
RAIRO-Oper. Res. 46 (2012) 211–234 RAIRO Operations Research

DOI: 10.1051/ro/2012015 www.rairo-ro.org

ON A DUAL NETWORK EXTERIOR POINT SIMPLEX
TYPE ALGORITHM AND ITS COMPUTATIONAL

BEHAVIOR ∗

George Geranis
1
, Konstantinos Paparrizos

1

and Angelo Sifaleras
2

Abstract. The minimum cost network flow problem, (MCNFP) con-
stitutes a wide category of network flow problems. Recently a new dual
network exterior point simplex algorithm (DNEPSA) for the MCNFP
has been developed. This algorithm belongs to a special “exterior point
simplex type” category. Similar to the classical dual network simplex al-
gorithm (DNSA), this algorithm starts with a dual feasible tree-solution
and after a number of iterations, it produces a solution that is both pri-
mal and dual feasible, i.e. it is optimal. However, contrary to the DNSA,
the new algorithm does not always maintain a dual feasible solution.
Instead, it produces tree-solutions that can be infeasible for the dual
problem and at the same time infeasible for the primal problem. In
this paper, we present for the first time, the mathematical proof of cor-
rectness of DNEPSA, a detailed comparative computational study of
DNEPSA and DNSA on sparse and dense random problem instances,
a statistical analysis of the experimental results, and finally some new
results on the empirical complexity of DNEPSA. The analysis proves
the superiority of DNEPSA compared to DNSA in terms of cpu time
and iterations.

Keywords. Network flows, minimum cost network flow problem, dual
network exterior point simplex algorithm.

Mathematics Subject Classification. 90C27, 65K05, 90B10,
91A90.

Received November 16, 2010. Accepted July 11, 2012.

∗ This paper is dedicated to the late Professor Paparrizos Konstantinos.

1 Department of Applied Informatics, University of Macedonia, 156 Egnatia Str., 54006
Thessaloniki, Greece. geranis@uom.gr; paparriz@uom.gr

2 Department of Technology Management, University of Macedonia, Loggou-Tourpali, 59200
Naoussa, Greece. sifalera@uom.gr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2012

http://dx.doi.org/10.1051/ro/2012015
http://www.rairo-ro.org
http://www.edpsciences.org

212 G. GERANIS ET AL.

1. Introduction

The MCNFP is the problem of finding a minimum cost flow of product units,
through a number of supply nodes (sources), demand nodes (sinks), and trans-
shipment nodes. Other common problems, such the shortest path problem, the
transportation problem, the transshipment problem, the assignment problem, etc.,
are special cases of the MCNFP. The MCNFP appears very frequently in different
sectors of technology, like informatics, telecommunications, transportation, etc.
Numerous real life problems can be solved, by applying network flow models as
described in [2, 16].

The MCNFP can be easily transformed into a linear programming problem, and
well-known general linear programming algorithms could be applied in order to
find an optimal solution. Such algorithms do not take advantage of some special
features met in the MCNFP. Therefore, other special Simplex-type algorithms
have been developed, such as the primal network simplex algorithm and the dual
network simplex algorithm. There are also other non Simplex-type algorithms that
can be used for solving the same problem as presented in [9, 26].

This paper presents, an exterior point dual simplex-type algorithm for the
MCNFP. The algorithm is named dual network exterior point simplex algorithm
(DNEPSA for short) for the MCNFP. DNEPSA starts from a dual feasible tree-
solution and, iteration by iteration, it produces new tree-solutions closer to an
optimal solution, reducing the problem’s infeasibility. Contrary to the dual net-
work simplex algorithm (DNSA for short), the tree-solution at every iteration is
not necessarily dual feasible. The algorithm computes the direction towards to the
dual feasible area by maintaining a direction vector d. After a number of iterations,
vector d becomes equal to zero. This happens because the current tree-solution is
both primal and dual feasible and therefore it is optimal. It is worth mentioning
that, DNEPSA is quite different from other pivot algorithms such as the criss-cross
Simplex method. This is due to the fact that, the trace of a criss-cross method
is not monotonic with respect to the objective function, [11]. A primal exterior
point simplex-type algorithm for the MCNFP has been recently reported in [27].
A preliminary geometrical interpretation of DNEPSA was described in [12], while
in this paper we show for the first time (i) the algorithm’s mathematical proof
of correctness, (ii) an encouraging comparative computational study of DNEPSA
and DNSA, (iii) a statistical analysis of the experimental results, and finally (iv)
some new results on the empirical complexity of DNEPSA.

