +i > [v/2n],
then k +i > [v2n] +1 > v/2n. Moreover, because k > i then k > @ Hence

w(i, P) > w(i,P1) = W + k> (sqrt%;l)m + 24T2n — ) which is a
contradiction. Furthermore, from the above statement, we see that the maximal
value for k +1i is |v2n]. O

2.4. LONGEST AND SHORTEST CHAINS IN GSPM (n)

To calculate the length of a sequence of vertical rules, we introduce the vertical
energy of a generalized unimodal sequence a, denoted by Evy (a), as follows:

By(a) = alil. (2.1)
vi

Clearly, the vertical energy of the initial configuration (n) is equal to 0. Let us

consider the energy difference Ey (b) — Ey (a) for a vertical transition a —— b. If
this transition is a right transition and ¢ > 0 or if this transition is a left one and
i <0, we have Ey(b) — Ey(a) = 1. In other case (a right transition at a negative
position i or a left transition at a positive position i), we have Ey (b) — Ey (a) = —1

Therefore, a shortest chain in GSPM (n) is a chain from (n) to a fixed point of
smallest vertical energy which contains only transitions of the first type. For that,
we can choose a fixed point of center 0.

On the other hand, a longest chain contains a maximum of transitions of the
second type. One of these chains can be chosen from (n) to a fixed point P =
(P-;, P>;) of maximal distance i = [v/2n| — |\/n], via the partition f(i, P) (see
Lem. 5).

2.5. THE STRUCTURE OF THE GLp MODEL

One can now ask about configurations of the general model GLp(n). As for
the classical model Lp (all partitions of n are reachable in Lg(n) model), and the
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above properties of GSPM, we establish similar properties for GLp. The result

on the form of reachable configuration GLp(n) is straightforward:

Lemma 6. Every unimodal sequence can be the form of a configuration of GLg(n).
We give now the characterization for position of elements of GLg(n).

Proposition 1. A generalized unimodal sequence a belongs to GLp(n) if and

only if:

c(a) - h(a) < Z a; if ¢c(a) >0

i<c(a)

(—c(a) - h(a) < Y a if ¢(a) < 0.

i>c(a)

or

Proof. Suppose that ¢(a) > 0. Similarly to Lemma 5, let us consider the partition
L(a) = (lo,l1,...) such lop = {1 = ...lc = h and for all j > ¢, I; = a;, where
h = h(a) and ¢ = ¢(a). Let w(a) be the weight of L(a). One can state that a
belongs to GLp(n) if and only if n > w(a). Which implies the result.

The proof is similar for the case c¢(a) < 0. O

As for the fixed points of GLg(n), the situation is simpler. It is evident that
the form of all fixed points are (1,...1), and then their center are always their
first position. We have:

Corollary 1. GLg(n) has n fized points of form (1,...,1) where the first position
can take value from —n+1 to 0.

2.6. LONGEST AND SHORTEST CHAINS IN GLpg(n)

Observe that one needs one (vertical) transition to move one grain from position
0 to position 1 or —1. Otherwise, if ag > 2 and for |[i] < 2, one needs at least
a double transition to move one grain from position 0 to position i: a vertical
transition from position 0 to position 1 (resp. —1) and a horizontal transition from
position 1 (resp. —1) to position 4 if i > 2 (resp. if ¢ < —2). Therefore, a shortest
chain is composed of n — 4 double transitions to move one grain from position 0 to
position ¢ # 1, —1, one vertical transition to move one grain to position 1, another
to position —1, a horizontal transition from position 0 to move one grain of height
2 to a position ¢ and. So its length is equal to 3+ 2(n — 4) = 2n — 5.

For longest chain, we prove that the result in GL g is the same at in L. Let us
first consider a surjection ¢ from GLp(n) to Lp(n): for each unimodal sequence
a, p(a) is the partition obtained from a by resorting parts of a in decreasing order.
It is clear that ¢ is subjective. By the way, for any transition a — b in GLg, ¢(b)
is smaller than ¢(a) by dominance ordering, so ¢(b) can be obtained from ¢(a)
by a chain in Lp [7]. It implies that for every chain in GLg(n), one can find a
longer chain in Lp(n). Therefor the maximal length in GLp(n) is smaller than
that in Lp(n). However, one can consider an injection ¢ from Lp(n) to GLg(n)
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such that ¢(a) = a, so a chain in Lp(n) is also a chain in GLp(n). Hence, longest
chains in GLp(n) is longest chains in Li(n). For more detail on longest chains in
Lp(n), one can see the result of Greene and Kleitmann [14].

3. UNIMODAL SEQUENCES MODEL

In this section, we define a discrete model, induced from GL g, which generates
each unimodal sequence exactly once. We then give combinatorial properties and
lattice structure of this model. Note that, different from the usual definition of
unimodal sequence (whose the first position is 0), in this section, we call a unimodal
sequence a generalized unimodal sequence of center 0.

