
RAIRO-Oper. Res. 44 (2010) 61–71 RAIRO Operations Research

DOI: 10.1051/ro/2010007 www.rairo-ro.org

AN EFFICIENT ILP FORMULATION FOR THE SINGLE
MACHINE SCHEDULING PROBLEM

Cyril Briand
1, 2

, Samia Ourari
1, 2, 3

and Brahim Bouzouia
3

Abstract. This paper considers the problem of scheduling n jobs on
a single machine. A fixed processing time and an execution interval
are associated with each job. Preemption is not allowed. On the basis
of analytical and numerical dominance conditions, an efficient integer
linear programming formulation is proposed for this problem, aiming
at minimizing the maximum lateness (Lmax). Experiments have been
performed by means of a commercial solver that show that this formu-
lation is effective on large problem instances. A comparison with the
branch-and-bound procedure of Carlier is provided.

Keywords. Single machine scheduling, integer linear programming,

dominance conditions.

Mathematics Subject Classification. 90B35.

1. Introduction

A single machine scheduling problem (SMSP) consists of a set V of n jobs to
be sequenced on a single disjunctive resource. The interval [rj , dj] defines the
execution window of each job j, where rj is the release date of j and dj , its due-
date. The processing time pj of j is known and preemption is not allowed. A
feasible job sequence has to be found so that, sj being the starting time of job j,
sj ≥ rj and sj + pj ≤ dj .

Received July 1, 2009. Accepted October 21, 2009.

1 CNRS, LAAS, 7 avenue du colonel Roche, 31077 Toulouse, France; briand@laas.fr
2 Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, 31077 Toulouse, France;
sourari@cdta.dz
3 CDTA, lotissement du 20 août 1956, Baba Hassen, Alger, Algeria; bbouzouia@cdta.dz

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2010

http://dx.doi.org/10.1051/ro/2010007
http://www.rairo-ro.org
http://www.edpsciences.org

62 C. BRIAND, S. OURARI AND B. BOUZOUIA

Seeking whether it exists a feasible sequence (i.e., all jobs meet their due dates)
is NP-complete [6] and consequently, finding a sequence that minimizes the max-
imum lateness (problem refers to as 1|ri|Lmax) is NP-hard. For this problem,
the well-known branch-and-bound procedure of Carlier [2] can be used for solving
problems having more than one thousand jobs. Nevertheless, even if the Carlier’s
procedure provides good performance, it is still interesting to design other exact
approaches that can be used in a more generic framework such as integer linear
programming (ILP).

This paper presents an original ILP formulation for the SMSP that is based
on analytical and numerical dominance conditions. The paper first presents a
dominance theorem that is the foundation of the work. Then ILP models are
progressively issued, starting from particular SMSP cases up to the general case.
The last section is devoted to the experimentations.

2. A general dominance theorem for the SMSP

In the sequel, some analytical dominance conditions are used for the SMSP.
They have been originally proposed in the early eighties by Erschler et al. [4]
within a theorem. This theorem uses the notions of a top and a pyramid, which are
defined below. It defines a set Sdom of dominant job sequences for the SMSP with
regard to the feasibility problem. Let us recall that a job sequence σ1 dominates
another job sequence σ2 if σ2 feasible ⇒ σ1 is feasible. By extension, a set of
job sequences Sdom is said dominant if, for any job sequence σ2 /∈ Sdom, it exists
σ1 ∈ Sdom such that σ2 feasible ⇒ σ1 is feasible. When searching a feasible job
sequence, only the set of dominant sequences need to be explored since, if there
does not exist any feasible sequence in the dominant set, then it can be asserted
that the original problem does not admit any feasible solution. This leads to a
significant reduction of the search space.

Definition 2.1. A job t ∈ V is a top if there does not exist any other job i ∈ V
such that ri > rt∧di < dt (i.e., the execution window of a top job does not strictly
include any other execution window).