Section 2 gives the notation that will be used in this paper and a short descrip-
tion of the MCNFP. In Section 3, the steps followed by DNEPSA are analytically
described, while Section 4 shows the algorithm’s mathematical proof of correctness.
Section 5 presents the results of the comparative experimental analysis between
DNEPSA and DNSA, and a statistical analysis of the performance evaluation
follows in Section 6. Section 7 presents some new experimental results on the em-
pirical complexity of DNEPSA. Finally, Section 8 provides some conclusions and
plans for future work.

DNEPSA AND ITS COMPUTATIONAL BEHAVIOR 213

2. Problem statement and notation

Let G = (N, A) be a directed network that consists of a finite set of nodes N
and a finite set of directed arcs A. Let n and m be the number of nodes and arcs,
respectively. For each node i ∈ N , there is an associated variable bi representing
the available supply or demand at that node. Node i is a supply node (source), if
bi > 0. On the other hand it is a demand node (sink), if bi < 0. Finally, the node
i is a transshipment node in the case that bi = 0. Moreover, we consider that the
total supply is equal to the total demand, i.e., it holds

∑
i∈N bi = 0 (balanced

network).
For every arc (i, j) ∈ A we have an associated flow xij that shows the amount

of product units transferred from node i to node j and an associated cost per unit
value cij . Therefore, the total cost is equal to

∑
(i,j)∈A cijxij , and the MCNFP

is the problem of finding a flow that minimizes that total cost. We can have for
the flow xij a lower and an upper bound, lij and uij , respectively. This gives an
additional constraint lij ≤ xij ≤ uij for every arc (i, j) ∈ A. In our case, we
consider that lij = 0 and uij = +∞, ∀(i, j) ∈ A. In other words, our algorithm is
applied to the uncapacitated MCNFP. For every node i ∈ N , it has to be:

∑
(i,j)∈A

xij−
∑

(j,i)∈A

xji =bi,

because the outgoing flow must be equal to the incoming flow plus the node’s
supply. Therefore, the mathematical formulation of the MCNFP is as follows:

minimize z =
∑

(i,j)∈A

cijxij , (2.1)

subject to

∑
(i,j)∈A

xij−
∑

(j,i)∈A

xji =bi, ∀i ∈ N,

xij ≥ 0, ∀(i, j) ∈ A.
(2.2)

Since
∑

i∈N

bi = 0, by using formulas (2.2), it comes out that:

∑
i∈N

⎛
⎝ ∑

(i,j)∈A

xij−
∑

(j,i)∈A

xji

⎞
⎠ = 0.

That means that constraints (2.2) are linearly dependent and we can arbitrarily
drop out one of them. In matrix notation format the problem can be expressed as
follows:

minimize z = cT x,
s.t. Ax = b,
x ≥ 0,

(2.3)

214 G. GERANIS ET AL.

where A ∈ �n×m, c ∈ �m, x ∈ �m and b ∈ �n. Notation cT denotes the transpose
of vector c. There is a set of dual variables wi, one for every node, and a number
of reduced cost variables sij , one for every directed arc. These are the variables
used for the formulation of the dual problem. In matrix notation format, the dual
problem has the following form:

maximize z = bT w,
s.t. AT w + Ims = c,
s ≥ 0,

(2.4)

where A ∈ �n×m, c ∈ �m, w ∈ �n, s ∈ �m, b ∈ �n and Im is the unit matrix
of size m. Network simplex-type algorithm starts from a basic tree-solution and
compute vectors (i.e., x, w, s). If for a tree-solution T , xij ≥ 0 for every arc (i, j) ∈
T , then that solution is said to be primal feasible. If for a tree-solution T , sij ≥ 0 for
every arc (i, j) /∈ T then it is said to be dual feasible. A solution being both primal
and dual feasible is an optimal solution. Primal network simplex-type algorithms
start from a primal feasible tree-solution and they move, at every iteration, to
a new primal feasible solution, until they find an optimal solution. On the other
hand, dual network simplex-type algorithms start from a dual feasible tree-solution
and they reach an optimal solution, by following successive dual feasible solutions.

