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Abstract

Episturmian morphisms constitute a powerful tool to study episturmian words. Indeed,
any episturmian word can be infinitely decomposed over the set of pure episturmian morphisms.
Thus, an episturmian word can be defined by one of its morphic decompositions or, equivalently,
by a certain directive word. Here we characterize pairs of words directing a common episturmian
word. We also propose a way to uniquely define any episturmian word through a normalization
of its directive words. As a consequence of these results, we characterize episturmian words
having a unique directive word.

Keywords: episturmian word; Sturmian word; Arnoux-Rauzy sequence; episturmian mor-
phism; directive word.
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1 Introduction

Since the seminal works of Morse and Hedlund [21], Sturmian words have been widely studied
and their beautiful properties are related to many fields like Number Theory, Geometry, Dynam-
ical Systems, and Combinatorics on Words (see [1, 20, 23, 3] for recent surveys). These infinite
words, which are defined on a binary alphabet, have numerous equivalent definitions and charac-
terizations. Nowadays most works deal with generalizations of Sturmian words to arbitrary finite
alphabets. Two very interesting generalizations are very close: the Arnoux-Rauzy sequences (e.g.,
see [2, 14, 23, 30]) and episturmian words (e.g., see [5, 13, 15]). The first of these two families is a
particular subclass of the second one. More precisely, the family of episturmian words is composed
of the Arnoux-Rauzy sequences, images of the Arnoux-Rauzy sequences by episturmian morphisms,
and certain periodic infinite words. In the binary case, Arnoux-Rauzy sequences are exactly the
Sturmian words whereas episturmian words include all recurrent balanced words, that is, periodic
balanced words and Sturmian words (see [10, 22, 29] for recent results relating episturmian words
to the balanced property). See also [9] for a recent survey on episturmian theory.

Episturmian morphisms play a central role in the study of these words. Introduced first as a
generalization of Sturmian morphisms, Justin and Pirillo [13] showed that they are exactly the
morphisms that preserve the aperiodic episturmian words. They also proved that any episturmian
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word is the image of another episturmian word by some so-called pure episturmian morphism.
Even more, any episturmian word can be infinitely decomposed over the set of pure episturmian
morphisms. This last property allows an episturmian word to be defined by one of its morphic
decompositions or, equivalently, by a certain directive word, which is an infinite sequence of rules
for decomposing the given episturmian word by morphisms. In consequence, many properties of
episturmian words can be deduced from properties of episturmian morphisms. This approach is
used for instance in [4, 8, 16, 28, 29, 30] and of course in the papers of Justin et al. In Section 2,
we recall useful results on episturmian words and explain the vision of morphic decompositions and
directive words introduced by Justin and Pirillo in [13].

An episturmian word can have several directive words. The question: “When do two words
direct a common episturmian word?” was considered in [15]. Using a block-equivalence notion for
directive words, Justin and Pirillo provided several results to answer this question in most cases
(see Section 3). In Section 4, we state a complete result characterizing the form of words directing
a common episturmian word, without using block-equivalence.

In [4], Berthé, Holton, and Zamboni show that any Sturmian word has a unique directive word
with some particular properties. In [18], the second and third authors rephrased this result and
used it to characterize all quasiperiodic Sturmian words. In Section 5, we extend this result to all
episturmian words by introducing a way to normalize the directive words of an episturmian word so
that any episturmian word can be defined uniquely by its normalized directive word, defined by some
factor avoidance (Theorem 5.2). This result was previously presented at the Sixth International
Conference on Words [17] to characterize all quasiperiodic episturmian words (see also [11]).

As an application of the previous results, we end this paper with a characterization of episturmian
words having a unique directive word.

2 Episturmian words and morphisms

We assume the reader is familiar with combinatorics on words and morphisms (e.g., see [19, 20]).
In this section, we recall some basic definitions and properties relating to episturmian words which
are needed later in the paper. For the most part, we follow the notation and terminology of
[5, 13, 15, 10].

2.1 Notation and terminology

Let A denote a finite alphabet. A finite word over A is a finite sequence of letters from A. The
empty word ε is the empty sequence. Under the operation of concatenation, the set A∗ of all finite
words over A is a free monoid with identity element ε and set of generators A. The set of non-empty
words over A is the free semigroup A+ = A∗ \ {ε}.

Given a finite word w = x1x2 · · · xm ∈ A+ with each xi ∈ A, the length of w is |w| = m. The
length of the empty word is 0. By |w|a we denote the number of occurrences of the letter a in the
word w. If |w|a = 0, then w is said to be a-free. For any integer p ≥ 1, the p-th power of w is the
word wp obtained by concatenating p occurrences of w.

A (right) infinite word x is a sequence indexed by N
+ with values in A, i.e., x = x1x2x3 · · ·

with each xi ∈ A. The set of all infinite words over A is denoted by Aω. Given a non-empty finite
word v, we denote by vω the infinite word obtained by concatenating v with itself infinitely many
times. For easier reading, infinite words are hereafter typed in boldface to distinguish them from
finite words.

Given a set X of words, X∗ (resp. Xω) is the set of all finite (resp. infinite) words that can be
obtained by concatenating words of X. The empty word ε belongs to X∗.

A finite word w is a factor of a finite or infinite word z if z = uwv for some words u, v (where
v is infinite iff z is infinite). Further, w is called a prefix (resp. suffix ) of z if u = ε (resp. v = ε).
We use the notation p−1w (resp. ws−1) to indicate the removal of a prefix p (resp. suffix s) of the
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word w.
The alphabet of a word w, denoted by Alph(w) is the set of letters occurring in w, and if w is

infinite, we denote by Ult(w) the set of all letters occurring infinitely often in w.

2.2 Episturmian words

In this paper, our vision of episturmian words will be the characteristic property stated in The-
orem 2.1 below. Nevertheless, to give an idea of what an episturmian word is, let us give one of
the equivalent definitions of an episturmian word provided in [5]. Before doing so, we recall that a
factor u of an infinite word w ∈ Aω is right (resp. left) special if ua, ub (resp. au, bu) are factors
of w for some letters a, b ∈ A, a 6= b. We recall also that the reversal w̃ of a finite word w is its
mirror image: if w = x1 . . . xm−1xm, then w̃ = xmxm−1 · · · x1.

An infinite word t ∈ Aω is episturmian if its set of factors is closed under reversal and t has at
most one right (or equivalently left) special factor of each length. Moreover, an episturmian word
is standard if all of its left special factors are prefixes of it.

In the initiating paper [5], episturmian words were defined in two steps. Standard episturmian
words were first introduced and studied as a generalization of standard Sturmian words. (Note
that in the rest of this paper, we refer to a standard episturmian word as an epistandard word, for
simplicity). Then an episturmian word was defined as an infinite word having exactly the same set
of factors as some epistandard word.

Moreover, it was proved in [5] that any episturmian word is recurrent, that is, all of its factors
occur infinitely often (actually episturmian words are uniformly recurrent but this will not be
needed here). An ultimately periodic infinite word is a word that can be written as uvω = uvvv · · · ,
for some u, v ∈ A∗, v 6= ε. If u = ε, then such a word is periodic. Since they are recurrent, all
ultimately periodic episturmian words are periodic. Let us recall that an infinite word that is not
ultimately periodic is said to be aperiodic.