The top jobs are indexed in ascending order with respect to their release dates
or, in case of a tie, in ascending order with respect to their due dates. When both
their release dates and due dates are equal, they can be indexed in an arbitrary
order. Thus, if ta and tb are two top jobs then a < b if and only if (rta ≤
rtb

) ∧ (dta ≤ dtb
). Let m be the total number of top jobs.

Definition 2.2. A pyramid Pk related to a top job tk is the set of jobs i ∈ V
such that ri < rtk

∧di > dtk
(i.e., the set of jobs for which their execution window

strictly includes the execution window of the top job).

Considering the previous definition, let us observe that a non-top job can belong
to several pyramids. Let u(j) (v(j) respectively) denotes the index of the first
pyramid (the last pyramid resp.) to which Job j can be assigned.

AN ILP MODEL FOR THE ONE MACHINE SCHEDULING PROBLEM 63

The following theorem, proved in [4], can now be stated.

Theorem 2.1. The set of sequences in the form σ = α1 ≺ t1 ≺ β1 ≺ · · · ≺ αk ≺
tk ≺ βk ≺ · · · ≺ αm ≺ tm ≺ βm is dominant for finding a feasible sequence, where:

– tk is the top job of the pyramid Pk, ∀k = 1 . . .m;
– αk and βk are two job subsequences located at the left and the right of

top job tk respectively, such that, for any k, the jobs of αk are ordered by
increasing release dates and the jobs of βk are ordered by increasing due
dates;

– any non-top job j is assigned to one sequence αk or βk, with u(j) ≤ k ≤
v(j).

In the previous theorem, it must be pointed out that the numerical values of the
processing times pj as well as those of rj and dj are not used. Only the relative
order of the release and due dates is considered, hence the genericity of the result.
In order to illustrate the theorem, let us consider an instance of seven jobs, so that
the relative order among the release dates rj and the due dates dj of the jobs is
r6 < r1 < r3 < r2 < r4 < d2 < d3 < d4 < (r5 = r7) < d6 < d5 < d1 < d7. This
instance has four top jobs: t1 = 2, t2 = 4, t3 = 5 and t4 = 7, which characterize
four pyramids: P1 = {1, 3, 6}, P2 = {1, 6}, P3 = {1} and P4 = ∅ (in accordance
with the definition, a top job does not belong to the pyramid it characterizes).
According to Theorem 2.1, whatever the real values of ri and di (provided they
are compatible with the previous interval structure), the dominant sequences are
in the form α1 ≺ 2 ≺ β1 ≺ α2 ≺ 4 ≺ β2 ≺ α3 ≺ 5 ≺ β3 ≺ 7, where jobs belonging
to subsequence αk (βk respectively) are sequenced with respect to the increasing
order of their rj (dj respectively). Thus, 24 dominant sequences (out of 7! = 5040)
are characterized.

3. The mono-pyramidal SMSP

In this section, the focus is on the mono-pyramidal SMSP: it is assumed that
the problem has a single top job t ∈ V (hence a single pyramid Pt). With respect
to Theorem 2.1, the set Sdom of dominant job sequences is in the form α ≺ t ≺ β,
where jobs belonging to subsequence α are sequenced with respect to the increasing
order of their rj , and jobs belonging to β, with respect to the increasing order of
their dj . Hence, 2n sequences need to be explored for checking the feasibility
(instead of (n + 1)!). Below, another numerical dominance theorem is stated that
allows to compare the 2n sequences each other. It is based on a necessary and
sufficient condition of feasibility.