3. Algorithm description

The DNEPSA, starts from a dual feasible basic tree-solution T , and after a num-
ber of iterations, it comes to a tree-solution that is both primal and dual feasible.
The main difference between DNEPSA and the existing dual network simplex-
type algorithms, is the fact that the tree-solutions formed during the iterations
of DNEPSA are not necessarily always dual feasible. In other words, DNEPSA
starts from a dual solution and reaches an optimal solution by following a route
consisting of solutions that do not always belong to the feasible area of the dual
solution. Furthermore, DNEPSA contrary to the classical DNSA first selects the
entering arc and afterwards selects the leaving arc. Finally, both entering and leav-
ing arcs are selected using different rules for the DNEPSA and DNSA algorithms
respectively.

Step 0 (Initializations). Various methods can be used to find a starting dual
feasible tree-solution. An algorithm that can construct a dual feasible tree-solution
for the generalized network problem (and also for pure networks) is described
in [14], and an improved version of the algorithm is presented in [20], which gives
a dual feasible solution that is closer to an optimal solution.

The starting dual feasible solution T consists of n − 1 directed arcs that form
a tree. These arcs and the corresponding flows are called basic arcs and basic
variables, respectively. For the non basic arcs (i, j) /∈ T it is xij = 0 and sij ≥ 0,

DNEPSA AND ITS COMPUTATIONAL BEHAVIOR 215

while for the basic arcs (i, j) ∈ T it is sij = 0. The values of the dual variables wi,
1 ≤ i ≤ n, can be easily computed from the following equations:

wi − wj = cij , ∀(i, j) ∈ T. (3.1)

In equation (3.1) we have n − 1 equations and n variables, so we can choose
one of the dual variables (e.g., w1) and set it equal to an arbitrary value (e.g., 0).
Then, it is easy to compute the values for the rest of the dual variables. In order to
compute the reduced costs sij for the non-basic arcs (i, j), we can use the following
equation:

sij = cij − wi + wj , ∀(i, j) /∈ T, (3.2)

while sij = 0 for all the basic arcs. Next, the algorithm creates a set named I
that contains the basic arcs (i, j) having negative flow and a set I+ containing the
rest of the arcs:

I = {(i, j) ∈ T : xij < 0}, I+ = {(i, j) ∈ T : xij ≥ 0}. (3.3)

If a non-basic arc (i, j) is added into the basic tree T , then a cycle C is created.
In that case, let h be the vector of orientations of all basic arcs relative to the
entering arc (i, j). If an arc (u, v) in C has the same orientation as (i, j), then it
is huv = −1, otherwise it is huv = +1. For an arc (u, v) not belonging to C, it is
huv = 0. In every iteration, DNEPSA finds out a new basic tree-solution which is
probably neither primal nor dual feasible. The algorithm computes the direction
towards to the feasible region of the dual problem by maintaining a direction vector
d. Vector d is computed by using the following formula:

dij = 1, if (i, j) ∈ I ,
dij = 0, if (i, j) ∈ I+,
dij =

∑
(u,v)∈I

huv, if (i, j) /∈ T.
(3.4)

Step 1 (Test of optimality). If I = ∅, this means that the current tree-solution
is optimal. Otherwise, DNEPSA creates a set named J defined as:

J = {(i, j) /∈ T : sij ≥ 0 and dij < 0}. (3.5)

If (J = ∅) ∧ (I
= ∅), then the problem is infeasible.

Step 2 (Choice of entering arc). DNEPSA uses J , to compute the following
minimal ratio:

α =
sgh

−dgh
= min

{
sij

−dij
: (i, j) ∈ J

}
. (3.6)

This ratio, as it is seen in (3.6), is used in order to choose the entering arc (g, h).
After (g, h) is added into the basic tree T , then a cycle C is created. When a unit

216 G. GERANIS ET AL.

Figure 1. Type A and type B iterations.

of product flows through C, then the value of the objective function is changed by
the following amount:

Δz =
∑

(i,j)∈C

tijcij ,

where tij equals 1 if the arcs (i, j) and (g, h) have the same orientation in cy-
cle C, otherwise tij = −1. By using equations (3.1) for arcs (i, j)
= (g, h) and
equation (3.2) we take:

Δz =
∑

(i,j)∈C

tijcij = cgh − wg + wh = sgh. (3.7)

Step 3 (Choice of leaving arc). In order to find the leaving arc (k, l), DNEPSA
calculates the following values:

