
RAIRO-Theor. Inf. Appl. 43 (2009) 281–297 Available online at:

DOI: 10.1051/ita:2008030 www.rairo-ita.org

EFFICIENT VALIDATION AND CONSTRUCTION
OF BORDER ARRAYS AND VALIDATION

OF STRING MATCHING AUTOMATA ∗

Jean-Pierre Duval
1
, Thierry Lecroq

1

and Arnaud Lefebvre
1

Abstract. We present an on-line linear time and space algorithm to
check if an integer array f is the border array of at least one string w
built on a bounded or unbounded size alphabet Σ. First of all, we show
a bijection between the border array of a string w and the skeleton of
the DFA recognizing Σ∗w, called a string matching automaton (SMA).
Different strings can have the same border array but the originality of
the presented method is that the correspondence between a border ar-
ray and a skeleton of SMA is independent from the underlying strings.
This enables to design algorithms for validating and generating border
arrays that outperform existing ones. The validating algorithm low-
ers the delay (maximal number of comparisons on one element of the
array) from O(|w|) to 1 + min{|Σ|, 1 + log2 |w|} compared to existing
algorithms. We then give results on the numbers of distinct border
arrays depending on the alphabet size. We also present an algorithm
that checks if a given directed unlabeled graph G is the skeleton of a
SMA on an alphabet of size s in linear time. Along the process the
algorithm can build one string w for which G is the SMA skeleton.

Mathematics Subject Classification. 68R15, 68W05.

Keywords and phrases. Combinatorics on words, period, border, string matching, string
matching automata.

∗ This work was partially supported by the project “Algorithmique génomique” of the program
“MathStic” of the French CNRS.
1 University of Rouen, LITIS EA 4108, Avenue de l’Université, Technopôle du Madrillet,

76801 Saint-Étienne-du-Rouvray Cedex, France;

{Jean-Pierre.Duval; Thierry.Lecroq; Arnaud.Lefebvre}@univ rouen.fr

Article published by EDP Sciences c© EDP Sciences 2008

http://dx.doi.org/10.1051/ita:2008030
http://www.rairo-ita.org
http://www.edpsciences.org

282 J.-P. DUVAL, T. LECROQ AND A. LEFEBVRE

1. Introduction

A border u of a string w is a prefix and a suffix of w such that u �= w. The
computation of the border array of a string w i.e. of the length of the longest
border of each prefix of a string w is strongly related to the exact string matching
problem: given a string w, find its first occurrence or, more generally, all its
occurrences in a longer string y. The border array of w is better known as the
“failure function” introduced in [8] (see also [1]). In [4] (see also [11]) a method is
presented to check if an integer array f is the border array of at least string w. The
authors first give an on-line linear time algorithm to verify if f is a border array on
an unbounded size alphabet. Then they give a more complex algorithm that works
on a bounded size alphabet. In [3] a simpler algorithm is presented for this case.
Furthermore if f is a border array we are able to build, on-line and in linear time, a
string w on a minimal size alphabet for which f is the border array. The resulting
algorithm integrates three parts: the checking on an unbounded alphabet, the
checking on a bounded size alphabet and the design of the corresponding string if
f is a border array. The first two parts can work independently (see http://al.
jalix.org/Baba/Applet/baba.php). In the present article we first give a more
simple presentation of this result. Moreover we present new results concerning the
relation between the border array f and the skeleton of the deterministic finite
automaton recognizing Σ∗w, called a string matching automaton (SMA). Actually
these results are completely independent of w. We then present a new linear time
and space on-line algorithm that checks if a given integer array is the border
array of at least one string. This algorithm lowers the delay (maximal number of
comparisons on one element of the array) from O(|w|) to 1+min{|Σ|, 1+ log2 |w|}
compared to algorithms in [3,4]. An easy extension of this algorithm enables to
generate all the distinct border arrays of a given length in linear space and in time
proportional to their number.

This study can be useful for generating minimal test sets for various string
algorithms. For instance this can be used to test the practical performances, in
terms of running times or number of comparisons, of string matching algorithms
with strings that have different behaviors rather than with randomly chosen strings
that may have the same behavior.

Then using this efficient construction algorithm, we count the number of distinct
border arrays for alphabet sizes 2, 3, 4 and we prove results on any alphabet. These
last results extend those of [7].

Then we show how to decide whether a given directed unlabeled graph G is
the skeleton of a SMA, on an alphabet of size s in linear time, or not. Along the
process the algorithm can build a string w for which G is the SMA skeleton.

These methods constitute a first step towards a better understanding of the
combinatorics of border arrays and SMA and thus of the combinatorics on words.