3.1. THE MODEL

As one can see from the above section, in GLg(n), there are many configurations
(generalized unimodal sequences) of the same form; in other words, a unimodal
sequence may “occur” at different positions. The purpose of this section is to
construct a model where every configurations are of center 0, so that its they
“occur” at most once. This model is an induced model of GLp model by adding
the following condition: ag > a; and ag > a_1. For further detail, all transitions
rest the same transitions as in GLp except at position 0. At this position, we have
the following possible transitions:

aL(...,aofl,alJrl,...) ifag > a1 +2,a0 >a_1+1

0
a— (...,a0—1l,a1,...,ak-1,ar+1,...)
ifag=a1+1=...=ar_1+1=ap+2,a0 >a_1+1

a-L (a1 +1la0—1,..)ifag>a+1,a0 > a1 +2

0
a— (...,a—p+ 1,0 p41,...,a-1,a0 — 1,...)

ifagp—1l=a1+1=...=app1+1=a_r+2,a0 > ay.

Let us call this induced model the Unimodal Sequences Model and denote it by
USM. The configuration space, i.e. the set of all reachable configurations from
the initial configuration (n), is denoted by USM(n). Just as in above section,
USM(n) is a poset with partial order b <ygps a if b is reachable from a. We
are now going to represent this order combinatorically, that means an order over
unimodal sequences. To do that, let us first give some notations: for a unimodal
sequence a and for all positive integer i, the suffix sum of a at position ¢ is A; =
> j>; @; and at position —i is A_; = >, ,a;. We define dominance ordering
<dom as follows:

a >g4om b if and only if for all integer i # 0, A; < B;,

(it is easy too see that this is an order relation with the maximum (n)).
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FIGURE 4. The poset USM (6), its fixed points are bordered by a circle.

Lemma 7. Let a and b be two unimodal sequences, then b <gom a if and only if
b <yswm a.

Proof. Tt is evident to see that if b is obtained from a by a transition, then b <g,,, @,
so b <ygam a implies b <gom a.

Now, suppose that b <j,,m a, we want to prove that b <ygas a. It is sufficient
to find a unimodal sequence ¢ such that a — ¢ by USM transition and ¢ > 4o, b.

Let us consider the case a>o # b>o. Note that ap+ 41 =n—A_; >n—-B_; =
by + B;. Hence the partition a>q is greater than the partition b>o by dominance
ordering. So one can apply a transition at one position j > 0 of a to obtain
a new unimodal sequence ¢, and this unimodal sequence is still greater than b
by dominance ordering. The only inconvenient case is when one need to apply
a transition at position 0 of a but ag = a_1 + 1. In this case, by < ag, then
b_1 < by <a_i1. Let k be the greatest positive integer such that a_; = a_;. Let
—I be the first position that one grain of a can move from the position —k to. We
have A_; < B_i,then A_, < B_;, A_; < B_y, it implies that C_; < B_; and for
all 7, C; < B;. So c satisfies our purpose.

In the case a>¢ = b>(, we have a<y # b<o, the result is proved by the same
way. O

Note that the initial unimodal sequence (n) is greatest by dominance ordering,
so using this Lemma, we conclude that every unimodal sequence is reachable from
this initial one. We have proved the following.

Theorem 3. The configuration space USM (n) is a poset of all unimodal sequences
of center O where b is reachable from a if and only if b <gom a.
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Due from this Theorem, from now on, we means dominance ordering while
saying order between unimodal sequences, or between partitions.

An example of USM (n) is given in Figure 4. Although this poset has no lattice
structure, we will prove that its structure is in fact a sup semilattice (Corollary 5).
Recall that a poset is a sup semilattice if every pair of its elements has a supremum.

First of all, let us prove a result on the supremum of two partitions:

Lemma 8. Let a = (ag,as,...) and b = (bo,b1,...) be two partitions of n. Let
¢ = (cg,c1y...) is the supremum of a and b. Then co = maz(ag, bp).

Proof. Keep in mind the notation of A4;. In [7,16], the authors gave formula for
the infimum of two partitions, but not its supremum. But, using the symmetric
structure of Brylawski’s lattice, one can define also the supremum. For a given
partition a of n, the dual (or conjugate) partition a* = (ag,af,...) is defined as
al = [{a; > i+ 1}. The maximum part ap of a is nothing but the number of
parts of a*. Let d be the infimum of ¢* and b*, then d = ¢*. Hence ¢y is the
number of parts of d. Let k be the maximum of number of parts of a* and the
number of parts of b*. For j > k, max(A;f,B;) = 0, and then D} = 0; and
D; = max(Aj, Bf) # 0, so di, # 0, and the number of parts of d* is k. That
means cg = k, which is the maximum of ag and bg. O

To study the strong structure of USM (n), we will prove that it is an union of
lattices. To achieve this, we first give the description of its fixed points.

Corollary 2. In poset USM (n), there are n — 2 fized points of the form
Pe=(1,...,1,2,1,...,1),

consisting of k entries 1 with 1 < k <n—2, followed by a 2, and n —2 — k entries
1 again; and another fized point Py = (1,...1).