2.3 Episturmian morphisms

To study episturmian words, Justin and Pirillo [13] introduced episturmian morphisms. In partic-
ular they proved that these morphisms (defined below) are precisely the morphisms that preserve
the set of aperiodic episturmian words.

Let us recall that given an alphabet A, a morphism f on A is a map from A∗ to A∗ such
that f(uv) = f(u)f(v) for any words u, v over A. A morphism on A is entirely defined by the
images of letters in A. All morphisms considered in this paper will be non-erasing: the image of
any non-empty word is never empty. Hence the action of a morphism f on A∗ can be naturally
extended to infinite words; that is, if x = x1x2x3 · · · ∈ Aω, then f(x) = f(x1)f(x2)f(x3) · · · .

In what follows, we will denote the composition of morphisms by juxtaposition as for concate-
nation of words.

Episturmian morphisms are the compositions of the permutation morphisms (the morphisms f
such that f(A) = A) and the morphisms La and Ra where, for all a ∈ A:

La :

{
a 7→ a

b 7→ ab
, Ra :

{
a 7→ a

b 7→ ba
for all b 6= a in A.

Here we will work only on pure episturmian morphisms, i.e., morphisms obtained by composition
of elements of the sets:

LA = {La | a ∈ A} and RA = {Ra | a ∈ A}.

Note. In [13], the morphism La (resp. Ra) is denoted by ψa (resp. ψ̄a). We adopt the current
notation to emphasize the action of La (resp. Ra) when applied to a word, which consists in placing
an occurrence of the letter a on the left (resp. right) of each occurrence of any letter different from a.
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Epistandard morphisms are the morphisms obtained by concatenation of morphisms in LA and
permutations on A. Likewise, the pure episturmian morphisms (resp. pure epistandard morphisms)
are the morphisms obtained by concatenation of morphisms in LA ∪ RA (resp. in LA). Note that
the episturmian morphisms are exactly the Sturmian morphisms when A is a 2-letter alphabet.

All episturmian morphisms are injective on both finite and infinite words. The monoid of
episturmian morphisms is left cancellative (see [26, Lem. 7.2]) which means that for any episturmian
morphisms f, g, h, if fg = fh then g = h. Note that this fact, which is a by-product of the injectivity,
can also be seen as a consequence of the invertibility of these morphisms (see [7, 12, 26, 32]).

2.4 Morphic decomposition of episturmian words

Justin and Pirillo [13] proved the following insightful characterizations of epistandard and epis-
turmian words (see Theorem 2.1 below), which show that any episturmian word can be infinitely
decomposed over the set of pure episturmian morphisms.

The statement of Theorem 2.1 needs some extra definitions and notation.
First we define the following new alphabet, Ā = {x̄ | x ∈ A}. A letter x̄ is considered to be

x with spin R, whilst x itself has spin L. A finite or infinite word over A ∪ Ā is called a spinned
word. To ease the reading, we sometimes call a letter with spin L (resp. spin R) an L-spinned
(resp. R-spinned) letter. By extension, an L-spinned (resp. R-spinned) word is a word having only
letters with spin L (resp. spin R).

The opposite w̄ of a finite or infinite spinned word w is obtained from w by exchanging all spins
in w. For instance, if v = abā, then v̄ = āb̄a. When v ∈ A+, then its opposite v̄ ∈ Ā+ is an
R-spinned word and we set ε̄ = ε. Note that, given a finite or infinite word w = w1w2 . . . over
A, we sometimes denote w̆ = w̆1w̆2 · · · any spinned word such that w̆i = wi if w̆i has spin L and
w̆i = w̄i if w̆i has spin R. Such a word w̆ is called a spinned version of w.

Note. In Justin and Pirillo’s original papers, spins are 0 and 1 instead of L and R. It is convenient
here to change this vision of the spins because of the relationship with episturmian morphisms,
which we now recall.

For a ∈ A, let µa = La and µā = Ra. This operator µ can be naturally extended (as done in
[13]) to a morphism from the free monoid (A∪ Ā)∗ to a pure episturmian morphism: for a spinned
finite word w̆ = w̆1 . . . w̆n over A∪ Ā, µw̆ = µw̆1 . . . µw̆n

(µε is the identity morphism). We say that
the word w directs or is a directive word of the morphism µw. The following result extends the
notion of directive words to infinite episturmian words.

Theorem 2.1. [13]

i) An infinite word s ∈ Aω is epistandard if and only if there exist an infinite word ∆ =
x1x2x3 · · · over A and an infinite sequence (s(n))n≥0 of infinite words such that s(0) = s and
for all n ≥ 1, s(n−1) = Lxn(s

(n)).

ii) An infinite word t ∈ Aω is episturmian if and only if there exist a spinned infinite word
∆̆ = x̆1x̆2x̆3 · · · over A∪Ā and an infinite sequence (t(n))n≥0 of recurrent infinite words such
that t(0) = t and for all n ≥ 1, t(n−1) = µx̆n

(t(n)).

For any epistandard word (resp. episturmian word) t and L-spinned infinite word ∆
(resp. spinned infinite word ∆̆) satisfying the conditions of the above theorem, we say that ∆
(resp. ∆̆) is a (spinned) directive word for t or that t is directed by ∆ (resp. ∆̆). Notice that this
directive word is exactly the one that arises from the equivalent definition of epistandard words
that uses palindromic closure [5, 9, 13] and, in the binary case, it is related to the continued fraction
of the slope of the straight line represented by a standard word (see [20]). It follows immediately
from Theorem 2.1 that, with the notation of case ii), each t(n) is an episturmian word directed by
x̆n+1x̆n+2 · · ·
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The natural question: “Does any spinned infinite word direct a unique episturmian word?” is
answered in [13]:

Proposition 2.2. [13, Prop. 3.11]

1. Any spinned infinite word ∆̆ having infinitely many L-spinned letters directs a unique epis-
turmian word beginning with the left-most letter having spin L in ∆̆.

2. Any R-spinned infinite word ∆̆ directs exactly |Ult(∆)| episturmian words.

3. Let ∆̆ be an R-spinned infinite word, and let a be a letter such that ā ∈ Ult(∆̆). Then ∆̆
directs exactly one episturmian word starting with a.

Note. In [13], item 3 was stated in the more general case where ∆̆ is ultimately R-spinned. In this
case, ∆̆ still directs exactly one episturmian word for each letter ā in Ult(∆̆), but contrary to what
is written in [13], nothing can be said on its first letter.

As a consequence of the previous proposition and part i) of Theorem 2.1, any L-spinned infinite
word directs a unique epistandard word. The following important remark links the two parts of
Theorem 2.1.

Remark 2.3. [13] If ∆̆ is a spinned version of an L-spinned word ∆ and if t is an episturmian
word directed by ∆̆, then the set of factors of t is exactly the set of factors of the epistandard word
s directed by ∆.

Moreover (with the same notation as in the previous remark):

Remark 2.4. The episturmian word t is periodic if and only if the epistandard word s is periodic,
and this holds if and only if there is only one letter occurring infinitely often in ∆, that is, |Ult(∆)| =
1 (see [13, Prop. 2.9]). More precisely, a periodic episturmian word takes the form (µw̆(x))

ω for
some finite spinned word w̆ and letter x.

Note. Sturmian words are precisely the aperiodic episturmian words on a 2-letter alphabet.