The remaining of this article is organized as follows. The next section introduces
basic notions and notations on strings. Section 3 recalls known results on the
validation of border arrays. Section 4 presents our new results for validating
border arrays. In Section 5 we present the bijection between border arrays and

http://al.jalix.org/Baba/Applet/baba.php
http://al.jalix.org/Baba/Applet/baba.php

VALIDATION OF BORDER ARRAYS AND STRING MATCHING AUTOMATA 283

SMA skeletons. In Section 6 we give our new algorithm for validating border
arrays together with its correctness proof. In Section 7 we present results on the
number of distinct border arrays. Section 8 presents the linear time method that
checks if a given graph G is a SMA skeleton. Finally we give our conclusions and
perspectives in Section 9.

2. Notations and definitions

A string is a sequence of zero or more symbols from an alphabet Σ. The set
of all strings over the alphabet Σ is denoted by Σ∗. We consider an alphabet of
size s; for 1 ≤ i ≤ s, σ[i] denotes the i-th symbol of Σ. A string w of length n is
represented by w[1 . . n], where w[i] ∈ Σ for 1 ≤ i ≤ n. A string u is a prefix of w
if w = uv for v ∈ Σ∗. Similarly, u is a suffix of w if w = vu for v ∈ Σ∗. A string u
is a border of w if u is a prefix and a suffix of w and u �= w. A string w can have
several borders thus we call the border of a string w the longest of its borders. It is
denoted by Border(w). The border array f of a string w of length n is defined by:
f [i] = |Border(w[1 . . i])| for 1 ≤ i ≤ n. It is also known as the “failure function”
of the Morris and Pratt string matching algorithm [8].

Example 2.1. The border array of ababacaabcababa is the following:
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
w[i] a b a b a c a a b c a b a b a
f [i] 0 0 1 2 3 0 1 1 2 0 1 2 3 4 5

An integer p such that 0 < p ≤ |w| is a period of w if: w[i] = w[i + p] for
i = 0, 1, . . . , |w| − p− 1.

The string matching automaton (SMA) D(w) recognizing the language Σ∗w is a
DFA defined by D(w[1 . . n]) = (Q, Σ, q0, T, F) where Q = {0, 1, . . . , n} is the set of
states, Σ is the alphabet, q0 = 0 is the initial state, T = {n} is the set of accepting
states and F = {(i, w[i + 1], i + 1) | 0 ≤ i ≤ n − 1} ∪ {(i, a, |Border(w[1 . . i]a)|) |
1 ≤ i ≤ n − 1 and a ∈ Σ \ {w[i + 1]}} ∪ {(n, a, |Border(wa)|) | a ∈ Σ} is the
set of transitions. There exists on elegant on-line construction algorithm for this
automaton (see [2]). The underlying unlabeled graph is called the skeleton of the
automaton. We denote by δ(i) the list (j | (i, a, j) ∈ F with a ∈ Σ and j �= 0)
and by δ′(i) the list (j | (i, a, j) ∈ F with a ∈ Σ and j �∈ {0, i + 1}) for 0 ≤ i ≤ n
(see Figs. 1 and 2). In other words δ(i) is the list of the targets of the significant
transitions leaving state i and δ′(i) is the list of the targets of the backward
significant transitions leaving state i. Simon [10] showed that the total number of
significant transitions of an SMA of a string of length n is at most 2n: exactly n
forward transitions and at most n backward transitions.

The following definitions introduce the notion of b-valid array and of valid
skeleton.

Definition 2.1. An integer array f [1 . . n] is a b-valid array (or is b-valid) if and
only if it is the border array of at least one string w[1 . . n].

284 J.-P. DUVAL, T. LECROQ AND A. LEFEBVRE

0 1 2 3 4 5
a a b a b

a

a

a

Figure 1. D(aabab): transitions leading to state 0 are omitted.
δ(4) = (5, 2) and δ′(4) = (2).

0 1 2 3 4 5
a b a b a

a

a b

a

Figure 2. D(ababa): transitions leading to state 0 are omitted.
δ(3) = (4, 1) and δ′(3) = (1).

Definition 2.2. Let f [1 . . n] be an integer array such that f [i] < i for 1 ≤ i ≤ n.
For 1 ≤ i ≤ n, we define f0[i] = i and for f [i] > 0, f �[i] = f [f �−1[i]] with � ≥ 1.

Definition 2.3. A directed unlabeled graph is valid if it is the skeleton of a SMA.

The four following definitions show how to represent the notion of border array
using trees.

Definition 2.4. Given an integer array f [1 . . n] such that 0 ≤ f [i] < i we define
the relation F on [−1, n] as follows: 0F −1 and iF j if f [i] = j with 0 ≤ j < i ≤ n.

Relation F is known as the border tree [11].

Definition 2.5. F̄ is the reflexive, symmetrical and transitive closure of relation
F on [1, n] that is to say i F̄ j if there exist a positive integer k �= 0 and two
positive integers s, t ≥ 0 such that fs[i] = f t[j] = k.

F̄ can be seen as a partition of the nodes of the tree induced by the relation
F . Two nodes are in the same F̄ -class if their least common ancestor is different
from the root.

