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A NOTE ON DUAL APPROXIMATION ALGORITHMS
FOR CLASS CONSTRAINED BIN PACKING PROBLEMS *

EpuarDO C. XAVIER! AND FLAVIO KEIDI MIYAZAWA !

Abstract. In this paper we present a dual approximation scheme for
the class constrained shelf bin packing problem. In this problem, we
are given bins of capacity 1, and n items of @ different classes, each
item e with class c. and size s.. The problem is to pack the items into
bins, such that two items of different classes packed in a same bin must
be in different shelves. Items in a same shelf are packed consecutively.
Moreover, items in consecutive shelves must be separated by shelf divi-
sors of size d. In a shelf bin packing problem, we have to obtain a shelf
packing such that the total size of items and shelf divisors in any bin
is at most 1. A dual approximation scheme must obtain a shelf pack-
ing of all items into N bins, such that, the total size of all items and
shelf divisors packed in any bin is at most 1 + ¢ for a given £ > 0 and
N is the number of bins used in an optimum shelf bin packing prob-
lem. Shelf divisors are used to avoid contact between items of different
classes and can hold a set of items until a maximum given weight. We
also present a dual approximation scheme for the class constrained bin
packing problem. In this problem, there is no use of shelf divisors, but
each bin uses at most C different classes.

Mathematics Subject Classification. 68W25.

1. INTRODUCTION

In this paper we study class constrained bin packing problems, that are gen-
eralizations of the well-known NP-hard bin packing problem. We first consider
the class constrained shelf bin packing (CCSBP) problem. In this problem we are
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given a tuple I = (L, s,¢,Q,d,A), where L = (1,...,n) is a list of n items, each
item e € L with size 0 < s, < 1 and class ¢, € {1,...,Q}, d is the size of a shelf
division, A is the maximum size of a shelf and the bins size is 1.

Given a list or set of items S we denote by s(5) the total size of items in S, i.e.
S(S) = ZeES Se-

A shelf packing P of an instance I for the CCSBP problem is a packing of
the items in a set of bins P = {Py,..., Py}, where the items packed in a bin
P; € P are partitioned into shelves {S,..., S} } such that for each shelf S} we
have s(S}) < A, all items in S} are of the same class and > 7", (s(S}) +d) < 1.
The problem is to find a shelf packing that uses the minimum number of bins.
The problem applies when some items cannot be stored in a same shelf (like foods
and chemical products) and therefore, they must be separated by shelf divisors.

We also consider the class constrained bin packing problem, which we denote by
CCBP. In this problem we are given a tuple I = (L, s, ¢, C, Q) where L = (1,...,n)
is a list of n items, each item e € L with size 0 < s, < 1 and class ¢, € {1,...,Q},
and a set of bins, each one with capacity 1 and C' compartments. A packing for
instance I is a set of bins P = {P,..., P;} such that the number of different
classes of items packed in each bin P; is at most C and the total items size in each
bin is at most 1. The problem is to find a packing of instance I that uses the
minimum number of bins.

In both problems we assume that (), the number of different classes in the input
instance, is bounded by a constant. The bin packing problem is a particular case
of CCBP and CCSBP when there is only one class, d = 0 and A = 1. In Figure 1
we present an example of the two types of packings considered.

Given an algorithm A for the CCBP or CCSBP problem and an instance I, we
denote by A(I) the number of bins used by the algorithm to pack this instance.
We denote by OPT(I) the number of bins used by an optimum solution to pack
the instance I. In both notations the problem considered will be clear from the
context. Given an integer ¢, we denote by [t] the set {1,...,¢}.

In [5], Hochbaum and Shmoys presented the concept of dual approximation
algorithms where one has to find an infeasible optimal solution, and the quality of
the algorithm is measured by how infeasible is the generated solution. There are
some cases where the restrictions of the problem are flexible in practice and the
concept of dual approximation algorithms can be applied.