θ1 = −xk1l1 = min{−xij : (i, j) ∈ I and (i, j) ↑↑ (g, h)},
θ2 = xk2l2 = min{ xij : (i, j) ∈ I+ and (i, j) ↑↓ (g, h)}, (3.8)

where notation ↑↑ is used for arcs that have the same orientation, while notation
↑↓ stands for arcs of opposite orientation to each other. The algorithm compares
the values of θ1 and θ2. If θ1 ≤ θ2, then arc (k1, l1) is the leaving arc. In that
case, we say we have a type A iteration. An arc of negative flow xkl = −θ1 is
leaving and an arc with flow xgh = θ1 is entering the basic solution, as it is seen
in Figure 1. For the leaving arc (k, l), the subtree containing node k is denoted by
T +, while the other subtree is denoted by T−. If, on the other hand, θ1 > θ2, then
arc (k2, l2) is the leaving arc. In that case, we say we have a type B iteration. An
arc of positive flow xkl = θ2 is leaving and an arc with flow xgh = θ2 is entering
the basic solution, as it is seen in Figure 1.

DNEPSA AND ITS COMPUTATIONAL BEHAVIOR 217

Step 4 (Pivoting). After finding the entering and the leaving arc, the algo-
rithm comes to a new tree-solution, closer to an optimal solution, and iteration
by iteration it finds an optimal solution. The formal description of DNEPSA, in
pseudocode, follows in Algorithm 1.

Algorithm 1. DNEPSA
Require: G = (N, A), b, c, T
1: procedure DNEPSA(G, T)

Step 0 (Initializations)
2: Compute x, w, and s, using relations (2.1), (3.1), and (3.2) respectively
3: Find sets I and I+, using relations (3.3)
4: Compute vector d, using relation (3.4)

Step 1 (Test of optimality)
5: while I �= ∅ do
6: Find set J , using relation (3.5)
7: if J = ∅ then
8: STOP. The problem 2.1 is infeasible
9: else

Step 2 (Choice of entering arc)
10: Compute α, using relation (3.6)
11: Choose the entering arc (g, h)

Step 3 (Choice of leaving arc)
12: Compute θ1, θ2, using relations (3.8)
13: Choose the leaving arc (k, l)

Step 4 (Pivoting)
14: Set T = T \ (k, l) ∪ (g, h)
15: Update x, s, and d
16: if θ1 ≤ θ2 then
17: Set I = I \ (k, l) and I+ = I+ ∪ (g, h)
18: else
19: Set I+ = I+ ∪ (g, h) \ (k, l)
20: end if
21: end if
22: end while
23: STOP. The problem 2.1 is optimal.
24: end procedure

It is not necessary for the algorithm in every iteration to compute the values of
variables xij , sij , and dij or to create sets I and I+ from scratch. These variables
and sets can be efficiently updated from iteration to iteration. Notation x

(t)
ij means

the flow on arc (i, j) during iteration t of the algorithm. Similar notation is used
for variables sij and dij . After adding the entering arc into the basic tree during
the t iteration, a cycle, denoted C(t) is created. For the basic arcs (i, j) ∈ T we
can have the different cases, shown in Figure 2.

In iteration t + 1, for every basic arc (i, j), flow x
(t+1)
ij depends on the flow of

the arc in the previous iteration x
(t)
ij and the flow of the leaving arc x

(t)
kl , as it

218 G. GERANIS ET AL.

Figure 2. Possible cases for the basic arcs (i, j).

Table 1. Update of xij (Fig. 2), sij and dij (Fig. 3).

Cases x
(t+1)
ij s

(t+1)
ij d

(t+1)
ij

Case 1 x
(t)
ij s

(t)
ij d

(t)
ij

Case 2 −x
(t)
kl = θ1 s

(t)
ij + s

(t)
gh d

(t)
ij + d

(t)
gh

Case 3 x
(t)
kl = θ2 s

(t)
ij − s

(t)
gh d

(t)
ij − d

(t)
gh

Case 4 x
(t)
ij − x

(t)
kl s

(t)
ij − s

(t)
gh d

(t)
ij − d

(t)
gh

Case 5 x
(t)
ij + x

(t)
kl s

(t)
ij + s

(t)
gh d

(t)
ij + d

(t)
gh

is shown in Table 1. For the non basic arcs (i, j) /∈ T we can also have different
cases, depending on the type of iteration and the arc’s position, as it is shown in
Figure 3. In iteration t + 1, the reduced costs s

(t+1)
ij for the non basic arcs (i, j)

depend on the reduced costs in the previous iteration s
(t)
ij and the reduced cost

for the entering arc s
(t)
gh , as it is seen in Table 1. In a similar way, dij values are

updated, according again to Table 1. In order to update the sets I and I+, there
are two cases to be considered depending on the type of the iteration: (1) type A
iteration, (2) type B iteration.