Lemma 2.1. Let f be a b-valid array and w be a string for which f is the border
array. If two integers i and j (1 ≤ i, j ≤ |w|) are in the same F̄-class and let k be
the smallest element of the F̄-class of i and j then w[i] = w[j] = w[k].

VALIDATION OF BORDER ARRAYS AND STRING MATCHING AUTOMATA 285

i 1 2 3 4 5
f [i] 0 1 0 1 0

Figure 3. An integer array f and the trees associated with the
relations F and R. The R-path of 5 is (5, 2, 1, 0).

Proof. Since i and k are in the same F̄ -class there exist s, t such that fs[i] = f t[k].
Since k is the smallest element of the F̄ -class it means that t = 0 and fs[i] = k.
Thus w[1 . . k] is a border of w[1 . . i] and in particular w[i] = w[k]. The same holds
for j. �

Definition 2.6. The relation R is defined on [0, n + 1] by iR j if and only if
(i− 1)F (j − 1) with 0 ≤ j < i ≤ n + 1.

Definition 2.7. The R-path of j is the strictly decreasing sequence of integers
(j0, j1, . . . , jk) such that j0 = j, jiR ji+1 for 0 ≤ i ≤ k − 1 and jk = 0.

In words, if f is b-valid and if (j0, j1, . . . , jk) is the R-path of j it means that
w[1 . . j1−1] is the border of w[1 . . j0−1], w[1 . . j2−1] is the border of w[1 . . j1−1],
. . ., w[1 . . jk−1 − 1] is the border of w[1 . . jk−2 − 1]. In other words, w[1 . . j1 − 1],
w[1 . . j2 − 1], . . . , w[1 . . jk−1 − 1] are all the borders of w[1 . . j − 1].

Figure 3 illustrates the previous notions on the border array of the string aabab
used in Figure 1.

286 J.-P. DUVAL, T. LECROQ AND A. LEFEBVRE

3. Known results

Let f [1 . . n] be an integer array such that f [i] < i for 1 ≤ i ≤ n. We use the
following notation: C(f, i) = (1 + f [i− 1], 1 + f2[i − 1], . . . , 1 + fm[i − 1]) where
fm[i− 1] = 0.

In [3], we state the following two necessary and sufficient conditions for an
integer array f to be a b-valid array:

(1) f [1] = 0 and for 2 ≤ i ≤ n, we have f [i] ∈ (0) � C(f, i);
(2) for i ≥ 2 and for every j′ ∈ C(f, i) with j′ > f [i], we have f [j′] �= f [i].

Example 3.1. Consider the array f from Example 2.1:
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f [i] 0 0 1 2 3 0 1 1 2 0 1 2 3 4 5 ?

C(f, 16) = (f [15] + 1, f [f [15]] + 1, f [f [f [15]]] + 1, f4[15] + 1) = (6, 4, 2, 1).
The candidates for f [16] are in C(f, 16) � (0) = (6, 4, 2, 1, 0). Among these values
2 is not valid since f [4] = 2.

In [3], we devised an algorithm for verifying if an array f of n integers is b-valid
that checks all the candidates for each f [i] with 1 ≤ i ≤ n. This algorithm takes
into account the size of the alphabet and when f [i] is equal to 0 it checks if enough
letters are available for f to be b-valid.

4. Validation of border arrays

In this section we will reformulate the results of [3].
The next proposition answers the following question: given an integer array

f [1 . . n] with n elements, does there exist a string w such that f is the border
array of w?

Proposition 4.1. f [1] = 0 is the only array with one element that is b-valid. Let
us assume that f [1 . . j] is b-valid. Then f [1 . . j+1] is b-valid if and only if f [j +1]
is a largest element of its F̄-class on the R-path of j + 1.

Proof. It can be easily checked that the border array with one element correspond-
ing to a string of length 1 can only contain the value 0. Let us now assume that
f [1 . . j] is b-valid. The R-path of j + 1 is the sequence of integers (j0, j1, . . . , jk)
such that j0 = j+1, jiR ji+1 for 0 ≤ i ≤ k−1 and jk = 0. Thus (ji−1)F (ji+1−1)
for 0 ≤ i ≤ k− 1. Thus f [ji − 1] = ji+1 − 1 for 0 ≤ i ≤ k− 1. Thus the R-path of
j + 1 is the sequence of integers (j + 1, f [j] + 1, f2[j] + 1, . . . , fm[j] + 1, 0) where
fm[j] = 0.

If f [j + 1] = f �[j] + 1 is not the largest element of its F̄ -class on the R-path of
j + 1, it means that there exists a k such that fk[j] + 1 is on the R-path of j + 1,
and f [fk[j] + 1] = f [j + 1] which contradicts the maximality of f [j + 1]. �

An example is given Figure 4 with f [1 . . 4] = [0, 1, 0, 1].