Foreachk =0,1,...,n—2, let I = [(n), Px] be the set of all unimodal sequences
which are greater than or equal to P. Note that if £ = 0, the interval Ij is nothing
but the Brylawski’s lattice Lg(n), and that for all k > 1:

I, = {a such that A; <n—2—Fkand A_; <k}.

Theorem 4. For each 0 < k < n — 2, the interval I} is a lattice.

Proof. We just need to prove the statement for £k > 1. Given two unimodal
sequences a and b of I, we will construct their infimum c. The idea is to define
a unimodal sequence ¢ such that C; = max(A4;, By), C—1 = max(A_;,B_1), and
cozn—Cl—C,l.

First of all, put ¢g =n — C; — C_-1. We now establish ¢>; and c<o by noting
that ¢o must satisfy: c_1 < ¢ > ¢1).

Let us consider two partitions: (a1, as,...) — partition of Ay, and (b1, ba,...)
— partition of By. Let (dy,da,...,) be the supremum of these two partitions by
dominance ordering. So, we have: dy + d2 + ... = max(A;, B1) = C1, and for all
1> 0, D; = maX(AZ-,BZ-).
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If dy < ¢p, we can take (cq,ca,...) = (d1,da,...).
In the case d; > cg, we consider the following set

S ={s=(s1,82,...) || sisa partition of Cq, such that s; < ¢y and s < d}.

Because the set of all partitions of an integer ordered by dominance ordering is
a lattice, so there exist a supremum for set S, and we take (¢, ca,...) to be this
supremum. By using Lemma 8, we have ¢; is smaller than or equal to ¢g.

The partition (c_1,c—_2,...) is defined in the same way by noting that c_1 < ¢g.

The sequence ¢ defined as above is a clearly an element of I; and c is the
infimum of @ and b (it is easy to verify that if ¢ is smaller than a and b then ¢/
is smaller than ¢ by <ygas). The interval Ij, which has a greatest element (n)
and which is closed to the operation infimum, is then a lattice. This proves the
Theorem. 0

Remark 1. The infimum of two elements a and b of Iy is defined independently
of k. That means that if a and b belong to Ij, and to I, both, then infr, (a,b) is
the same as infr,(a,b). So we can define inf(a,b) in USM(n) the infimum of a
and b in a certain Iy if a,b € Iy,.

Corollary 3. For two unimodal sequences a and b, its infimum in USM (n) exists
if and only if either Ay = B_1 =0 or (A_1+ By <n and Ay + B_1 <n).

Proof. We claim that a and b has an infimum if and only if they belong to the
same [}, for some k > 0. In fact if ¢ is the infimum of a and b, and ¢ belongs to I
then a and b belong to I too. Conversely, if a and b belong to the same [y, then
its infimum exists by Theorem 4.

Finally, the case Iy corresponds to the condition that A_; = 0 and B_; = 0.
Otherwise, a € I if and only if Ay <n—-2—kand Ay <k,ie A <k<
n—2—A1. So a and b belong to the same I}, for some k if and only if A_1+B; <n
and A1 + B_1 <n. O

Theorem 4 implies also the following result on the structure of the poset USM (n).
Corollary 4. The poset USM (n) is a sup semilattice.

Proof. Let a and b be two unimodal sequences, we prove by contradiction that
sup(a,b) exists. Assume that there exists (at least) two minimal elements of
USM (n) which are greater than a and b, say ¢ and d. Let Py be a fixed point
smaller than a, we have ¢,d € Ij, it implies that there exists e = inf(c,d). The
unimodal sequence e is greater than a and b, and smaller than ¢ and d, which is a
contradiction. O

To give a lattice structure over the set of all unimodal sequences, we introduce

the poset USM (n) obtained from USM (n) by adding order relations as follows:
for all 1 < k <n — 2, we define that Pj is greater than F,.

Corollary 5. USM (n) has a lattice structure.
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Proof. The supremum of two elements is already defined. The infimum of two
unimodal sequences a and b is defined as follows: if there exists k such that
a,b € I, then inf(a, b) is defined as in Theorem 4, else inf(a,b) = F. a

And bellows is the relationship between the initial Brylawski’s lattice and our

lattice USM (n)

Corollary 6. For all integer n, Lp(n) is sub-lattice of USM (n).
Proof. Brylawski’s lattice Lp(n) is nothing but the interval Iy. O

At the end, by applying the same argument as in Section 2, one can see that
the longest chains in USM (n) are longest chains in Lp(n).

4. CONCLUSION

In this paper, we have defined a natural generalization of two classical discrete
models SPM and Lp and studied their structure. It seems that among many
generalizations of SPM model, our generalization is one of the most natural and
this gives a strong structure order. We then introduced the dominance ordering
and its lattice structure over the set of all unimodal sequences, an important
combinatorial object. We believe that this order is an interesting and meaningful
extension of the lattice of partitions, and we hope that some work will be done to
extent the classical results to this case.

Note added

After this paper was ready for publication we have learned of reference [10],
where the authors give independent proofs for similar results of Lemma 4 and
Theorem 2, using a different method.
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