When an episturmian word is aperiodic, we have the following fundamental link between the
words (t(n))n≥0 and the spinned infinite word ∆̆ occurring in Theorem 2.1: if an is the first let-
ter of t(n), then µx̆1...x̆n

(an) is a prefix of t and the sequence (µx̆1...x̆n
(an))n≥1 is not ultimately

constant (since ∆̆ is not ultimately constant), then t = limn→∞ µx̆1···x̆n
(an). This fact is a slight

generalization of a result of Risley and Zamboni [30, Prop. III.7] on S-adic representations for
characteristic Arnoux-Rauzy sequences. See also the recent paper [4] for S-adic representations of
Sturmian words. Note that S-adic dynamical systems were introduced by Ferenczi [6] as minimal
dynamical systems (e.g., see [23]) generated by a finite number of substitutions. In the case of
episturmian words, the notion itself is actually a reformulation of the well-known Rauzy rules, as
studied in [25].

To anticipate next sections, let us also observe:

Remark 2.5. [13] If an aperiodic episturmian word is directed by two spinned words ∆1 and ∆2,
then ∆1 and ∆2 are spinned versions of a common L-spinned word.

This is no longer true for periodic episturmian words; for instance abω and b̄aω direct the same
episturmian word (ab)ω = ababab · · · .

3 Known results on directive-equivalent words

We have just seen an example of a periodic episturmian word that is directed by two different
spinned infinite words. This situation holds also in the aperiodic case (see [13, 15]). For example,
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the Tribonacci word (or Rauzy word [24]) is directed by (abc)ω and also by (abc)nāb̄c̄(ab̄c̄)ω for each
n ≥ 0, as well as infinitely many other spinned words. More generally, by [13], any epistandard
word has a unique L-spinned directive word but also has other directive words (see also [15] and
Theorem 4.1).

We now consider in detail the following two questions: When do two finite spinned words direct
a common episturmian morphism? When do two spinned infinite words direct a common unique
episturmian word? We say that that two finite (resp. infinite) spinned words are directive-equivalent
words if they direct a common episturmian morphism (resp. a common episturmian word).

In Section 3.1, we recall the characterizations of directive-equivalent finite spinned words. In
Section 3.2, we recall known results about directive-equivalent infinite words. Section 4 will present
a new characterization of these words.

3.1 Finite directive-equivalent words: presentation versus block-equivalence

Generalizing a study of the monoid of Sturmian morphisms by Séébold [31], the third author
[26] answered the question: “When do two spinned finite words direct a common episturmian
morphism?” by giving a presentation of the monoid of episturmian morphisms. This result was
reformulated in [27] using another set of generators and it was independently and differently treated
in [15]. As a direct consequence, one can see that the monoid of pure epistandard morphisms is
a free monoid and one can obtain the following presentation of the monoid of pure episturmian
morphisms:

Theorem 3.1. (direct consequence of [27, Prop. 6.5]; reformulation of [15, Th. 2.2])
The monoid of pure episturmian morphisms with {Lα, Rα | α ∈ A} as a set of generators has

the following presentation:

Ra1Ra2 . . . RakLa1 = La1La2 . . . LakRa1

where k ≥ 1 is an integer and a1, . . . , ak ∈ A with a1 6= ai for all i, 2 ≤ i ≤ k.

This result means that two different compositions of morphisms in LA ∪ RA yield a common
pure episturmian morphism if and only if one composition can be deduced from the other one in
a rewriting system, called the block-equivalence in [15]. Although Theorem 3.1 allows us to show
that many properties of episturmian words are linked to properties of episturmian morphisms, it
will be convenient for us to have in mind the block-equivalence that we now recall.

A word of the form xvx, where x ∈ A and v ∈ (A \ {x})∗, is called a (x-based) block. A (x-
based) block-transformation is the replacement in a spinned word of an occurrence of xvx̄ (where
xvx is a block) by x̄v̄x or vice-versa. Two finite spinned words w, w′ are said to be block-equivalent
if we can pass from one to the other by a (possibly empty) chain of block-transformations, in
which case we write w ≡ w′. For example, b̄ābc̄bāc̄ and babcb̄āc̄ are block-equivalent because
b̄ābc̄bāc̄→ bab̄c̄bāc̄→ babcb̄āc̄ and vice-versa. The block-equivalence is an equivalence relation over
spinned words, and moreover one can observe that if w ≡ w′ then w and w′ are spinned versions of
a common word over A.

Theorem 3.1 can be reformulated in terms of block-equivalence:

Theorem 3.1. Let w, w′ be two spinned words over A∪Ā. Then µw = µw′ if and only if w ≡ w′.

3.2 Infinite directive-equivalent words: previous results

The question: “When do two spinned infinite words direct a common unique episturmian word?”
was tackled by Justin and Pirillo in [15] for bi-infinite episturmian words, that is, episturmian words
with letters indexed by Z (and not by N as considered until now). Let us recall relations between
right-infinite episturmian words and bi-infinite episturmian words (see [15, p. 332] and [9] for more
details).
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First we observe that a right-infinite episturmian word t can be prolonged infinitely to the
left with the same set of factors. Note also that the definition of episturmian words considered
in Section 2.2 (using reversal and special factors) can be extended to bi-infinite words (see [15]).
Furthermore, the characterization (Theorem 2.1) of right-infinite episturmian words by a sequence
(t(i))i≥0 extends to bi-infinite episturmian words, with all the t(i) now bi-infinite episturmian words.
That is, as for right-infinite episturmian words, we have bi-infinite words of the form l(i).r(i) where
l(i) is a left-infinite episturmian word and r(i) is a right-infinite episturmian word. Moreover, if the
bi-infinite episturmian word b = l.r is directed by ∆̆ with associated bi-infinite episturmian words
b(i) = l(i).r(i), then r is directed by ∆̆ with associated right-infinite episturmian words r(i).

As a consequence of what precedes, Justin and Pirillo’s results about spinned words directing
a common bi-infinite episturmian word are still valid for words directing a common (right-infinite)
episturmian word. We summarize now these results, which will be helpful for the proof of our main
theorem (Theorem 4.1, to follow).

First of all, Justin and Pirillo characterized pairs of words directing a common episturmian
word in the case of wavy directive words, that is, spinned infinite words containing infinitely many
L-spinned letters and infinitely many R-spinned letters. This characterization uses the following
extension of the block-equivalence ≡ for infinite words.

Let ∆1, ∆2 be spinned versions of ∆. We write ∆1  ∆2 if there exist infinitely many prefixes
fi of ∆1 and gi of ∆2 with the gi of strictly increasing lengths, and such that, for all i, |gi| ≤ |fi| and
fi ≡ gici for a suitable spinned word ci. Infinite words ∆1 and ∆2 are said to be block-equivalent
(denoted by ∆1 ≡ ∆2) if ∆1  ∆2 and ∆2  ∆1.

Theorem 3.2. [15, Th. 3.4, Cor. 3.5] Let ∆1 and ∆2 be wavy spinned versions of ∆ ∈ Aω with
|Ult(∆)| > 1. Then ∆1 and ∆2 direct a common (unique) episturmian word if and only if ∆1 ≡ ∆2.

Moreover when ∆1 and ∆2 do not have any common prefix modulo ≡, and when there exists a
letter x such that ∆1 and ∆2 begin with x and x̄ respectively, if ∆1 ≡ ∆2, then ∆1 = x

∏
n≥1 vnx̆n,

∆2 = x̄
∏

n≥1 v̄nx̂n for an L-spinned letter x, a sequence (vn)n≥1 of x-free L-spinned words, and
sequences of spinned letters (x̆n)n≥1, (x̂n)n≥1 in {x, x̄} such that (x̆n)n≥1 contains infinitely many
times the R-spinned letter x̄, and (x̂n)n≥1 contains infinitely many times the L-spinned letter x.