VALIDATION OF BORDER ARRAYS AND STRING MATCHING AUTOMATA 287

i 1 2 3 4
f [i] 0 1 0 1

Figure 4. Given f [1 . . 4] a b-valid array. The R-path of 5 is
(5, 2, 1, 0) and 1 is in the same F̄ -class as 2, so f [5] can only take
the values 2 or 0.

Definition 4.1. Two strings with the same length n are b-equivalent if and only
if they have the same border array.

The next proposition answers the following question: given a b-valid integer
array f , what are the b-equivalent strings associated to f?

Proposition 4.2. Given a b-valid integer array f , a string w has f for border
array if and only if the following conditions are fulfilled:

(1) the letters whose indices are in the same F̄-class are identical;
(2) two indices in different F̄-classes on a same R-path must correspond to

two different letters.

Proof.
1. Let i and j be two indices in the same F̄-class. Then there exist three

strictly positive integers k, s, t such that fs[i] = f t[j] = k. Thus, since f
is b-valid, it corresponds to the border array of a string w and w[1 . . k] is
a border of both w[1 . . i] and w[1 . . j] and thus w[i] = w[j] = w[k].

2. Let i and j be two indices in different F̄ -classes on the R-path of a position
k. Assume w.l.o.g. that i > j. Then iR · · · R j, thus (i−1)F · · · F (j−1).
Thus w[1 . . j − 1] is a border of w[1 . . i− 1], but if i and j are not in the

288 J.-P. DUVAL, T. LECROQ AND A. LEFEBVRE

i 1 2 3 4 5
f [i] 0 1 0 1 0

Figure 5. Given f [1 . . 5] a b-valid array. The letters at positions
in {1, 2, 4} are equal since they belong to the same F̄-class. They
must be different from the letters at positions in {3, 5} since:
{1, 2, 4}, {3} and {5} are different F̄ -classes and, 1 and 2 appear
in the R-path of 3 and in the R-path of 5. The letters at positions
3 and 5 can be equal or different since they do not appear both
in a same R-path.

same F̄ -class that means that w[1 . . j] is not a border of w[1 . . i], which
implies that w[i] �= w[j].

This ends the proof of the proposition. �

An example is given Figure 5 with f [1 . . 5] = [0, 1, 0, 1, 0].
The following proposition is rewritten from [7].

Proposition 4.3. Let f be an integer array and 1 ≤ j ≤ n. If f [1 . . n] is the
border array of a string w and f [1 . . j] is the border array of a string u then there
exists a string v such that uv is b-equivalent to w. �

VALIDATION OF BORDER ARRAYS AND STRING MATCHING AUTOMATA 289

5. Bijection between border arrays and SMA skeletons

In this section we explicit the correspondence between the border array f and
the skeleton of the deterministic finite automaton recognizing Σ∗w for any string
w for which f is the border array.

The following proposition shows how to build, from a border array f , the skele-
ton δ of the automaton recognizing Σ∗w for any b-equivalent string w.

Proposition 5.1. Assume that f is a b-valid array then:

1. δ(0) = (1);
2. δ(j) = (j + 1) � δ(f [j]) ∪--- (f [j + 1]) for 1 ≤ j < n;
3. δ(n) = δ(f [n]).

Proof. The correctness of cases 5.1 and 5.3 comes directly from the definition of
the SMA (see Algorithm 9.3 in [1]). Following the definition of the automaton, we
have:

δ(j)= (j + 1) � (|Border(w[1 . . j]a)| | a ∈ Σ \ {w[j + 1]})
= (j + 1) � (|Border(w[1 . . j]a)| | a ∈ Σ) ∪--- (|Border(w[1 . . j + 1])|)
= (j + 1) � δ(f [j]) ∪--- (f [j + 1])

for 1 ≤ j < n which shows case 5.2 and ends the proof of the proposition. �

Example 5.1. On the following array:

i 1 2 3 4 5
f [i] 0 1 0 1 0

we indeed have:

j f [j] (j + 1) � δ(f [j]) ∪--- (f [j + 1]) = δ(j)
0 � ∪--- = (1)
1 0 (2) � (1) ∪--- (1) = (2)
2 1 (3) � (2) ∪--- (0) = (3,2)
3 0 (4) � (1) ∪--- (1) = (4)
4 1 (5) � (2) ∪--- (0) = (5,2)
5 0 � (1) ∪--- = (1)

This gives the following skeleton, that comes from the automaton of Figure 1:

0 1 2 3 4 5

The next proposition gives the construction of the border array f from the
skeleton δ of a SMA.

290 J.-P. DUVAL, T. LECROQ AND A. LEFEBVRE

Proposition 5.2. For j > 0:

f [j + 1] =
{

δ(f [j]) ∪--- δ(j) if δ(f [j]) ∪--- δ(j) is not empty,
0 otherwise.