As stated in [3] regarding the general SMSP, let us first recall that a job se-
quence σ is feasible iff:

pi +
∑

i≺k≺j

pk + pj ≤ dj − ri ,∀(i, j) ∈ σ such that i ≺ j. (3.1)

64 C. BRIAND, S. OURARI AND B. BOUZOUIA

The previous necessary and sufficient condition of feasibility can be drastically
simplified for the mono-pyramidal SMSP. For matter of notation simplification,
given a dominant sequence in the form α ≺ t ≺ β, the following notations are set:

• Ra = ra + pa +
∑

k∈α,a≺k(pk), ∀a ∈ α;
• Db = db − pb −

∑
k∈β,k≺b(pk), ∀b ∈ β;

• Rmax = max [rt, maxa∈α(Ra)];
• Dmin = min [dt, minb∈β(Db)].

Clearly, Rmax corresponds to the earliest starting time of Top t, further refers to
as estt. Symmetrically, Dmin corresponds to the latest completion time of Top t,
further refers to as lftt.

Now the following theorem can be stated.

Theorem 3.1. P being a pyramid of top t, any dominant sequence in the form
α ≺ t ≺ β is admissible if and only if Dmin − Rmax − pt ≥ 0.

Proof. Let us first prove that Dmin − Rmax − pt ≥ 0 implies the feasibility of
α ≺ t ≺ β, i.e., the condition (3.1) is verified. Condition (3.1) can be simplified
since the case where i and j (i ≺ j) both belong to α can be ignored. Indeed,
Dmin − Rmax − pt ≥ 0 implies that dt − Ri − pt ≥ 0 ∀i ∈ α and, because dj > dt

∀j, then dj − Ri − pt > 0. By replacing Ri by its value it comes that dj − ri >
pt +

∑
j≺k≺t pk + pj +

∑
i≺k≺j pk + pi > pi +

∑
i≺k≺j pk + pj . Therefore, if

condition (3.1) holds between any job i ∈ α and the top job t, then it also holds
between i and any j ∈ α such that i ≺ j. A similar reasoning can be made for
discarded the case where i and j both belongs to β. Indeed, if condition (3.1)
holds between any j ∈ β and the top job t, then it also hods between any i ∈ β
and j, provided that i ≺ j. So we only need to prove that Db − Ra − pt ≥ 0,
∀a ∈ (α ≺ t) and ∀b ∈ (t ≺ β). This is obvious since Db − Ra ≥ Dmin − Rmax by
definition and Dmin − Rmax − pt ≥ 0 by assumption.

Now, we are going to prove that the feasibility of α ≺ t ≺ β implies that
Dmin − Rmax − pt ≥ 0. It is also obvious since if α ≺ t ≺ β is feasible then, from
condition (3.1), Db −Ra − pt ≥ 0, ∀(a, b) ∈ α× β and dt − rt − pt ≥ 0. Of course,
this inequality needs to be verified in the worst case, i.e., min (dt, minb∈β Db) −
max (rt, maxa∈α Ra) − pt ≥ 0. Hence Dmin − Rmax − pt ≥ 0. �

The fact that Theorem 3.1 permits to numerically compare sequences each other
is helpful since it immediately involves the following dominance condition.

Corollary 3.1. P being a pyramid, job t being its top job, and σ1 and σ2 being
two dominant sequences in the form α1 ≺ t ≺ β1 and α2 ≺ t ≺ β2 respectively, if
Dmin

1 − Rmax
1 ≥ Dmin

2 −Rmax
2 , then σ1 dominates σ2 with regard to the feasibility

problem.

Proof. By definition, stating that σ1 dominates σ2 requires to prove that the fea-
sibility of σ2 implies the one of σ1. Now we know that σ2 is feasible iff (see
Thm. 3.1) Dmin

2 −Rmax
2 ≥ pt, therefore, under the assumption that Dmin

1 −Rmax
1 ≥

Dmin
2 − Rmax

2 , it can be deduced that Dmin
1 − Rmax

1 ≥ pt, so σ1 is necessarily also
feasible. �

AN ILP MODEL FOR THE ONE MACHINE SCHEDULING PROBLEM 65

Consequently, the problem of searching a feasible job sequence in a mono-
pyramidal SMSP can be reformulated as an optimization problem where the ob-
jective function is to maximize Dmin −Rmax. An integer linear program (ILP1) is
given below for modelling such a problem.