The relation  (and hence the block-equivalence ≡ for infinite words) is rather intricate to
understand. So in some way the forms of ∆1 and ∆2 at the end of Theorem 3.2 are, although
technical, easier to understand. Theorem 4.1, which refines the end of the previous result and
proves the converse, describes all possible forms for pairs of directive-equivalent words without any
use of notations  and ≡.

When one of the two considered directive words is not wavy, Justin and Pirillo established:

Proposition 3.3. [15, Prop. 3.6] Let ∆1 and ∆2 be spinned versions of a common word such
that ∆1 is wavy and letters of ∆2 are ultimately of spin L (resp. ultimately of spin R). If ∆1

and ∆2 are directive-equivalent, then ∆1  ∆2. Moreover there exist spinned words w1, w2, an
L-spinned letter x, and L-spinned x-free words (vi)i≥1 such that µw1 = µw2, ∆1 = w1x̄

∏
i≥1 v̄ix

and ∆2 = w2x
∏

i≥1 vix (resp. ∆1 = w1x
∏

i≥1 vix̄ and ∆2 = w2x̄
∏

i≥1 v̄ix̄).

With the next two results, they considered the remaining cases of words directing aperiodic
episturmian words. In the first one, the spins of the letters in each of the two directive words are
ultimately L or ultimately R. The second result shows that if one of the directive words has the
spins of its letters ultimately L (resp. ultimately R), then the other directive word cannot have the
spins of its letters ultimately R (resp. ultimately L).

Proposition 3.4. [15, Prop. 3.7] Let ∆1 and ∆2 be spinned versions of a common word ∆ ∈ Aω

with |Ult(∆)| > 1. If there exist spinned words w1, w2 and an L-spinned infinite word ∆′ such
that ∆1 = w1∆

′ and ∆2 = w2∆
′ (resp. ∆1 = w1∆̄

′ and ∆2 = w2∆̄
′), then ∆1, ∆2 are directive-

equivalent if and only if µw1 = µw2.
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Proposition 3.5. [15, Prop. 3.9] Let ∆ be an L-spinned infinite word. Then ∆ and ∆̄ do not
direct a common right-infinite episturmian word.

Actually the previous statement is a corollary of Proposition 3.9 in [15] which considers more
generally words directing episturmian words differing only by a shift.

Justin and Pirillo also discussed in [15] the periodic case and proved:

Proposition 3.6. [15, Prop. 3.10] Suppose that ∆1 = w̆y̆aω and ∆2 = ŵŷāω, where w̆ and ŵ

(resp. y̆ and ŷ) are spinned versions of a common word and a is an L-spinned letter. Then ∆1 and
∆2 are directive-equivalent if and only if there exist sequences of letters (ăn)n≥1 and (ân)n≥1 such
that w̆y̆

∏
n≥1 ăn ≡ ŵŷ

∏
n≥1 ân.

We will see in Theorem 4.1 that other cases can occur for periodic episturmian words.

4 Directive-equivalent words: a characterization

As shown in the previous section, Justin and Pirillo provided quite complete results about directive-
equivalent infinite words. Nevertheless they did not systematically provide the relative forms of
two directive-equivalent words. The following characterization does it, moreover without the use of
relations  and ≡. This result also fully solves the periodic case, which was only partially solved
in [15].

Theorem 4.1. Given two spinned infinite words ∆1 and ∆2, the following assertions are equivalent.

i) ∆1 and ∆2 direct a common right-infinite episturmian word;

ii) ∆1 and ∆2 direct a common bi-infinite episturmian word;

iii) One of the following cases holds for some i, j such that {i, j} = {1, 2}:

1. ∆i =
∏

n≥1 vn, ∆j =
∏

n≥1 zn where (vn)n≥1, (zn)n≥1 are spinned words such that µvn =
µzn for all n ≥ 1;

2. ∆i = wx
∏

n≥1 vnx̆n, ∆j = w′x̄
∏

n≥1 v̄nx̂n where w, w′ are spinned words such that
µw = µw′, x is an L-spinned letter, (vn)n≥1 is a sequence of non-empty x-free L-spinned
words, and (x̆n)n≥1, (x̂n)n≥1 are sequences of non-empty spinned words over {x, x̄} such
that, for all n ≥ 1, |x̆n| = |x̂n| and |x̆n|x = |x̂n|x;

3. ∆1 = wx and ∆2 = w′y where w, w′ are spinned words, x and y are letters, and
x ∈ {x, x̄}ω, y ∈ {y, ȳ}ω are spinned infinite words such that µw(x) = µw′(y).

Note. For a, b, c three different letters in A, the spinned infinite words ∆1 = a(bcā)ω and ∆2 =
ā(b̄c̄ā)ω direct a common episturmian word that starts with the letter a. Indeed, these two directive
words fulfill item 2 of Theorem 4.1 with w = w′ = ε, x = a, and for all n, vn = bc and x̆n = x̂n = ā.
Moreover the fact that ∆1 starts with the L-spinned letter a shows that the word it directs starts
with a. Similarly ∆′

1 = āb(cab̄)ω and ∆′
2 = āb̄(c̄āb̄)ω direct a common episturmian word starting

with the letter b. Since ∆2 = ∆′
2, this shows that the relation “direct a common episturmian word”

over spinned infinite word is not an equivalence relation.

Items 2 and 3 of Theorem 4.1 show that any episturmian word is directed by a spinned infinite
word having infinitely many L-spinned letters, but also by a spinned word having both infinitely
many L-spinned letters and infinitely many R-spinned letters (i.e., a wavy word). To emphasize
the importance of these facts, let us recall from Proposition 2.2 that if ∆̆ is a spinned infinite word
over A ∪ Ā with infinitely many L-spinned letters, then there exists a unique episturmian word t

directed by ∆̆. Unicity comes from the fact that the first letter of t is fixed by the first L-spinned
letter in ∆̆.

Before proving Theorem 4.1, let us make two more remarks.
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Remark 4.2. In items 1 and 2 of Theorem 4.1, the two considered directive words are spinned
versions of a common L-spinned word. This does not hold in item 3, which deals only with periodic
episturmian words. This is consistent with Remark 2.5. As an example of item 3, one can consider
the word (ab)ω = La(b

ω) = Rb(a
ω) which, as already said at the end of Section 2.4, is directed by

abω and by b̄aω (La(b) = ab = Rb(a)). Note also that (ab)ω is directed by (ab̄)ω, underlining the
fact that x and y can be equal in item 3 of Theorem 4.1.

Remark 4.3. If an episturmian word t has two directive words satisfying items 2 or 3, then t

has infinitely many directive words. Indeed, if item 2 is satisfied and x̄ occurs in x̆p (p ≥ 1), then

by Theorem 3.1, x
(∏p−1

k=1 vnx̆n

)
vpx̆

′
px̄ ≡ x̄

(∏p−1
k=1 v̄nx̆n

)
v̄px̆

′
px where x̆′p is such that x̆p ≡ x̄x̆′p.