(1)

Proof. Recall item 2 in Proposition 5.1:

δ(j) = (j + 1) � δ(f [j]) ∪--- (f [j + 1]) for 1 ≤ j < n. (2)

Note that (j + 1) �∈ δ(f [j]). We distinguish three cases:
• f [j +1] = f [j]+1. Since f [j]+1 ∈ δ(f [j]), from (2), we have that f [j +1]

is the unique element of δ(f [j]) ∪--- δ(j).
• f [j + 1] �= f [j] + 1 and f [j + 1] �= 0. Since f [j + 1] ∈ δ(f [j]), from (2), we

have that f [j + 1] is the unique element of δ(f [j]) ∪--- δ(j).
• f [j + 1] �= f [j] + 1 and f [j + 1] = 0. f [j + 1] �∈ δ(f [j]) and, from (2),

δ(f [j]) ∪--- δ(j) is empty. �
Example 5.2. Using the skeleton of Example 3, we have:

j f [i] δ(f [j]) δ(j) f [j + 1]
0 ∅ (1) 0
1 0 (1) (2) 1
2 1 (2) (3,2) 0
3 0 (1) (4) 1
4 1 (2) (5,2) 0

It is worth to note that the results of Propositions 5.1 and 5.2 are completely
independent of the letters of the underlying string w, thus:

Theorem 5.1. Propositions 5.1 and 5.2 define a bijection between border arrays
and SMA skeletons. �

6. Checking the validity of border arrays

The definition of the SMA gives an efficient algorithm for verifying if an array
f of n integers is a b-valid array. Assuming that f [1 . . i] is b-valid, all the values
for f [i + 1] are in δ′(i) � (0) and they do not need to be checked. An example
is given Figure 6. Using Proposition 5.1, the skeleton of the automaton is build
on-line during the checking of the array f . If f is b-valid it is possible to compute
a string w for which f is the border array. If f [i] is equal to 0, it is enough to
check if the cardinality of δ′(i − 1) is smaller than the alphabet size s to ensure
that f is b-valid up to position i.

The result is Algorithm CheckArray(f, n, s) below. It either outputs true if
the array f is b-valid or the smallest position i for which f [1 . . i− 1] is b-valid and
f [1 . . i] is not. Along the line it builds a string w of length n on a minimal size
alphabet for which f is the border array.

VALIDATION OF BORDER ARRAYS AND STRING MATCHING AUTOMATA 291

1 2 4 5 6 7 12 148 9 150 3 10 11 13

Figure 6. Using the skeleton of the automaton corresponding
to the border array of Example 2, it is now easy to see that the
candidates for f [16] are in δ′(15) � (0) = (6, 4, 1, 0).

CheckArray(f, n, s)
1 if f [1] �= 0 then � validity
2 return f not b-valid at position 1 � validity
3 δ′(1)← (1)
4 w[1]← σ[1] � string
5 for i← 2 to n do
6 if f [i] = 0 then
7 if card(δ′(i− 1)) ≥ s then � alphabet
8 return alphabet too small at position i � alphabet
9 δ′(i)← (1)

10 w[i]← σ[card(δ′(i− 1)) + 1] � string
11 else
12 if f [i] �∈ δ′(i− 1) then � validity
13 return f not b-valid at position i � validity
14 δ′(i− 1)← δ′(i− 1) ∪--- (f [i])
15 δ′(i)← δ′(f [i]) � (f [i] + 1)
16 w[i]← w[f [i]] � string
17 return true

Theorem 6.1. When applied to an integer array f [1 . . n] and an alphabet of size s:

• The algorithm CheckArray runs in time and space Θ(n).
• If the array f given as input of the algorithm CheckArray is a b-valid

array at index i − 1 but not at index i, the algorithm stops and returns
“f not b-valid at position i”. The lines {alphabet} and {string} can be
deleted without changing this result.

292 J.-P. DUVAL, T. LECROQ AND A. LEFEBVRE

• If there exists a string for which f [1 . . i− 1] is the border array and there
is none at index i with an alphabet of size s, the algorithm CheckArray

stops and returns “alphabet too small at position i”. Lines {string} can
be deleted without changing this result. If the array f is b-valid, lines
{validity} can also be deleted.

• As long as f [1 . . i] is valid, the algorithm CheckArray builds a string
w[1 . . i] on a minimal size alphabet for the border array f [1 . . i]. Lines
{validity} can be deleted without changing the construction of the string.
It is clear that if f is not b-valid, it is not the border array of the string
which is built by the algorithm.

Proof. The correctness of the computation of line 9 comes from Case 5.1 of Propo-
sition 5.1. The correctness of the computation of line 14 comes from Case 5.2 of
Proposition 5.1. The correctness of the computation of line 15 comes from Case 5.3
of Proposition 5.1.