max z = D − R

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R ≥ rt (3.2)

D ≤ dt (3.3)

R ≥ ri +
∑

{j∈V \{t}|rj≥ri} pjx
+
j , ∀i ∈ V (3.4)

D ≤ di − ∑
{j∈V \{t}|dj≤di} pjx

−
j , ∀i ∈ V (3.5)

x−
i + x+

i = 1 , ∀i ∈ V (3.6)

x−
i , x+

i ∈ {0, 1} , ∀i ∈ V

D , R ∈ Z.

In the above ILP1 formulation, every job j ∈ V \ {t} has to be sequenced either at
the left side (i.e., x+

j = 1 and j ∈ α) or at the right side (i.e., x−
j = 1 and j ∈ β) of

Top t, but not both (i.e., x−
i +x+

i = 1). If z = D−R is maximized, while respecting
the constraints, then, from Corollary 3.1, the obtained sequence dominates all the
others. Moreover, if z∗ ≥ pt then, from Theorem 3.1, the sequence is feasible. If
z∗ < pt then it can be asserted that it does not exist any feasible sequence for the
considered problem.

We highlight that, since x−
i +x+

i = 1, the variables x−
i (or x+

i) are redundant and
can be removed from the ILP. Nevertheless, we prefer to keep them for enhancing
the clarity of the model.

Another important remark concerns the constraints (3.4). According to The-
orem 3.1, they only need to be satisfied for the jobs of α. What happens now if
a job x is in β? Could the constraint of type (3.4) related to x be unnecessarily
restrictive? We prove below that, in such a case, this constraint cannot be active
since it always exists a job y ∈ (α ≺ t) inducing a more restrictive constraint, i.e.:

ry +
∑

{j∈V \{t}|rj≥ry}
pjx

+
j ≥ rx +

∑
{j∈V \{t}|rj≥rx}

pjx
+
j .

Indeed, let y be the job in (α ≺ t) having the lowest release date ry, provided that
ry ≥ rx. Since we obviously have

∑
{j∈V \{t}|rj≥ry} pjx

+
j =

∑
{j∈V \{t}|rj≥rx} pjx

+
j ,

the previous relation necessarily holds.
A similar reasoning can be made for the constraints (3.5) since, if a job x is in

α, then, considering the job y ∈ (t ≺ β) having the greatest due date dy , provided
that dy ≤ dx, on can proved that:

dy −
∑

{j∈V \{t}|dj≤dy}
pjx

−
j ≤ dx −

∑
{j∈V \{t}|dj≤dx}

pjx
−
j .

66 C. BRIAND, S. OURARI AND B. BOUZOUIA

Now, let us show that the optimal solution of ILP1 is also optimal with regard to
the maximum lateness minimization.

Theorem 3.2. The optimal ILP1 solution minimizes the maximum lateness and
L∗

max = pt − z∗.

Proof. Let α ≺ t ≺ β be a feasible solution of ILP1 and z = D − R be the
corresponding objective value. Let us determine the lateness of a job a ∈ α. By
definition, when all the jobs are scheduled at the latest, the maximum lateness
La of a equals La = ra − lsta, where lsta refers to as the latest starting time
of a. Obviously, there exists a job u ∈ β such that D = du − ∑

{k∈β|dk≤du} pk.
Therefore, the latest starting time of t is lstt = D−pt and the latest starting time
of any job a ∈ α is lsta = D − pt −

∑
{k∈α|a≺k} pk − pa. Then it is easy to see

that the job v ∈ α, which has the maximum lateness (i.e., Lv = maxa∈α(La)) is
precisely the one that gives to R its value. Hence Lv = R − D + pt.