Thus t is also directed by wx̄
(∏p−1

k=1 v̄nx̆n

)
v̄px̆

′
px

∏
n≥p+1 vnx̆n. Similarly if item 2 is satisfied and

x occurs in x̆p (p ≥ 1), then t is also directed by w′x
(∏p−1

k=1 vnx̂n

)
vpx̂

′
px̄

∏
n≥p+1 v̄nx̂n where x̂′p is

such that x̂p ≡ xx̂′p. If item 3 is satisfied, then t is periodic and directed by wx where x is any
spinned version of xω.

The rest of this section is dedicated to the proof of Theorem 4.1.

Proof of Theorem 4.1. We have i) ⇔ ii) by the remarks on bi-infinite words at the beginning of
Section 3.2.

iii) ⇒ i). Assume first that ∆1 =
∏

n≥1 vn and ∆2 =
∏

n≥1 zn for spinned words (vn)n≥1, (zn)n≥1

such that µvn = µzn for all n ≥ 1. From the latter equality and Theorem 3.1, ∆1 has infinitely
many L-spinned letters if and only if ∆2 has infinitely many L-spinned letters.

Let us first consider the case when both ∆1 and ∆2 have infinitely many L-spinned letters.
Without loss of generality we can assume that for all n ≥ 1, vn and zn contain at least one L-spinned
letter. Now we need to define some more notations. Let t1 and t2 be the episturmian words directed
by ∆1 and ∆2, respectively (these episturmian words exist and are unique by Proposition 2.2). For

n ≥ 0, let t
(n)
1 and t

(n)
2 be the episturmian words as in ii) of Theorem 2.1 and let an and bn be their

respective first letters. Finally, for n ≥ 1, set pn =
∏n

i=1 vi and qn =
∏n

i=1 zi. The words µpn(a|pn|)
(resp. µqn(b|qn|)) are prefixes of t1 (resp. of t2). The letter a|pn| (resp. b|qn|) is the first letter of

µvn+1(t
(m)
1 ) (resp. µzn+1(t

(m)
2 )) with m =

∑n+1
i=1 |vi| =

∑n+1
i=1 |zi|. Since vn+1 (resp. zn+1) contains

at least one L-spinned letter, a|pn| (resp. b|qn|) is the first letter of µvn+1(w) (resp. µzn+1(w)) for
any word w. From µvn+1 = µzn+1 , we have a|pn| = b|qn| and so µpn(a|pn|) = µqn(b|qn|) for all n ≥ 1.
If the sequence (µpn(a|pn|))n≥1 is not ultimately constant, then from t1 = limn→∞ µpn(a|pn|) and
t2 = limn→∞ µqn(b|qn|), we deduce that t1 = t2. If (µpn(a|pn|))n≥1 is ultimately constant, then
necessarily there exists a letter a and an integer m such that for all n > m, vn and zn belong to
{a}∗. Then t1 = µv1...vm(a

ω) = µz1...zm(a
ω) = t2.

Now, with the same notations as in the above case, we consider the case when the letters of
∆1 and ∆2 are ultimately R-spinned. By Theorem 3.1, any equality µv = µz (for some different
spinned words v and z) implies that v and z both contain at least one L-spinned letter and one
R-spinned letter. Hence, in our current case, there exists an integer m such that vn = zn for all
n > m. Let t be an episturmian word directed by

∏
n>m vn =

∏
n>m zn (such an episturmian word

exists by Proposition 2.2). Then µpm(t) = µqm(t) and ∆1 and ∆2 are directive-equivalent.

Now consider item 2 of part iii). We assume that ∆1 = wx
∏

n≥1 vnx̆n and ∆2 = w′x̄
∏

n≥1 v̄nx̂n
where w, w′ are spinned words such that µw = µw′ , x is an L-spinned letter, (vn)n≥1 is a sequence of
non-empty x-free L-spinned words, and (x̆n)n≥1, (x̂n)n≥1 are non-empty spinned words over {x, x̄}
such that, for all n ≥ 1, |x̆n| = |x̂n| and |x̆n|x = |x̂n|x. By injectivity of the morphisms µw = µw′ ,
∆1 and ∆2 are directive-equivalent if and only if w−1∆1 and w′−1∆2 are directive-equivalent. So,
from now on, we assume without loss of generality that w = w′ = ε.

By Proposition 2.2, there exist unique episturmian words t1 and t2 starting with x directed by
the respective words ∆1 and ∆2 (observe that if x̂n ∈ x̄+ for all n ≥ 1, then x̄ ∈ Ult(∆2)). For
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i ≥ 1, let ∆
(i)
1 = x

∏
n≥i vnx̆n and ∆

(i)
2 = x̄

∏
n≥i v̄nx̂n and let t

[i]
1 and t

[i]
2 be the words beginning

with x and directed by the respective words ∆
(i)
1 and ∆

(i)
2 . (The episturmian words t

[i]
1 and t

[i]
2

exist by Proposition 2.2.) For i ≥ 1 we also define αi := |x̆i|x = |x̂i|x and βi := |x̆i|x̄ = |x̂i|x̄.
Assume first that αi 6= 0. Then x̄v̄ix̂i ≡ x̄v̄ixx

αi−1x̄βi ≡ xvix̄x
αi−1x̄βi ≡ xvix

αi−1x̄βi x̄ and

xvix̆i ≡ xvix
αi−1x̄βix. Let pi = xvix

αi−1x̄βi . From what precedes we deduce that ∆
(i)
1 and pi∆

(i+1)
1

are directive-equivalent, as ∆
(i)
2 and pi∆

(i+1)
2 are directive-equivalent. By the choice of words t

[i]
1

and t
[i]
2 , we deduce that t

[i]
1 = µpi(t

[i+1]
1 ) and t

[i]
2 = µpi(t

[i+1]
2 ) and each of these words starts with

µpi(x).
Now let us consider the case when αi = 0. Then x̆i = x̂i = x̄βi . We have xvix̆i ≡ x̄v̄ix̄

βi−1x and
x̄v̄ix̂i = x̄v̄ix̄

βi−1x̄. Taking pi = x̄v̄ix̄
βi−1, we reach the same conclusion as in the case when αi 6= 0.

It follows from what precedes that t1 and t2 both start with µp1...pi(x) for all i ≥ 1. Since vi 6= ε,
the sequence (µp1...pi(x))i≥1 is not ultimately constant; whence t1 = t2 = limi→∞ µp1...pi(x).

Lastly, assume that ∆1 = wx and ∆2 = w′y for some spinned words w, w′, some letters x and
y, and some spinned infinite words x ∈ {x, x̄}ω, y ∈ {y, ȳ}ω such that µw(x) = µw′(y). The word
∆1 (resp. ∆2) directs the episturmian word µw(x

ω) = (µw(x))
ω (resp. µw′(yω) = (µw′(y))ω). Hence

∆1 and ∆2 are directive-equivalent.

i) ⇒ iii). Suppose ∆1 and ∆2 direct a common (right-infinite) episturmian word t. Let us first
assume that t is aperiodic. Then, by Remark 2.5, ∆1 and ∆2 are spinned versions of a common
infinite word ∆ ∈ Aω. We now show that item 1 or item 2 holds using results of Justin and Pirillo
in [15].