A dual polynomial time approximation scheme (dual PTAS) for the CCSBP
problem is an algorithm that, for all instances I, produces solutions that uses at
most OPT(I) bins, each bin with size at most (1 + O(g)) and each shelf of the
bin with size at most (1 + O(e))A. A dual PTAS for the CCBP problem is an
algorithm that, for all instances I, it produces solutions that uses at most OPT([)
bins, each bin with size at most (1 + O(¢)). In both cases ¢ is a fixed parameter
given to the algorithm.

Woeginger [16] presented general properties in order to guarantee the existence
of approximation schemes by dynamic programming algorithms for some problems.
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FIGURE 1. In this example we have three classes of items repre-
sented by the different shapes. The first packing is a solution for
the CCSBP problem where we consider that A = 3. The second
packing is a solution for the CCBP problem where we consider
that C' = 2. Notice that with C' = 2 we can not pack the item of
size 1 of the third class in the first bin, although there is room
for it.

Packing problems with class constraints have many applications in multimedia
storage systems, resource allocation [3,4,8,11,13-15,17,19] and in operations re-
search like manufacturing systems [1,7,10]. The CCSBP problem appears in the
iron and steel industry [2,6,9,18,20].

The CCSBP problem admits an asymptotic polynomial time approximation
scheme [20]. A knapsack version of this problem also admits a PTAS [18]. This
paper is the first one to present a dual PTAS for the CCSBP problem.

We also present a dual PTAS for the CCBP problem. Notice that a dual
approximation scheme for the CCBP problem was first presented by Shachnai
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and Tamir [12] also considering that the number of different classes in the input
instance is bounded by a constant. The complexity time of their algorithm is
O(n16Q/ 52). In their paper they presented a dual PTAS using techniques that
group small items together. They also said: “We cannot adopt the technique
commonly used for packing, where we first consider large items and then add the
small items”. In this paper we show how to adopt the traditional technique and
obtain a dual PTAS with an easier analysis, also considering that @ is a fixed
constant. Although the easier analysis, the complexity time of our algorithm is
O(TnO(QQQ(IOgHE 1/5)1/5)), where T is the complexity time to solve a linear program
(see Sect. 3).

In Section 2 we present a dual PTAS for the CCSBP problem using traditional
techniques, and linear programming to pack small items. In Section 3 we use these
ideas to obtain a dual PTAS for the CCBP problem, leading to an algorithm with
an easier analysis than the one presented by Shachnai and Tamir [12].

2. A puaL PTAS ror THE CCSBP PROBLEM

In this section we present a dual PTAS for the CCSBP problem.

Let I = (L,s,c,Q,d,A) be an instance for the CCSBP problem. We first
present a dual PTAS for the case where the maximum size of a shelf plus the shelf
divisor satisfy A +d <e.

Hochbaum and Shmoys [5] presented a dual PTAS, which we denote by Ags,
for the classical bin packing problem.

Consider an algorithm that constructs a list of shelves S in a straightforward
manner: for each class, it packs the items of this class using the algorithm Agg
considering shelves as bins, each one with size A. Since the algorithm Agg is
a dual PTAS the number of generated shelves by the algorithm is at most the
number of shelves used in any optimal solution, which we denote by OPT(I)s.
Moreover each generated shelf has size at most (1 + ¢)A.

Given the list of shelves S consider another algorithm that packs the shelves in
the following manner: it packs shelves (including the shelf divisors) in a bin until
for the first time the total size of packed shelves becomes greater than 1. Then it
proceeds with a new bin. It is easy to prove the following result for this algorithm.

Theorem 2.1. The presented algorithm is a dual PTAS for the CCSBP problem
restricted to instances where A +d < e.

Proof. Notice that the algorithm packs all items in at most OPT(I)s shelves and
each shelf has its size increased by a factor of at most €. The total size of items
and shelf divisors that the algorithm has to pack into bins is

s(L) + dOPT(I)s < OPT(I).