Let us now determine the lateness Lb of a job b ∈ β. Symmetrically to the
previous reasoning, one can determine that the earliest finishing time of b is
eftb = R + pt +

∑
{k∈β|k≺b} pk + pb. Since, when all the jobs are scheduled at

the earliest, Lb = eftb − db, the job u ∈ β which has the maximum lateness
(i.e., Lu = maxb∈β(Lb))) is precisely the one that gives to D its value. Hence
Lu = R − D + pt. In conclusion, there is a strict equivalence between the maxi-
mum lateness minimization and the maximization of the objective function z since
Lmax = pt − z. �

4. The independent multi-pyramidal SMSP

Before considering the general SMSP, let us focus on the particular SMSP char-
acterized by m top jobs, hence m pyramids, such that any non-top job only belongs
to a single pyramid (i.e., the pyramids are independent). With respect to The-
orem 2.1, any dominant job sequence is in the form σ = α1 ≺ t1 ≺ β1 ≺ . . . ≺
αm ≺ tm ≺ βm, where tk is the top job of the pyramid Pk, ∀k = 1 . . .m and the
jobs of αk and βk only belong to pyramid Pk.

Therefore, the problem of finding the most dominant job sequence for the
independent multi-pyramidal SMSP can be decomposed into m interdependent
mono-pyramidal subproblems. For each of them, the most dominant job sequence
αk ≺ tk ≺ βk has to be found. In other words, if Rk refers to as the earliest
starting time of Top tk and Dk to as the latest completion time of Top tk, we have
to maximize Dk − Rk − ptk

.
These mono-pyramidal subproblems are interdependent because the sequences

αk ≺ tk ≺ βk should not overlap. This requirement can easily be achieved by
setting, for any job j ∈ Pk, the constraints: rj = max(rj , eftk−1) and dj =
min(dj , lstk+1), where eftk−1 (lstk+1 resp.) refers to as the earliest completion
time of Subsequence βk−1 (the latest starting time of Subsequence αk+1 resp.).

The value of eftk−1 corresponds to the earliest completion time of Top tk−1

(i.e., Rk−1 + ptk−1), plus the sum of the processing times of the jobs of βk−1,

AN ILP MODEL FOR THE ONE MACHINE SCHEDULING PROBLEM 67

i.e. eftk−1 = Rk−1 + ptk−1 +
∑

{j∈Pk−1}(pjx
−
j). Similarly, the value of lstk+1

corresponds to the latest starting time of Top tk+1 (i.e. Dk+1 − ptk+1), minus
the sum of the processing times of the jobs of αk+1, i.e. lstk+1 = Dk+1 − ptk+1 −∑

{j∈Pk+1}(pjx
+
j). Therefore, eftk−1 and lstk+1 only depend on the ILP variables.

Consequently, the problem of searching a feasible job sequence in a multi-
pyramidal independent SMSP can be formulated by the following ILP (ILP2):

max z = mink=1,...,m(Dk − Rk − ptk
)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rk ≥ rtk
, ∀k ∈ [1 m] (4.1)

Dk ≤ dtk
, ∀k ∈ [1 m] (4.2)

Rk ≥ ri +
∑

{j∈Pk|rj≥ri} pjx
+
j , ∀i ∈ Pk (4.3)

Dk ≤ di − ∑
{j∈Pk|dj≤di} pjx

−
j , ∀i ∈ Pk (4.4)

Rk ≥ Rk−1 +
∑

{j∈Pk−1} pjx
−
j + ptk−1

+
∑

{j∈Pk|rj≥ri} pjx
+
j , ∀k ∈ [2 m] (4.5)

Dk ≤ Dk+1 − ∑
{j∈Pk+1} pjx

+
j − ptk+1

− ∑
{j∈Pk|dj≤di} pjx

−
j , ∀k ∈ [1 (m − 1)] (4.6)

x−
i + x+

i = 1 , ∀i ∈ Pk (4.7)

x−
i , x+

i ∈ {0, 1} , ∀i ∈ Pk

Dk , Rk ∈ Z , ∀k ∈ [1 m].