First consider the case when both ∆1 and ∆2 are wavy. Suppose there exist a sequence of
prefixes (pn)n≥0 of ∆1 and a sequence of prefixes (p′n)n≥0 of ∆2 such that for all n ≥ 0, µpn = µp′n .
Without loss of generality we can assume that p0 = p′0 = ε and the sequence (|pn|)n≥0 is strictly
increasing. For n ≥ 1, let vn, zn be such that pn = pn−1vn, p

′
n = p′n−1zn; that is ∆1 =

∏
n≥1 vn

and ∆2 =
∏

n≥1 zn. Let us prove by induction that µvn = µzn for all n ≥ 1. First µv1 = µp1 =
µp′1 = µz1 . For n ≥ 2, since µpn = µpn−1µvn , µp′n = µp′n−1

µzn , µpn = µp′n and µpn−1 = µp′n−1
, we

have µpn−1µvn = µpn−1µzn and so µvn = µzn by left cancellativity of the monoid of episturmian
morphisms. So item 1 is satisfied in this case.

Now assume that previous sequences (pn)n≥0 and (p′n)n≥0 do not exist. Let w and w′ be the
longest prefixes of the respective spinned words ∆1 and ∆2 such that µw = µw′ . Further, let ∆′

1

and ∆′
2 be the spinned words such that ∆1 = w∆′

1 and ∆2 = w′∆′
2. Then, by injectivity of µw, the

words ∆′
1 and ∆′

2 are directive-equivalent and have no prefixes with equal images by µ.
By Theorem 3.2, there exists a letter x in A, a sequence of non-empty x-free words (vn)n≥1 over

A, and two sequences of non-empty words (x̆n)n≥1, (x̂n)n≥1 over {x, x̄} such that ∆′
i = x

∏
n≥1 vnx̆n

and ∆′
j = x̄

∏
n≥1 v̄nx̂n for some integers i, j such that {i, j} = {1, 2}. We have to prove that for

all n ≥ 1, |x̆n| = |x̂n| and |x̆n|x = |x̂n|x. We use induction on n and prove also that for all n ≥ 0,

the words ∆
(n+1)
i = x

∏
m≥n+1 vmx̆m and ∆

(n+1)
j = x̄

∏
m≥n+1 v̄mx̂m are directive-equivalent.

Let n ≥ 1 be an integer. By definition of ∆
(1)
i = ∆′

i and ∆
(1)
j = ∆′

j (when n = 1) and

by the induction hypothesis (when n ≥ 2), we know that the words ∆
(n)
i = x

∏
m≥n vmx̆m and

∆
(n)
j = x̄

∏
m≥n v̄mx̂m are directive-equivalent.

Assume first that x̂n contains at least one occurrence of x. Then, with αn = |x̂n|x and
βn = |x̂n|x̄, we have x̄v̄nx̂n ≡ x̄v̄nxx

αn−1x̄βn ≡ xvnx
αn−1x̄βnx̄. By injectivity of the mor-

phism µxvn we deduce that the words x̆n
∏

m≥n+1 vmx̆m = x̆nvn+1x̆n+1
∏

m≥n+2 vmx̆m and

xαn−1x̄βnx̄
∏

m≥n+1 v̄mx̂m = xαn−1x̄βn+1v̄n+1x̂n+1
∏

m≥n+2 v̄mx̂m direct a common episturmian

word tn. The word vn+1 is not empty. Let c be its first letter, let D = c−1vn+1x̆n+1
∏

m≥n+2 vmx̆m

and letD′ = (c̄)−1v̄n+1x̂n+1
∏

m≥n+2 v̄mx̂m: the word tn is directed by x̆ncD and by xαn−1x̄βn+1c̄D′.
Since ∆j is wavy, D′ is also wavy. So x occurs in D′ (among the x̂n) and the word directed
by D′ starts with x. Consequently tn starts with µxαn−1x̄βn+1c̄(x) = xαncxβn+1 . The words
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vm are non-empty, thus there exists a letter d 6= x that occurs in the word directed by D′.
Consequently cxαn+βnd is the smallest factor of tn belonging to c{x}∗d. Since tn is also di-
rected by x̆ncD, it follows that tn starts with x|x̆n|xc and the smallest factor of tn belong-
ing to c{x}∗d is cx|x̆n|d. Hence |x̆n|x = αn = |x̂n|x and |x̆n| = αn + βn = |x̂n|. Conse-
quently x̆n ≡ xαn x̄βn ≡ xαn−1x̄βnx. The injectivity of the morphism µxαn−1x̄βn implies that

∆
(n+1)
i = x

∏
m≥n+1 vmx̆m and ∆

(n+1)
j = x̄

∏
m≥n+1 v̄mx̂m are directive-equivalent.

When x̆n contains at least one occurrence of x̄, we similarly reach the same conclusion.
Now we show that it is impossible that x̆n ∈ x+ and x̂n ∈ x̄+. Assume these relations hold and let

k be the least integer strictly greater than n such that x ∈ Alph(x̂k) (such an integer exists since ∆j

is wavy). Let αk = |x̂k|x and βk = |x̂k|x̄. Since all of the words x̂n, . . . , x̂k−1 belong to x̄+, we have
x̄v̄nx̂nv̄n+1 . . . v̄kx̂k ≡ x̄v̄nx̂nv̄n+1 . . . v̄kx

αk x̄βk ≡ xvnx̂nvn+1 . . . vkx̄x
αk−1x̄βk . Then by injectivity of

the morphism µxvn , there exists an episturmian word directed by both ∆ = x̆n
∏

m≥n+1 vmx̆m and

∆′ = x̂nvn+1 . . . vkx
αk−1x̄βk x̄

∏
m≥k+1 v̄mx̂m. But this is impossible since ∆ directs a word starting

with x (recall that x̆n ∈ x+) and ∆′ directs a word starting with the first letter of vn+1 (recall that
x̂n ∈ x̄+).

Let us now consider the case when one of the two words ∆1, ∆2 is wavy and the other has all
of its spins ultimately L or ultimately R. Then item 2 is verified by Proposition 3.3.

Suppose now that both ∆1 and ∆2 have all spins ultimately L (resp. ultimately R). Then by
Remark 2.5, ∆1 and ∆2 are spinned versions of a common word. Hence ∆1 = w∆ and ∆2 = w′∆
(resp. ∆1 = w∆̄ and ∆2 = w′∆̄) for some spinned words w, w′ of the same length and an infinite
L-spinned word ∆ (resp. R-spinned word ∆). Since ∆1 and ∆2 are directive-equivalent, µw = µw′

by Proposition 3.4, and furthermore ∆1 and ∆2 have infinitely many prefixes whose images are
equal by µ. Therefore, as already seen, this situation satisfies item 1.

We have now ended the study of the aperiodic case, since by Proposition 3.5, ∆1 and ∆2 cannot
direct a common aperiodic episturmian word if one of them has all spins ultimately L and the other
has all spins ultimately R.

Finally we come to the periodic case: ∆1 = wx and ∆2 = w′y for some spinned words w, w′,
letters x and y, and spinned infinite words x ∈ {x, x̄}ω, y ∈ {y, ȳ}ω. In this case, the episturmian
word directed by ∆1 and ∆2 is µw(x)

ω = µw′(y)ω, which implies that µw(x)
|y| = µw′(y)|x|. Then

(see [19] for instance) there exists a primitive word z such that µw(x) and µw′(y) are powers of z (let
us recall that a word w is primitive if it is not an integer power of a shorter word, i.e., if w = up with
p ∈ N, then p = 1 and w = u). One can quite easily verify that any episturmian morphism maps
any primitive word to another primitive word (see also [13, Prop. 2.8, Prop. 3.15]). Since any letter
constitutes a primitive word, both µw(x) and µw′(y) are primitive. Thus µw(x) = z = µw′(y).