The time and space linearity comes from the fundamental result that in the
SMA, there are only m backward significant transitions [10]. �

It can be noticed that when computing the border array of string w of length
n the number of comparisons between letters of w is 2n − 3 in the worst case.
This bound is reached for w = an−1b. When executing the algorithm CheckAr-

ray(f, n, s) the number of comparisons of elements of f are performed lines 1, 6
and 12. There can be only one comparison in Line 1, n− 1 comparisons in Line 6,
and n comparisons overall in Line 12. Together this gives a total upper bound of
2n comparisons. However the worst case on the number of backward significant
transitions in the SMA is reached for strings of the form abn−1 where there is a
backward transition leaving state 1. Thus the maximal number of comparisons on
elements of f performed by the algorithm CheckArray(f, n, s) is 2n − 1. This
bound is reached for f = [0, 1, 2, . . . , n− 2, n− 1].

We now define the delay of the algorithm as the maximal number of comparisons
on f [i] for each i with 1 ≤ i ≤ n. The next proposition states that the new
algorithm lowers the delay from O(n) (see [3,4]) to 1 + min{s, 1 + log2 n}.
Proposition 6.1. The delay of the algorithm CheckArray(f, n, s) is 1+min{s,
1 + log2 n}.
Proof. f [1] is compared once line 1. For each i, 2 ≤ i ≤ n, f [i] is compared lines 6
and 12. There is exactly one comparison on line 6. When f [i] is processed line 12,
the skeleton of the automaton is built up to state i− 1. Thus δ′(i− 1) = δ(i− 1).
Since δ(i − 1) contains at most min{s, 1 + log2 n} elements (see Prop. 2.7 in [5]),
δ′(i− 1) contains at most min{s, 1+ log2 n} elements. Consequently, the maximal
number of comparisons is 1 + min{s, 1 + log2 n}. �

An algorithm for generating all b-valid arrays becomes then obvious: all the
valid candidates for f [i] are in δ′(i− 1) � (0). We thus have the following result.

Theorem 6.2. All the b-valid arrays of length n on an unbounded alphabet or on
an alphabet of size s can be generated in a time proportional to their number and
in linear space.

VALIDATION OF BORDER ARRAYS AND STRING MATCHING AUTOMATA 293

Table 1. Number of distinct border arrays on different alphabet sizes.

i B(i) B(i, 2) B(i, 3) B(i, 4)
1 1 1 1 1
2 2 2 2 2
3 4 4 4 4
4 9 8 9 9
5 20 16 20 20
6 47 32 47 47
7 110 64 110 110
8 263 128 262 263
9 630 256 626 630
10 1525 512 1509 1525
11 3701 1024 3649 3701
12 9039 2048 8872 9039
13 22 140 4096 21 640 22 140
14 54 460 8192 52 993 54 460
15 134 339 16 384 130 159 134 339
16 332 439 32 768 320 696 332 438
17 824 735 65 536 792 265 824 731
18 2 051 307 131 072 1 962 407 2 051 291
19 5 113 298 262 144 4 872 223 5 113 246
20 12 773 067 524 288 12 123 877 12 772 899
21 31 968 041 1 048 576 30 230 923 31 967 537
22 80 152 901 2 097 152 75 528 071 80 151 415
23 201 297 338 4 194 304 189 039 446 201 293 090
24 506 324 357 8 388 608 473 956 301 506 312 374
25 1 275 385 911 16 777 216 1 190 195 672 1 275 352 669
26 3 216 901 194 33 554 432 2 993 316 684 3 216 809 897
27 8 124 150 323 67 108 864 7 538 797 541 8 123 902 127

7. Counting distinct border arrays

Let B(n) be the number of distinct border arrays of length n on an unbounded
alphabet and let B(n, s) be the number of distinct border arrays of length n on
an alphabet of size s. Table 1 gives the number of distinct border arrays of length
1 to 16 for an unbounded alphabet and alphabets of size 2 to 4.

Proposition 7.1 [7]. B(n, 2) = 2n−1.

Proof. By recurrence on n. B(1, 2) = 1. Let f [1 . . n] be b-valid with δ the corre-
sponding skeleton. For an alphabet of size 2, δ(n) contains at most 2 elements.
Consider the three possible cases:

• δ(n) = {i1, i2}: f [n + 1] can only be equal either to i1 or to i2.

294 J.-P. DUVAL, T. LECROQ AND A. LEFEBVRE

• δ(n) = {i}: f [n + 1] can only be equal either to i or to 0.
• δ(n) = ∅: impossible since δ(n) = δ(f [n]) (see Prop. 5.1). �

Indeed there are 2n different strings of length n on a binary alphabet {a, b}, and
2n−1 distinct border arrays of length n since the b-equivalence on strings on a
binary alphabet amounts to an homomorphism h such that h(a) = b and h(b) = a.
This is not the case on larger alphabets, for instance abb, abc, cab have the same
border array but there is no letter homomorphism between these strings.

Proposition 7.2 [7]. B(j, s) = B(j) for j < 2s and s ≥ 2.