In the previous formulation, similarly with ILP1, the binary variable x+
i (x−

i resp.)
is set to 1 if Job i, which only belongs to pyramid Pk, is sequenced in αk (in βk

resp.), provided that it cannot be sequenced both in αk and βk (i.e., x−
i +x+

i = 1).
The constraints (4.1)–(4.4) are identical with the constraints (3.2)–(3.5) of ILP1.
The constraints (4.5) and (4.6) impose that the subsequences αk ≺ tk ≺ βk do
not overlap. Under these constraints, one can determine for each pyramid Pk, the
maximum lateness, which equals Rk−Dk +ptk

. Hence, maximizing z is equivalent
to minimize the global maximum lateness.

5. The general SMSP

Now, the general SMSP is considered. Here, a non-top job j can belong to
several pyramids, that is the only difference with the multi-pyramidal independent
SMSP. Let us note u(j) (v(j) resp.) the index of the first pyramid (the last pyramid
resp.) to which the job j belongs. With respect to Theorem 2.1, any dominant
sequence is in the form σ = α1 ≺ t1 ≺ β1 ≺ · · · ≺ αm ≺ tm ≺ βm, where tk is the
top job of the pyramid Pk, ∀k = 1 . . . m, and any non-top job j can be sequenced
either in αk or βk, for any k such that u(j) ≤ k ≤ v(j).

68 C. BRIAND, S. OURARI AND B. BOUZOUIA

It is easy to see, once the assignments of the non-top jobs to their pyramid
done, that the problem turns into a multi-pyramidal independent problem (that
can be solved using the ILP2 formulation). Consequently, a general formulation
can be obtained by simply adding binary variables to the ILP2 formulation, so
that each non-top job can only be assigned to a single pyramid Pk. The following
general formulation (ILP3) is then obtained:

max z = mink=1,...,m(Dk − Rk − ptk
)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rk ≥ rtk
, ∀k ∈ [1 m] (5.1)

Dk ≤ dtk
, ∀k ∈ [1 m] (5.2)

Rk ≥ ri +
∑

{j∈Pk|rj≥ri} pjx
+
kj , ∀i|k = u(i) (5.3)

Dk ≤ di − ∑
{j∈Pk|dj≤di} pjx

−
kj , ∀i|k = v(i) (5.4)

Rk ≥ Rk−1 +
∑

{j∈Pk−1} pjx
−
(k−1)j + ptk−1

+
∑

{j∈Pk|rj≥ri} pjx
+
kj , ∀k ∈ [2 m] (5.5)

Dk ≤ Dk+1 − ∑
{j∈Pk+1} pjx

+
(k+1)j − ptk+1

− ∑
{j∈Pk|dj≤di} pjx

−
kj , ∀k ∈ [1 (m − 1)] (5.6)

∑v(i)
k=u(i)(x

−
ki + x+

ki) = 1 , ∀i (5.7)

x−
ki , x+

ki ∈ {0, 1} , ∀k ∈ [1 m], ∀i ∈ Pk

Dk , Rk ∈ Z , ∀k ∈ [1 m].

In ILP3, similarly with ILP2, the binary variable x+
ki (x−

ki resp.) is set to 1 if Job
i, belonging to Pyramid Pk (i.e. u(i) ≤ k ≤ v(i)), is sequenced in αk (in βk resp.),
provided that it cannot be sequenced both in αk and βk and it is assigned to a
single pyramid (i.e., the constraint (5.7) is satisfied for i). The constraints (5.1)–
(5.6) remain unchanged, when compared to ILP2.