Since the algorithm generated bins with size greater than 1, the algorithm packs
all shelves in at most OPT(I) bins. Since each shelf has size at most e(1+4¢) < 2¢,
each generated bin has size at most (1 4 2¢). O
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We now study the case where A +d > «¢.
Notice that the maximum number of shelves that can be packed in a bin when

the shelves are completely filled up to A exactly, is at most {GH-LAJ’ which is at

most % Another shelf, not completely filled, can also be packed in the bin. This
way, the maximum total size of items that can be packed in a bin is at most
A(1/e+1). Then if there is any bin with more than 2 + 2 shelves of a same class,
it has at least two shelves of this class with total items size at most A. In this case,
these two shelves can be combined into only one shelf. Without loss of generality
we assume that each bin in a solution for the CCSBP problem, contains at most
% + 2 shelves of a same class.

Throughout the remaining of this section, we assume that s, for each e € L, d,
A and the size of the bins are rescaled, such that A = 1. We denote by B the new
size of the bins.

Now we can apply the standard technique of rounding big items with an enu-
meration of packings for them. Then we pack the small items using linear pro-
gramming to get the PTAS. Let L; be the list of items with size greater than or
equal to €2 (big items) and let Lg be the remaining items in L (small items). We
round down each item in L; as follows: each item e € L; with size in the interval
[€2(1 + €)%, e%(1 + €%)™!) has its size rounded down to e%(1 + %)%, for i > 0.
The rounded items have at most M = [log; .2y 1/e?] different sizes. The list of
rounded items is denoted by L...

We can generate a set of packings for the rounded big items in polynomial time
as the next lemma guarantees. In the lemma we use the fact that the number of
subsets containing at most p items from a set of n items is (”;p).

Lemma 2.2. Let I' = (L,,s,¢,Q,d,A = 1,B) be an instance of the CCSBP
problem considering the list of rounded big items where the number of distinct
items sizes in L, is at most a constant M, the number of different classes is
bounded by a constant Q, and each item e € L, has size s, > €2. Then there exists
a polynomial time algorithm that generates all possible shelf packings of L., with
at most % + 2 shelves of a same class in each bin. Moreover, each shelf in each
generated packing has a sign that indicates if small items can or cannot be packed
wm it

Proof. The maximum number of big items that can be packed in a shelf is bounded
by p = 1/¢2. Given a class, the number of different shelves configurations is
bounded by ' = (”;M ), including the empty shelf that can be used later to pack
only small items. For each shelf we have the possibility of packing or not small
items, then the number of shelves configurations is bounded by 2r’. The number
of different shelves configurations can then be bounded by r = Q2r’. Since the
number of shelves packed in a bin is bounded by ¢ = Q(% + 2), the number of
different bins configurations is bounded by u = (qu”). Notice that u is a (large)
constant since all the values p, ¢, r and u depend only on e,  and M which are
constants.
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Therefore, the number of all feasible packings is bounded by ("Jr“), which is

n
bounded by (n + w)*, which in turn is polynomial in n where

u=0((Q/e)( @), O

We will denote by ALL the algorithm that generates all packings of the list L,
according to Lemma 2.2. The algorithm ALL generates a set, which we denote
by P, of all possible packings of the rounded big items.

Consider an optimal packing O for the original instance I. Remove the small
items from the packing O and round down the big items according to the rounding
procedure. Notice that the obtained packing denoted by O’ belongs to the set IP.

For each packing in P, it is then generated new packings where the small items
are packed. Denote by Small the algorithm that packs small items in each of the
packings in P.

Let P = {P1,..., Py} € P be a shelf packing of a list of items L, and suppose
we have to pack a list Ly of small items into P. The packing of the small items is
obtained from a solution of a linear program. Let N; C {1,...,Q} be the set of
possible classes that are packed in the bin P; and let Sic, ..., Sﬁfic be the shelves
of class ¢ € N; in the bin P; of the packing P. For each shelf S;C, define a non-
negative variable :c;C The variable :E§° indicates the total size of small items of
class ¢ that is to be packed in the shelf S;C. Note that here we only consider the
shelves that can be used to pack small items. Denote by s(S) the total size of
big items already packed in the shelf S;C. Consider the following linear program
denoted by LPS1:

k Nic
) Y
. ) i=1 ceN,; j=1
s(S) +aif <A Vielkl, ce N, jelni, (1)

Nic

S s(SF) +a+d) <B Vielk], (2)  (Lpst)
ceEN; j=1

k  nic

ZZ% <s(Lg)  VeelQ], (3)

:L';c >0 Vielk], ce[Ni], j€lni (4)

where L¢ is the set of small items of class ¢ in L.