Proof. By recurrence on s. B(1, 2) = B(1) = 1, B(2, 2) = B(2) = 2 and B(3, 2) =
B(3) = 4. Assume that B(j, k) = B(j) for j < 2k for k ≤ s. By recurrence
assumption the first occurrence of σ[k+1] in strings corresponding to border arrays
counted by B(j, k+1) is larger than 2k. Suppose now that B(j, s+1) < B(j). This
means that the letter σ[s+2] is required to build all the distinct border arrays. Let
w be the string that corresponds to a border array that requires s+2 letters. The
letter σ[s + 2] can only occur at a position i greater or equal to 2s. And this can
only happen if the strings w[1 . . i− 1]σ[1], w[1 . . i− 1]σ[2], . . . , w[1 . . i− 1]σ[s+1]
have all non-empty borders. Let � be length of the border of w[1 . . i− 1]σ[s + 1]
in w. Then � ≤ 2s. But this implies that w has a period i − � < 2s and that
w[σ[s + 1]] occurs in the first 2s − 1, which is a contradiction. �

Proposition 7.3. B(2s, s) = B(2s) − 1 for s ≥ 2. The missing border array has
the following form: [0, . . . , 20 − 1, 0, . . . , 21 − 1, . . . , 0, . . . , 2s−1 − 1]. This border
array corresponds to the string wsσ[s + 1] (of length 2s) where ws is recursively
defined by: w1 = σ[1] and wi = wi−1σ[i]wi−1 for i > 1.

Proof. We prove by recurrence that the string wi has borders followed by every
letters from σ[1] to σ[i]. This is true for w1. Let us assume that this is true for
wk with 2 ≤ k ≤ i − 1. Then wi = wi−1σ[i]wi−1 has all the borders of wi−1 and
wi−1σ[i] is a prefix of wi. �

The string wi has already been shown to have the largest number of non-
deducible periods [5]. It appears in a large number of applications [9].

Example 7.1. The following array f [1 . . 16] is b-valid on an alphabet of size at
least 5:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
w4[i] a b a c a b a d a b a c a b a e
f [i] 0 0 1 0 1 2 3 0 1 2 3 4 5 6 7 0

VALIDATION OF BORDER ARRAYS AND STRING MATCHING AUTOMATA 295

8. Validation of a string matching automaton

Corollary 5.2 gives a method to check if a given directed graph G = (V, E), can
be the skeleton of a SMA. The graph of n + 1 vertices numbered from 0 to n is
supposed to satisfy the following conditions:

• no edge ending in vertex 0;
• (0, 1, . . . , n) is a unique simple path from 0 to n.

Since a skeleton of SMA with n+1 states has at most 2n transitions, a given graph
can be rejected or numbered, according to the two previous conditions, in linear
time O(n).

Then it is possible to use Corollary 5.2 to check if G can be the skeleton of a
SMA. For each state j, the difference D = δ(f [j]) − δ(j) is computed: when it is
empty or equal to a singleton then G is a skeleton up to state j. If D has more
than one element then G is not a skeleton. If D is empty then f [j + 1] is set to 0.
If D is a singleton {i} then f [j + 1] is set to i.

Since only one value of f is needed at a time it is even possible to perform the
checking without building an integer array f during the process.

It is also possible to build a string during the checking process: when f [j + 1],
stored in a variable k, is different from 0 then w[j + 1] is set to w[k] and when
f [j + 1] is equal to 0 then w[j + 1] is set to σ[card(δ(j))].

It is even possible to build a string on an alphabet of size s: when f [j + 1]
is different from 0 then the letter w[j + 1] already occurred before but when
f [j + 1] is equal to 0 then card(δ(j)) has to be smaller or equal to s. Algorithm
CheckGraph(δ, n, s) below integrates all these results.

CheckGraph(δ, n, s)
1 k ← −1
2 for j ← 0 to n− 1 do
3 D ← δ(k)− δ(j)
4 if D = ∅ then
5 k ← 0
6 if card(δ(j)) ≤ s then � alphabet
7 w[j + 1]← σ[card(δ(j))] � string
8 else return G not a skeleton at vertex i � alphabet
9 else

10 if card(D) = 1 then � validity
11 k ← i such that D = {i}
12 w[j + 1]← k � string
13 else return alphabet too small at position j
14 if δ(n) = δ(k) then � validity
15 return true � validity
16 else return false � validity

An example is shown Figure 7.

296 J.-P. DUVAL, T. LECROQ AND A. LEFEBVRE

0 1 2 3 4 5

k -1 0 1 2
δ(k) ∅ (1) (2) (1, 3)
j 0 1 2 3
δ(j) (1) (2) (1, 3) (2, 4)
δ(k)− δ(j) ∅ (1) (2) (1, 3)
k 0 1 2 fail
w[j + 1] a a a

Figure 7. The above graph is a skeleton of a SMA up to vertex
2 but not up to vertex 3 since δ(f [3] = 2)− δ(3) = (1, 3) possesses
two elements. Overall it is not a skeleton of a SMA.