• Case 1. for a type A iteration, both sets change according to the following
formulas:

I+ = I+ ∪ {(g, h)}, I− = I − {(k, l)}. (3.9)

• Case 2. for a type B iteration, only set I+ changes according to the following
formula:

I+ = I+ ∪ {(g, h)} − {(k, l)}. (3.10)

DNEPSA AND ITS COMPUTATIONAL BEHAVIOR 219

Figure 3. Possible cases for the non basic arcs (i, j).

4. Mathematical proof of correctness

In this section analytical proof of correctness for DNEPSA algorithm, will be
presented. Although, we make the assumption for all theorems that the problem
is not degenerate, a practical method to avoid the bad results due to degeneracy;
stalling or cycling, was applied in the implementation of DNEPSA. More precisely,
DNEPSA might have to choose between two or more equally qualified arcs, at the
selection of the leaving or the entering arc. This phenomenon is usually denoted
as a tie. DNEPSA was implemented in such a way that it breaks the ties using the
following method. A numbering was given at each arc and always the arc with the
minimum index was selected, between equally qualified leaving or entering arcs.
This technique is similar to the rule of Bland for the general linear programming
problem. Based on our computational experience on random generated sparse and
dense problems, there was not any basic tree recurrence in successive iterations
using this method. Moreover, we neither observed any long sequence of arcs leaving
the basic tree and entering back again repeatedly. Other practical anti-degeneracy
techniques in network linear programming, can be found in [23].

In Theorem 4.1 we prove that, for non-degerate pivots, the value of the objective
function z increases strictly from iteration to iteration. This conclusion is used in
Theorem 4.2, in order to prove that the algorithm terminates after a finite number
of iterations.

Theorem 4.1. The value of the objective function increases strictly from iteration
to iteration.

Proof. Let z(t) be the value of the objective function in iteration t. We will prove
that Δz = z(t+1)−z(t) > 0. As it is shown in equation (3.7), for a product unit flow
the objective function value changes by Δz = sgh. For a type A iteration, the flow

220 G. GERANIS ET AL.

on the entering arc (g, h) is equal to θ1 = −xkl > 0. By taking also into account
the non-degeneracy assumption, the total change equals θ1sgh > 0. Similarly, for
a type B iteration, the total difference is equal to θ2sgh > 0. �

Theorem 4.2. The algorithm terminates after a finite number of iterations.

Proof. In Theorem 4.1 we proved that the value of the objective function strictly
increases from iteration to iteration. That is, no tree-solution will be created twice.
The number of trees that can be created for a given network is finite. Therefore,
DNEPSA will perform a finite number of iterations before it terminates. �

In the next theorem, we prove that for every iteration, set I contains the basic
arcs (i, j) of negative flow while set I+ contains those of non-negative flow.

Theorem 4.3. For all iterations, if (i, j) ∈ I , then xij < 0 and if (i, j) ∈ I+

then xij ≥ 0.

Proof. We are going to use mathematical induction. Let’s assume we have a type
A iteration. For the first iteration, because of their definition, I contains the arcs
having negative flow, while I+ contains the arcs of the tree of non negative flow.
We assume that it is true for iteration t. We’ll show that it is also true for iteration
t + 1. The elements of I are updated according to formula (3.9). Therefore, an
arc that belongs to I during the (t + 1)th iteration, also belongs to I during the
tth iteration and, because of the assumption, it is x

(t)
ij < 0. We need to show that

x
(t+1)
ij < 0. By examining the cases shown in Figure 2 and the variable updates of

Table 1, we have

• Case 1 : it is x
(t+1)
ij = x

(t)
ij < 0 because of the assumption.

• Cases 2 and 3 : cannot hold because (g, h) ∈ I+.
• Case 4 : it is θ1 = −x

(t)
kl < −x

(t)
ij because of (3.8).

Therefore, x
(t+1)
ij = x

(t)
ij − x

(t)
kl < 0.

• Case 5 : it is x
(t+1)
ij = x

(t)
ij + x

(t)
kl < 0 since x

(t)
ij < 0 and x

(t)
kl < 0.

The contents of set I+ are also updated according to formula (3.9). Arc (g, h)
is the only new arc in I+ and, in a similar way, we have the following cases:

• Case 1 : it is x
(t+1)
ij = x

(t)
ij ≥ 0 because of the assumption.