The constraint (1) guarantees that the amount of space used in each shelf is
at most 1 and constraint (2) guarantees that the amount of space used in each
bin is at most B. The constraint (3) guarantees that variables xéc are not greater
than the total size of small items. The number of variables in LPS1 is bounded
by O(n@2/e) and the number of constraints is bounded by O(nQ2/c +n + Q).

Notice that since O’ € P at least this packing has a solution in LPS1 where all
small items can be packed.
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ALGORITHM Dual-Pack(])

Input: Instance I = (L, s,¢,Q,d, A, B) where the maximum capacity of a shelf is A = 1.
Output: A shelf packing P.

Subroutines: Algorithms ALL and Small.

1.  Partition L into a list L, containing items with size €? (big items) and Ls with
the remaining items (small items). _ _
2.  For each item e in L; with size in [¢?(1 4 €?)",e?(1 +€%)"™!), round down its size

to e2(1 4 %)
Let L, be the list of the rounded big items.
Let P be the set of all possible packings obtained with the algorithm ALL over
the instance I = (Lr, s,¢, Q,d, A, B).
For each packing P € P do
Find a solution z* for LPS1 considering the packing P.
Pack the items in L, into P using algorithm Small.
Round up the big items in P to their original sizes.
Return the packing P € P with the minimum number of bins and where all items
are packed.

Ll

SRR

FI1GURE 2. The dual-PTAS algorithm.

Now we have a description of the algorithm Small: given a packing P € P, and
a list Ly of small items, the algorithm first solves the linear program LPS1, and
then packs small items in the following way: for each variable acéc the algorithm
packs, while possible, small items of class ¢ into shelf S}C of the bin P;, so that the
total size of the packed small items is at most xé‘ +e2.

A complete description of the dual-PTAS algorithm that generates the complete
packing is given in Figure 2. The algorithm returns a packing that uses the
minimum number of bins and that packs all items in bins.

Since () and ¢ are constants, the size of P is bounded by a polynomial in n.
Since the complexity time to solve LPS1 is polynomial, the presented algorithm
has a polynomial time complexity. Now we conclude with the following theorem.

Theorem 2.3. The presented algorithm is a dual PTAS for the CCSBP problem
when A +d > .

Proof. Let O = {Pf,...,P¥} be an optimal packing for an instance I of the
CCSBP problem (notice that OPT(I) = k). Round down the big items according
to the rounding we have presented and remove the small items from O obtaining
another packing O’. Clearly O’ € P and has an indication of the shelves where
small items were packed.

Notice that there is enough room to pack all small items in O’. The algorithm
Small packs all small items in O’ in such a way that each shelf has its size increased
by at most 2.
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When the algorithm considers the big items with their original sizes, the size in
each shelf of O’ increases by at most 2 again.

Since the maximum number of shelves in a bin is (% + 2)Q, then the total size
of each bin is increased to at most B+ (2 +2)Q2e? < (1 + (2 +2)Q2:%)B. O

3. A puaL PTAS ror THE CCBP PROBLEM

In this section we present a dual PTAS for the CCBP problem using the same
ideas of the previous section leading to an algorithm with an easier analysis than
the one presented by Shachnai and Tamir [12].

Let Ly be the set of items in L with size greater than or equal to e (big items)
and let Lg be the remaining items in L (small items). We round down each item
in L, as follows: each item e € L;, with size in the interval [g(1 + ¢)%, &(1 + ¢)*+1)
has its size rounded down to (1 +¢)?, for i > 0. The rounded items have at most
M = [log .y 1/e] different sizes. The list of rounded items is denoted by L.