Now let us give few comments concerning the number of constraints and vari-
ables that are involved. There is one constraint of type (5.1) and (5.2) for each top
job. There is one constraint of type (5.3) and (5.4) for each non-top job and there
are (n−m) non-top jobs. There are (m− 1) constraints of type (5.5) and (m− 1)
constraints of type (5.6). There is one constraint of type (5.7) for each non-top
job. Therefore, the total number of constraint is (m + 3n − 2). The number of
binary variables is (2

∑m
k=1(nk)), where nk is the number of non-top jobs that can

be assigned to Pk. There are (2m) integer variables but we notice that their value
can be directly deduced from those of the binary variables.

6. Numerical experiments

The ILP3 model has been implemented using the Ilog-concert library and tested
on problem instances having from 100 up to 3100 jobs. For each problem instance,
we both ran the ILP3 model and the Carlier’s procedure, aiming at comparing

AN ILP MODEL FOR THE ONE MACHINE SCHEDULING PROBLEM 69

Table 1. Experimentation report.

their computational time. All experiments have been processed on a 1.60 GHz
Intel Xeon processor with 2 Gbytes of RAM. For each problem size, 50 problem
instances have been considered.

To generate data for the single machine scheduling problem, we reuse the
method introduced in [5]. The processing times of jobs correspond to uniform
random variables between [1,50]. Each ri is represented by an uniform random
variable in the range [0, α × ∑n

i=1 pi], where α is a parameter allowing to ad-
just the distribution of ri. Five values of α were considered: {0.2; 0.4; 0.6; 0.8; 1}.
Similarly, each di is represented by an uniform random variable in the range
[(1−β)×a×∑n

i=1 pi, a×
∑n

i=1 pi].The parameter a ∈ {100%, 110%} allows to ad-
just the maximal temporal margin associated to jobs and the parameter β controls
the dispersion of di. Five values of β were considered β ∈ {0.2; 0.4; 0.6; 0.8; 1}. To
ensure the coherence among the release date, the due date and the processing time
of each job, any di smaller than ri + pi has been updated to this value. For each
problem size, combining each possible value of α, β and a, we obtain 50 problem
instances.

Using those generating principles, we provide instances for single machine prob-
lems having 100, 400, 700, 1000, 1300, 1600, 1900, 2200, 2500, 2800 and 3100 jobs.
For each problem size, Table 1 reports the following indicators :

• the min/mean/max cpu time for the Carlier’s procedure (TCar);
• the min/mean/max cpu time for running ILP3 (TILP);
• the percentage of times TILP > TCar (%W);
• the number of Schrage-optimal instances (#S);
• the min/mean/max cpu time for the Carlier’s procedure only considering

the hard instances (T hard
Car);

70 C. BRIAND, S. OURARI AND B. BOUZOUIA

• the min/mean/max cpu time for running ILP3 only considering the hard
instances (T hard

ILP);
• the percentage of times T hard

ILP > T hard
Car (%W hard).

The branch-and-bound procedure of Carlier [2] intensively uses the Schrage’s
algorithm in order to build up, at each node of the search tree, a job sequence. The
local optimality of this job sequence is easily checked using a sufficient condition
of optimality. We remark that it sometimes happens that the first Schrage’s job
sequence (i.e., the one computed at the root node considering the initial instance
data) is optimal. In this case, we say that the problem instance is Schrage-optimal
and we know that the Carlier’s procedure only develops a single node for returning
the optimal Lmax value. As displayed in Table 1, this situation occurs many time
in our experiments since, when n ≥ 2200, we observe that the generating procedure
often fails to provide instances which are not Schrage-optimal (i.e., #S is close
to 50).