• Case 2 : it is xgh = θ1 = −xkl ≥ 0.
• Case 3 : cannot hold obviously.
• Case 4 : it is x

(t+1)
ij = x

(t)
ij − x

(t)
kl ≥ 0 because x

(t)
ij ≥ 0 and x

(t)
kl < 0.

• Case 5 : it is x
(t+1)
ij = x

(t)
ij + x

(t)
kl . It is also θ2 ≤ x

(t)
ij because of formulas (3.8),

and θ1 ≤ θ2 because we have iteration of type A.
Therefore, θ1 = −x

(t)
kl ≤ x

(t)
ij ⇒ x

(t+1)
ij ≥ 0.

In a similar way, we can prove for type B iterations that, I contains the arcs
having negative flow and I+ contains those of non negative flow. �

DNEPSA AND ITS COMPUTATIONAL BEHAVIOR 221

The next theorem gives a property for the non basic arcs (i, j) that have negative
reduced cost value. This property will be very important for the proof of the
theorems that will follow.

Theorem 4.4. If for a non basic arc (i, j) it is sij < 0, then dij > 0 and sij

−dij
<

α = sgh

−dgh
.

Proof. We’ll first prove, by using mathematical induction, the first part of the
theorem, i.e., that if sij < 0 then dij > 0. During the first iteration, we don’t have
non basic arcs having negative reduced cost, since the algorithm starts from a dual
feasible solution. Let k + 1 be the first iteration for which we have s

(k+1)
ij < 0 for

an arc (i, j), while s
(k)
ij ≥ 0. According to Table 1, in order to have a negative

value, it has to be s
(k+1)
ij = s

(k)
ij − s

(k)
gh . It is as follows:

s
(k+1)
ij < 0 ⇒ s

(k)
ij < s

(k)
gh . (4.1)

In this case, from relation (4.1), it follows that s
(k)
gh > 0 (since s

(k)
ij ≥ 0). If d

(k)
ij ≥ 0,

then it is obviously d
(k+1)
ij = d

(k)
ij − d

(k)
gh > 0 since d

(k)
gh < 0. If, on the other hand,

it is d
(k)
ij < 0 then from Relation (3.6) we have:

α =
s
(k)
gh

−d
(k)
gh

≤ s
(k)
ij

−d
(k)
ij

· (4.2)

Relation (4.2) by using (4.1) becomes:

s
(k)
gh

−d
(k)
gh

<
s
(k)
gh

−d
(k)
ij

× d
(k)
gh

d
(k)
ij

s
(k)
gh

>0

⇒ −d
(k)
ij < −d

(k)
gh ⇒ d

(k)
ij − d

(k)
gh > 0 ⇒ d

(k+1)
ij > 0.

Assume that the theorem holds for iteration t. For iteration t + 1, according to
Figure 3 and Table 1, we have the following cases:

• Case 1 : obviously the theorem holds since d
(t+1)
ij = d

(t)
ij and s

(t+1)
ij = s

(t)
ij .

• Cases 2 and 5 : It is s
(t+1)
ij = s

(t)
ij + s

(t)
gh < 0 ⇒ s

(t)
ij < −s

(t)
gh

s
(t)
gh≥0⇒ s

(t)
ij < 0. Thus,

due to the assumption, it is d
(t)
ij > 0 and:

s
(t)
ij

−d
(t)
ij

<
s
(t)
gh

−d
(t)
gh

, (4.3)

it is also:

s
(t+1)
ij = s

(t)
ij + s

(t)
gh < 0 ⇒ s

(t)
gh < −s

(t)
ij . (4.4)

222 G. GERANIS ET AL.

Relation (4.3) using (4.4) becomes:

s
(t)
ij

−d
(t)
ij

<
−s

(t)
ij

−d
(t)
gh

× d
(t)
gh

d
(t)
ij

s
(t)
ij

>0

⇒ −d
(t)
gh < d

(t)
ij ⇒ d

(t)
gh + d

(t)
ij > 0 ⇒ d

(t+1)
ij > 0.