5 Normalized directive word of an episturmian word

In the previous section we have seen that any episturmian word t has a directive word with infinitely
many L-spinned letters. To work on Sturmian words, Berthé, Holton, and Zamboni recently proved
that it is always possible to choose a particular directive word:

Theorem 5.1. [4] Any Sturmian word w over {a, b} has a unique representation of the form

w = lim
n→∞

Ld1−c1
a Rc1

a L
d2−c2
b Rc2

b . . . Ld2n−1−c2n−1
a Rc2n−1

a Ld2n−c2n
b Rc2n

b (a)

where dk ≥ ck ≥ 0 for all integer k ≥ 1, dk ≥ 1 for k ≥ 2 and if ck = dk then ck−1 = 0.

In other words, any Sturmian word has a unique directive word over {a, b, ā, b̄} containing
infinitely many L-spinned letters but no factor of the form āb̄na or b̄ānb with n an integer. Actually
this result is quite natural if one thinks about the presentation of the monoid of Sturmian morphisms
(see [31]). Using Theorems 3.1 and 4.1, we generalize Theorem 5.1 to episturmian words:
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Theorem 5.2. Any episturmian word t has a spinned directive word containing infinitely many
L-spinned letters, but no factor in

⋃
a∈AāĀ

∗a. Such a directive word is unique if t is aperiodic.

The example given in Remark 4.2 shows that unicity does not necessarily hold for periodic
episturmian words. A directive word of an aperiodic episturmian word t with the above property is
called the normalized directive word of t. We extend this definition to morphisms: a finite spinned
word w is said to be a normalized directive word of the morphism µw if w has no factor in

⋃
a∈AāĀ

∗a.

One can observe that, by Theorem 3.1, for any morphism in LaL
∗
ARa, we can find another

decomposition of the morphism in the set RaR
∗
ALa. Equivalently, for any spinned word in aA∗ā,

there exists a word w′ in āĀ∗a such that µw = µw′. This is the main idea used in the proof of the
lemma below. The proof of Theorem 5.2 is based on an extension of this lemma to infinite words.

Lemma 5.3. Any pure episturmian morphism has a unique normalized directive word.

Proof. Existence of the normalized directive word: Let w = (wi)1≤i≤|w| be a spinned word over
A ∪ Ā. We construct by induction on |w| a normalized directive word of µw.

If |w| = 0, there is nothing to do: ε is a normalized directive word of the empty morphism.
Assume we have constructed a normalized directive word w′ = (w′

i)1≤i≤k of the morphism µw′ = µw.
Let x̄ be a letter in Ā. Then, by normalization of w′, the word w′x̄ has no factor in ∪a∈AāĀ

∗a.
Moreover since µw = µw′ , we have µwx̄ = µw′x̄: the word w

′x̄ is a normalized directive word of µwx̄.
Now let x be a letter in A. The word w′x can have factors in ∪a∈AāĀ

∗a, but only as suffixes. If
this does not hold, as in the previous case, the word w′x is a normalized directive word of µwx. Else
w′ = px̄ū1x̄ū2 . . . x̄ūk for an integer k ≥ 1, some L-spinned x-free words (ui)1≤i≤k and a spinned
word p having no suffix in x̄Ā∗. The word w′′x̄ where w′′ = pxu1x̄u2 . . . x̄uk contains no factor in
∪a∈AāĀ

∗a. Moreover Theorem 3.1 implies µw′x = µw′′x̄. Hence w
′′x̄ is a normalized directive word

of µwx.

Let us make a remark on the inductive construction presented in this proof:

Remark 5.4. Let u, v, u′, v′ be four spinned words such that u′ (resp. v′) is the normalized directive
word obtained by the above construction from u (resp. v). If u is a prefix of v and if p is a prefix
of u′ ending by an L-spinned letter, then p is also a prefix of v′.

Unicity: Assume by way of contradiction that w and w′ are two different spinned normalized
words such that µw = µw′ . By left cancellativity of the monoid of episturmian morphisms, we can
assume that w and w′ start with different letters. Moreover it follows from Theorem 3.1 that w
and w′ are spinned versions of a common word. Without loss of generality, we can assume that w
begins with a letter a ∈ A and w′ begins with ā and so for any word z, µw(z) = µw′(z) begins with
a. Hence w′ must start with āv̄a for a word v ∈ A∗. This contradicts its normalization.

Example 5.5. Let f be the pure episturmian morphism with directive word āb̄cb̄ab̄āc̄b̄āc̄a. By
Theorem 3.1, µāc̄b̄āc̄a = µāc̄b̄acā = µacbācā and hence µāb̄cb̄ab̄āc̄b̄āc̄a = µāb̄cb̄ab̄acbācā and āb̄cb̄ab̄acbācā is
the normalized directive word of f .

Now we provide the

Proof of Theorem 5.2.
Existence of the normalized directive word:

Let ∆ = (wi)i≥1 be a spinned directive word of an episturmian word t (with wi ∈ A∪Ā). From
Theorem 4.1, we can assume that ∆ has infinitely many L-spinned letters.

By Lemma 5.3, for any n ≥ 1, the morphism µw1...wn has a unique normalized directive word

(w
(n)
i )1≤i≤n. (It follows from the proof of Lemma 5.3 that wi and w

(n)
i are spinned versions of a

common letter).
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Let pn be the longest prefix of w
(n)
1 . . . w

(n)
n that belongs to (A∪Ā)∗A. Let in ≤ n be the integer

such that pn = w
(n)
1 . . . w

(n)
in

, and let πn be the word πn = µ
w

(n)
1 ...w

(n)
in−1

(w
(n)
in

).

Since the morphisms µw1...wn and µ
w

(n)
1 ...w

(n)
n

are equal, t has the directive word

(w
(n)
1 , . . . , w

(n)
n , wn+1, wn+2, . . .), so πn is a prefix of t.

By Remark 5.4, for any n ≥ 1, pn is a prefix of pn+1, and since ∆ contains infinitely many
L-spinned letters, for any n ≥ 1, there exists an m > n such that |pm| > |pn|.

If |Ult(∆)| = 1, then there exists a letter a and an integer m such that t = µpm(a
ω) and pma

ω is
a normalized directive word of t. If |Ult(∆)| > 1, the sequence (πn)n≥1 is not ultimately constant,
and limn→∞ πn = t. In this case t is directed by the sequence limn→∞ pn which is normalized by
construction (indeed otherwise one of the prefixes pn would not be normalized).

Unicity of the normalized directive word:
Assume by way of contradiction that an aperiodic episturmian word t has two different nor-

malized spinned directive words ∆1 = (wn)n≥1 and ∆2 = (w′
n)n≥1 (with wn and w′

n ∈ A ∪ Ā for
all n). Let i ≥ 1 be the smallest integer such that wi 6= w′

i (and for all j < i, wj = w′
j). By

Theorem 4.1, ∆1 and ∆2 are spinned versions of the same word (see Remark 4.2). Thus, without
loss of generality, we can assume that wi = x̄ and w′

i = x for some letter x.
Let t

′(i) be the episturmian word with (normalized) directive word (w′
n)n≥i (by Proposition 2.2

this word is unique), then t
′(i) starts with x since w′

i = x. Since the word (wn)n≥1 has infinitely
many L-spinned letters, there exists an integer j > i such that wj = y for a letter y ∈ A and wℓ ∈ Ā
for each ℓ, i < ℓ < j. Let t(i) be the word with normalized directive word (wn)n≥i, then t(i) has the
word µwi...wj−1(y) as prefix since wj = y and so t(i) starts with y since wi . . . wj−1 ∈ Ā∗. We have

t = µw1...wi−1(t
(i)) = µw′

1...w
′
i−1

(t
′(i)). By choice of i, w1 . . . wi−1 = w′

1 . . . w
′
i−1. Consequently, since

episturmian morphisms are injective on infinite words, t(i) = t
′(i) and so x = y. But since wi = x̄,

wi+1 . . . wj−1 ∈ Ā∗, and wj = x, we reach a contradiction to the normalization of (wn)n≥1.