It is not hard to prove the following lemma that is similar to Lemma 2.2.

Lemma 3.1. Let I = (L,,s,¢,C,Q) be an instance of the CCBP problem after
the rounding step, where the number of distinct items sizes in L, is at most a
constant M, the number of different classes is bounded by a constant @), and each
item e € L, has size s, > €. Then there exists a polynomial time algorithm that
generates all possible packings of L,.. Moreover, each bin of each generated packing
has an indication of the possible classes that may be used to pack the small items.

Proof. The number of big items that can be packed in a bin is bounded by p = 1/e.
The number of distinct types of big items is bounded by M(@Q. The number of
different configurations of bins is bounded by 7’ = (p 'HV; Q'H), including the empty
bin. If we also consider additional classes to pack small items in each configuration,
the number of different configurations is bounded by r = /2%, which is a constant.
Notice that we only consider configurations that satisfy the class constraints.
The number of all feasible packings is bounded by ("M), which is bounded by

n

(n+r)", which in turn is polynomial in n where r = O(29Q(log,, . 1/¢)*/¢). O

The algorithm generates a set, which we denote by P, of all possible packings
of the rounded big items. For each one of these packings the algorithm packs the
small items in the following way: let P = {P1,..., Py} be a packing of the list
of items L, and suppose we have to pack a list L; of small items, with size at
most €, into P. The packing of the small items is obtained from a solution of
a linear program. Let N; C {1,...,Q} be the set of possible classes that may
be used to pack the small items in the bin P; of the packing P. For each class
¢ € N;, define a non-negative variable . The variable x% indicates the total size
of small items of class ¢ to be packed in the bin P;. Denote by s(FP;) the total size
of big items already packed in the bin P;. Consider the following linear program
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denoted by LPS2:

k
i
rnaxE E x,

i=1 ceN;
s(Py) + c%\;i x, <1 Vie k] (1) (LPS2)
k
>_w <s(L) Veelql, (2)
T >0 Vielk,ce[N], (3)

where L¢ is the set of small items of class ¢ in L.

The constraint (1) guarantees that the items packed in each bin satisfy its
capacities and constraint (2) guarantees that the total use of variables x is not
greater than the total size of small items for each class c. In this linear program, the
number of variables is bounded by n@) and the number of constraints is bounded
by n + Q.

Given a packing P, and a list Lg of small items, the algorithm first solves the
linear program LPS2, and then packs small items in the following way: for each
variable z¢, it packs, while possible, the small items of class ¢ into the bin P;, so
that the total size of the packed small items is at most z% + ¢.

We then consider the original size of the big items in each of the generated
packings. In this case, the size of each bin increases by at most a factor of ¢.

The algorithm returns a packing that uses the minimum number of bins and
that packs all items in bins of size at most (1+ (C'+1)e). The number of packings
in the set P can be bounded by 77 = O(nQQQ(lOgHE 1/5)1/6). Let T5 be the worst
complexity time to solve a linear program LPS2. The complexity time of the
entire algorithm can be bounded by O(7T17Tz), which is polynomial since @ and &
are constants and the complexity time T5 is polynomial.

We conclude with the following theorem.

Theorem 3.2. The presented algorithm is a dual PTAS for the CCBP problem.

Proof. Let O = {Py, ..., P}} be an optimal packing for an instance I of the CCBP
problem. Round down the big items according to the rounding we have presented
and remove the small items of O obtaining another packing O’. Clearly O’ € P
and has an indication of the classes of small items that were packed on it. There
is enough room to pack all small items in O’. So the variables & sums to the total
size of small items. During the packing of the small items we increase the size of
each bin by at most ¢ for each class in the bin. When the algorithm packs the
big items with their original size, the size of each bin in O increases by at most €
again. So the total size of each bin is increased to at most (1 + (C + 1)e). O
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