• Cases 3 and 4 :
– if d

(t)
ij ≥ 0, then it is d

(t+1)
ij = d

(t)
ij − d

(t)
gh > 0, (since d

(t)
gh < 0);

– if d
(t)
ij < 0, then due to the assumption, it holds s

(t)
ij ≥ 0. It is s

(t+1)
ij < 0 ⇒

s
(t)
ij − s

(t)
gh < 0 ⇒ s

(t)
gh > s

(t)
ij ⇒ s

(t)
gh > 0. Thus:

s
(t)
gh

−d
(t)
gh

≤ s
(t)
ij

−d
(t)
ij

s
(t)
ij <s

(t)
gh⇒ s

(t)
gh

−d
(t)
gh

<
s
(t)
gh

−d
(t)
ij

× d
(t)
gh

d
(t)
ij

s
(t)
gh

>0

⇒ −d
(t)
ij < −d

(t)
gh ⇒ d

(t)
ij −

d
(t)
gh > 0 ⇒ d

(t+1)
ij > 0.

We’ll prove now the second part of the theorem by using again mathematical

induction. We first prove that it is
s
(t+1)
ij

−d
(t+1)
ij

< α(t) and after that it is α(t) ≤ α(t+1).

Assume that this is the case for iteration t and we will show the same for iteration
t + 1. For the first case of Figure 3 it is obviously

s
(t+1)
ij

−d
(t+1)
ij

< α(t). For the rest of

the cases it is:

s
(t)
ij

−d
(t)
ij

<
s
(t)
gh

−d
(t)
gh

×d
(t)
ij >0⇒ −s

(t)
ij <

−s
(t)
ghd

(t)
ij

d
(t)
gh

· (4.5)

We also have:

s
(t+1)
ij

−d
(t+1)
ij

=
s
(t)
ij ± s

(t)
gh

−(d(t)
ij ± d

(t)
gh)

=
−s

(t)
ij

d
(t)
ij ± d

(t)
gh

± s
(t)
gh

−(d(t)
ij ± d

(t)
gh)

· (4.6)

Relation (4.6) using (4.5) becomes:

s
(t+1)
ij

−d
(t+1)
ij

<

−s
(t)
gh d

(t)
ij

d
(t)
gh

d
(t)
ij ± d

(t)
gh

± s
(t)
gh

−(d(t)
ij ± d

(t)
gh)

=
s
(t)
ghd

(t)
ij

−d
(t)
gh(d(t)

ij ± d
(t)
gh)

± s
(t)
ghd

(t)
gh

−d
(t)
gh(d(t)

ij ± d
(t)
gh)

=
s
(t)
gh(d(t)

ij ± d
(t)
gh)

−d
(t)
gh(d(t)

ij ± d
(t)
gh)

= − s
(t)
gh

d
(t)
gh

= α(t).

We will now show that α(t) ≤ α(t+1). Assume this is true for iteration t. For the
first case of Figure 3, it is obviously true. For the rest of the cases, it is as follows:

s
(t)
ij

−d
(t)
ij

≥ α(t) =
s
(t)
gh

−d
(t)
gh

×(−d
(t)
ij)>0

=⇒ s
(t)
ij ≥ d

(t)
ij s

(t)
gh

d
(t)
gh

· (4.7)

DNEPSA AND ITS COMPUTATIONAL BEHAVIOR 223

It is also:

s
(t+1)
ij

−d
(t+1)
ij

=
s
(t)
ij ± s

(t)
gh

−(d(t)
ij ± d

(t)
gh)

· (4.8)

From (4.7) and (4.8) we take:

s
(t+1)
ij

−d
(t+1)
ij

≥
d
(t)
ij

s
(t)
gh

d
(t)
gh

± s
(t)
gh

−(d(t)
ij ± d

(t)
gh)

=
s
(t)
gh(d(t)

ij ± d
(t)
gh)

−d
(t)
gh(d(t)

ij ± d
(t)
gh)

=
s
(t)
gh

−d
(t)
gh

= α(t).

We proved that, for every case, α(t) ≤ α(t+1) and therefore,
s
(t+1)
ij

−d
(t+1)
ij

< α(t+1). �

The next theorem proves that the algorithm keeps in touch with the dual feasible
region by maintaining direction vector d. We prove that sij + α dij ≥ 0, for every
arc (i, j).

Theorem 4.5. Solution y = s + αd is dual feasible during all iterations of the
algorithm.

Proof. If sij < 0 then according to Theorem 4.4 it is dij > 0 and sij

−dij
< α.

Therefore, sij + αdij > 0. If sij ≥ 0 and dij < 0 then sij

−dij
≥ α (relation (3.6)).