6 Episturmian words having a unique directive word

In Section 4 we have characterized pairs of words directing a common episturmian word. In Section 5
we have proposed a way to uniquely define any episturmian word through a normalization of
its directives words (as mentioned in the introduction, see [4, 18, 17, 11] for some uses of this
normalization). Using these results we now characterize episturmian words having a unique directive
word.

Theorem 6.1. An episturmian word has a unique directive word if and only if its (normalized)
directive word contains 1) infinitely many L-spinned letters, 2) infinitely many R-spinned letters,
3) no factor in

⋃
a∈AāĀ

∗a, 4) no factor in
⋃

a∈AaA
∗ā.

Such an episturmian word is necessarily aperiodic.

Proof. Assume first that an episturmian word t has a unique spinned directive word ∆. By The-
orem 5.2, ∆ is normalized and so contains infinitely many L-spinned letters and no factor in⋃

a∈AāĀ
∗a. By item 3 of Theorem 4.1 and by Remark 2.4, t cannot be periodic. By item 2 of

Theorem 4.1, ∆ also contains infinitely many R-spinned letters, and hence is wavy (otherwise one
can construct another directive word of t – the fact that t is aperiodic is important for having the
(vn)n≥1 non-empty in this construction). Finally Theorem 3.1 implies the non-existence of a factor
in

⋃
a∈AaA

∗ā (otherwise, one can again construct another directive word for t).
Let us now prove that the four conditions (given in the statement of the theorem) are sufficient.

Arguing by contradiction, we assume that an episturmian word t is directed by two spinned infinite
words ∆1 and ∆2, both fulfilling the four given conditions. We observe that if ∆1 or ∆2 is ultimately
written over {x, x̄} for a letter x (which can occur only if t is periodic), then at least one of the
conditions is not fulfilled. Thus the two words ∆1 and ∆2 should verify one of the two first items
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in part iii) of Theorem 4.1 (item 3 does not apply since t is aperiodic). But the hypotheses on ∆1

and ∆2 imply that only item 1 can be verified so that ∆1 =
∏

n≥1 vn, ∆2 =
∏

n≥1 zn for spinned
words (vn)n≥1, (zn)n≥1 such that µvn = µzn for all n ≥ 1. Now by Theorem 3.1 and by the fact that
words (vn)n≥1 and (zn)n≥1 have no factor in

⋃
a∈AāĀ

∗a nor
⋃

a∈AaA
∗ā, we must have vn = zn for

all n ≥ 1. Thus ∆1 = ∆2.

As an example, a particular family of episturmian words having unique directive words consists
of those directed by regular wavy words, i.e., spinned infinite words having both infinitely many
L-spinned letters and infinitely many R-spinned letters such that each letter occurs with the same
spin everywhere in the directive word. More formally, a spinned version w̆ of a finite or infinite
word w is said to be regular if, for each letter x ∈ Alph(w), all occurrences of x̆ in w̆ have the same
spin (L or R). For example, ab̄aac̄b̄ and (ab̄c)ω are regular, whereas ab̄aāc̄b and (ab̄ā)ω are not
regular.

In the Sturmian case, we have:

Proposition 6.2. Any Sturmian word has a unique spinned directive word or infinitely many
spinned directive words. Moreover, a Sturmian word has a unique directive word if and only if its
(normalized) directive word is regular wavy.

Proof. Let ∆ be the normalized directive word of a Sturmian word t over {a, b}. Then ∆ contains
no factor belonging to āb̄∗a ∪ b̄ā∗b (where α∗ = {α}∗ for any letter α).

Assume first that ∆ contains infinitely many factors in ab∗ā ∪ ba∗b̄. Then ∆ = p
⋃

n≥1 xnyn

for some spinned words p and (xn, yn)n≥1 such that, for all n ≥ 1, xn ∈ ab∗ā ∪ ba∗b̄ and
yn ∈ {a, b, ā, b̄}∗. In this case, ∆ has infinitely many directive words; indeed, the spinned words
(p[

⋃k−1
n=1 xnyn]x̄kyk

⋃
n≥k+1 xnyn)k≥1 are (by Theorem 3.1) pairwise different directive words for t.

Now assume that ∆ contains only finitely many factors in ab∗ā∪ba∗b̄. Since ∆ contains no factor
in āb̄∗a∪b̄ā∗b, it is ultimately regular wavy. More precisely ∆ is regular wavy and either ∆ belongs to
{a, b̄}ω∪{ā, b}ω, or ∆ belongs to one of the following sets of infinite words: S1 = {a, b, ā, b̄}∗a{ā, b}ω ,
S2 = {a, b, ā, b̄}∗b{a, b̄}ω, S3 = {a, b, ā, b̄}∗ā{a, b̄}ω or S4 = {a, b, ā, b̄}∗b̄{ā, b}ω. Assume ∆ ∈ S1.
Since any Sturmian word is aperiodic, ∆ is not ultimately constant (see Remark 2.4). Thus ∆ =
pa

⋃
n≥1 xnā with xn ∈ b∗ for all n ≥ 1. Once again in this case, t has infinitely many directive

words since the words (p[
⋃k−1

n=1 āx̄n]a
⋃

n≥k xnā)k≥1 are pairwise different directive words for t. The
cases when ∆ ∈ S2 or ∆ ∈ S3 or ∆ ∈ S4 are similar.

We end with the case when ∆ is regular wavy. In this case, ∆ contains infinitely many L-spinned
letters, infinitely many R-spinned letters, no factor in ab∗ā ∪ ba∗b̄, and no factor in āb̄∗a ∪ b̄ā∗b.
Hence by Theorem 6.1, t has a unique directive word.

Proposition 6.2 shows a great difference between Sturmian words and episturmian words con-
structed over alphabets with at least three letters. Indeed, when considering words over a ternary
alphabet, one can find episturmian words having exactly m directive words for any m ≥ 1. For
instance, the episturmian word t directed by ∆ = a(bā)m−1bc̄(abc̄)ω has exactly m directive words,
namely (āb̄)ia(bā)jbc̄(abc̄)ω with i+ j = m−1. Notice that the suffix bc̄(abc̄)ω of ∆ is regular wavy,
and the other m− 1 spinned versions of ∆ that also direct t arise from the m− 1 words that are
block-equivalent to the prefix a(bā)m−1.

Acknowledgement. The two last authors thank Eddy Godelle for his remarks and his suggestion
for improvement of the proof of Theorem 5.2.
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[17] F. Levé, G. Richomme, Quasiperiodic episturmian words, in: Proceedings of the 6th International Conference
on Words, Marseille, France, September 17-21, 2007.
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