This is why we decided to provide Cplex with the initial Schrage’s sequence,
intending to decrease the computational effort needed to solve ILP3. Nevertheless,
we highlight that in the case where the problem instance is Schrage-optimal, Cplex
has still to prove the optimality of the sequence using LP techniques (while the
Carlier’s procedure is able to immediately deduce the optimality). This observa-
tion explains the first part of Table 1. Indeed, TCar progressively increases as n
increases until n = 1900, which is the limit where #S becomes very close to 50,
and then TCar decreases when n increases. Regarding now TILP , we observe that
the mean CPU time always increases as n increases, even when #S ∼= 50, since
proving the optimality of the Schrage’s sequence becomes more and more time
expensive. Beyond this observation, we also observe that TILP is good for small
instances (even better in average than TCar when n ≤ 700) and remains acceptable
for largest ones.

In order to refine the analysis, we decided to discard the Schrage-optimal prob-
lem instances from our statistics, only focusing on the hardest ones (see second
part of Tab. 1). This time, we observe that the ILP approach is less time expen-
sive than the Carlier’s procedure in most of the cases, at least until n = 1600.
This seems to indicate that the ILP approach becomes competitive only when the
problem instances are hard (i.e., the number of nodes that the Carliers’s procedure
develops is large), although for large n values, it is difficult to make an opinion
due to the low number of hard instances that were generated.

Another limit of the ILP approach concerns the size of the problem instances
that it is able to cope with. Indeed, even if Cplex succeeds in solving instances
having more than 4000 jobs, we observe that when there are many top jobs in the
instance, the number of binary variables increase drastically and Cplex may run
out of memory. On our test platform, we observe that this situation often occurs
for instances of 4500 jobs having more than 300 top jobs (in this case, the corre-
sponding reduced MIP has around 9000 rows and 700000 columns). Conversely,
the Carlier’s procedure is not affected by the number of non-top jobs and is able
to solve instances with more than 10 000 jobs without any problem.

AN ILP MODEL FOR THE ONE MACHINE SCHEDULING PROBLEM 71

7. Conclusion

This paper proposes an efficient ILP formulation for solving the general
1|rj |Lmax problem. The experiments tend to demonstrate that our ILP approach
is well suited to tackle medium-size instances, particularly when they are not
Schrage-optimal (i.e., hard to solve). We also point out that, to the best of our
knowledge, there does not exist any other ILP approach that can be compared with
the clever branch-and-bound procedure of Carlier in term of efficiency, although
we recognize that the Carlier’s procedure remains the best-suited technique to
solve efficiently 1|rj |Lmax in most of the situations. Beyond these observations,
we think that the interest of our ILP approach lies in its ability to be easily adapted
for considering different objective function for the SMSP (e.g., the minimization
of the number of late jobs) or, hopefully, for tackling more complex scheduling
environment (e.g., parallel machines or job shop) with similar objective.

References

[1] C. Briand, H.T. La and J. Erschler, Une approche pour l’ordonnancement robuste de
tâches sur une machine, 4ème Conférence Francophone de MOdélisation et SIMulation
(MOSIM’03). Toulouse, France (2003) 205–211.

[2] J. Carlier, The one-machine sequencing problem. Eur. J. Oper. Res. 11 (1982) 42–47.
[3] J. Erschler, F. Roubellat and J.-P Vernhes, Characterizing the set of feasible sequences for

n jobs to be carried out on a single machine. Eur. J. Oper. Res. 4 (1980) 189–194.
[4] J. Erschler, G. Fontan, C. Merce and F. Roubellat, A New Dominance Concept in Scheduling

n Jobs on a Single Machine with Ready Times and Due Dates. Oper. Res. 31 (1983) 114–127.
[5] A.M. Hariri and C.N. Potts, An algorithm for single machine sequencing with release dates

to minimize total weighted completion time. Discrete Appl. Math. 5 (1983) 99–109.
[6] J.K. Lenstra, A.H.G. Rinnooy Han and P. Brucker, Complexity of machine scheduling prob-

lems. Ann. Discrete Math. 1 (1977) 343–362.

	Introduction
	A general dominance theorem for the SMSP
	The mono-pyramidal SMSP
	The independent multi-pyramidal SMSP
	The general SMSP
	Numerical experiments
	Conclusion
	References