Theorem 8.1. When applied to a graph G with e edges and v vertices:

• The algorithm CheckGraph runs in time and space O(e + v).
• If the graph G given as input of the algorithm CheckGraph is a valid

skeleton up to vertex j − 1 but not up to vertex j, the algorithm stops
and returns “G not a skeleton at vertex i”. The lines {alphabet} and
{string} can be deleted without changing this result.

• If there exists a string for which the first j − 1 vertices of G form a valid
skeleton and there is none for the j first vertices with an alphabet of size
s, the algorithm CheckGraph stops and returns “alphabet too small at
position j”. Lines {string} can be deleted without changing this result. If
the graph G is a SMA skeleton, lines {validity} can also be deleted.

• When the graph G is a valid skeleton, the algorithm CheckGraph builds
a string w[1 . . i] on a minimal size alphabet for SMA skeleton G. Lines
{validity} can be deleted without changing the construction of the string.

Proof. The correctness of the algorithm comes from Corollary 5.2. The time com-
plexity comes from the fact that each vertex and each edge are processed only
once. �

Corollary 8.1. The skeleton of a SMA of n states can be checked in linear time.

Proof. The result comes from the fact that a SMA has n forward transitions and
at most n backward significant transitions [10]. �

VALIDATION OF BORDER ARRAYS AND STRING MATCHING AUTOMATA 297

9. Conclusions and perspectives

In this article we reformulated the notion used in [3] for verifying if a given
integer array is a b-valid array. We extended these results to the relation between
the border array f and the skeleton of the SMA of w. This enables us to design a
very efficient algorithm for verifying if a given integer array is a b-valid array. This
algorithm gives an efficient method for generating all the distinct border arrays.
Moreover we give here some results on their numbers.

Furthermore we presented an algorithm that can check if a given graph G whose
vertices are already ordered can be the skeleton of the SMA of at least one string
w on an alphabet of size s in linear time in the size of the graph. The method
also enables to exhibit, with the same complexity, a string w such that G is the
skeleton of the SMA of w.

Let us recall the function g: g[j] = max{i | w[1 . . i − 1] suffix of w[1 . . j − 1]
and w[i] �= w[j]}.

We know that g[j] = max{δ(j − 1)− (j)} = max{δ(f [j − 1])− (f [j])}.
Function g is known as the “failure function” of the Knuth-Morris-Pratt string

matching algorithm [6]. We intend to study the problem of verifying if a given
integer array is a valid “failure function” for the Knuth-Morris-Pratt algorithm.
However there does not exist the equivalence of Proposition 4.3 for g.

Acknowledgements. The authors thank the anonymous referees for many helpful com-
ments and suggestions.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The design and analysis of computer algorithms.
Addison-Wesley (1974).

[2] M. Crochemore, C. Hancart and T. Lecroq, Algorithms on Strings. Cambridge University
Press (2007).

[3] J.-P. Duval, T. Lecroq and A. Lefebvre, Border array on bounded alphabet. J. Autom. Lang.
Comb. 10 (2005) 51–60.

[4] F. Franěk, S. Gao, W. Lu, P.J. Ryan, W.F. Smyth, Y. Sun and L. Yang, Verifying a border
array in linear time. J. Combin. Math. Combin. Comput. 42 (2002) 223–236.

[5] C. Hancart, Analyse exacte et en moyenne d’algorithmes de recherche d’un motif dans un
texte. Ph.D. thesis. Université Paris 7, France (1993).

[6] D.E. Knuth, J.H. Morris and V.R. Pratt Jr, Fast pattern matching in strings. SIAM J.
Comput. 6 (1977) 323–350.

[7] D. Moore, W.F. Smyth and D. Miller, Counting distinct strings. Algorithmica 23 (1999)
1–13.

[8] J.H. Morris and V.R. Pratt Jr, A linear pattern-matching algorithm. Technical Report 40,
University of California, Berkeley (1970).

[9] M. Naylor, Abacaba-dabacaba. http://www.ac.wwu.edu/~mnaylor/abacaba/abacaba.html.

[10] I. Simon, String matching algorithms and automata, in Proceedings of the First South
American Workshop on String Processing, edited by R. Baeza-Yates and N. Ziviani, Belo
Horizonte, Brazil (1993) 151–157

[11] W.F. Smyth, Computing Pattern in Strings. Addison Wesley Pearson (2003).

Communicated by J. Berstel.
Received 4 December 2007. Accepted 17 October 2008.

http://www.ac.wwu.edu/~mnaylor/abacaba/abacaba.html

	Introduction
	Notations and definitions
	Known results
	Validation of border arrays
	Bijection between border arrays and SMA skeletons
	Checking the validity of border arrays
	Counting distinct border arrays
	Validation of a string matching automaton
	Conclusions and perspectives
	References