Therefore, it is again sij + αdij ≥ 0. Finally, if sij ≥ 0 and dij ≥ 0 then obviously
sij + αdij ≥ 0. �

The next theorem examines the case where the problem is infeasible.

Theorem 4.6. If J = ∅ and I
= ∅, then the problem is infeasible.

Proof. As it was shown in Theorem 4.5, y = s + αd is always dual feasible. There-
fore, it satisfies the restrictions of the dual problem as it is described in matrix
format in formula (2.4). So, we have:

AT w + Im(s + αd) = c.

We denote as AT
B the matrix formed by the rows of matrix AT that correspond

to the basic variables. Vectors cB, sB, and dB are formed in a similar way. It is as
follows:

AT
Bw + (sB + αdB) = cB.

By multiplying both parts of the above equation by bT (AT
B)−1 we take:

bT w = bT (AT
B)−1cB − bT (AT

B)−1(sB + αdB). (4.9)

224 G. GERANIS ET AL.

For the basic solution xB it is:

ABxB = b ⇒ xT
B = bT (AT

B)−1,

so, by formula (4.9) we have:

bT w = xT
BcB − xT

B(sB + αdB) = xT
BcB − αxT

BdB,

because sB = 0. If we denote z and z′ the value of the objective function of the
primal and the dual problem respectively, the last equation becomes:

z′ = z − αxT
BdB. (4.10)

We have dij = 1 for the negative flows and dij = 0 for the non-negative flows
(formula (3.4)). There is at least one negative flow because I
= ∅. Therefore,
xBdB < 0 and it can be seen in formula (4.10) that the objective function of the
dual problem is unbounded because it increases as far as the value of α increases.
The fact that the dual problem is unbounded, means that the primal problem is
infeasible. �

The last theorem proves that the algorithm has reached an optimal solution
when I = ∅.

Theorem 4.7. If I = ∅ then the current solution is optimal.

Proof. It is obvious from (3.4) that −|I | ≤ dij ≤ |I |, where notation |I | means
the cardinality of set I . If I = ∅, then |I | = 0 and therefore dij = 0, ∀(i, j) ∈ A.
According to Theorem 4.5 it is y = s + αd ≥ 0, so s ≥ 0. In tandem, x ≥ 0 since
I = ∅. The current tree-solution is both primal and dual feasible and therefore,
it is optimal. �

5. Implementation of DNEPSA and computational

results

In order to evaluate the performance of DNEPSA, we performed an experimen-
tal comparison of DNEPSA against the classic DNSA. In this section we report
the numerical tests for both algorithms. These tests demonstrate the exterior point
algorithms efficiency on randomly generated MCNFP instances. The MCNF prob-
lem instances were created using the well-known NETGEN generator [22]. We ran
the experiments on an Intel Pentium 4, running Ubuntu 9.10 “Karmic Koala”
version at 3.6 GHz processor, and 2 GB RAM DDR 2 400Mhz with the -O3 (fully
optimized for speed) option. The competitive algorithms were implemented in C
and compiled with the gcc compiler. The functions used for the implementation
of the algorithms have been written following the same programming techniques
adjusted to the special characteristics of each algorithm. We implemented the
augmented thread index method (ATI method), due to Glover et al. [15], for both

DNEPSA AND ITS COMPUTATIONAL BEHAVIOR 225

 0

 500

 1000

 1500

 2000

 2500

 200 300 400 500 600 700

N
um

be
r

of
 it

er
at

io
ns

Dimension (nodes)

2 % Density

DNSA
DNEPSA

 0

 20

 40

 60

 80

 100

 120

 140

 160

 200 300 400 500 600 700

C
P

U
 T

im
e

(s
ec

on
ds

)

Dimension (nodes)

2 % Density

DNSA
DNEPSA

Figure 4. Comparative computational results of DNEPSA and
DNSA for problem instances of density 2%.

algorithms. This method was chosen because it allows the fast update of the basic
tree and it can also easily identify the cycle created with the addition of the enter-
ing arc. The two algorithms need an initial dual feasible solution to start from. At
every execution, the same starting point was used for both algorithms. The time
needed in order to find that initial solution, was included in the measurements.

Based on preliminary computational results on random generated problems [13],
DNEPSA proved to be superior to DNSA for networks of density 20%. This supe-
riority was shown on both, the number of the iterations and on the time needed
in order to find an optimal solution. This section presents a more detailed com-
putational study, in order to estimate the efficieny of DNEPSA to both dense and
sparse problem instances. More specifically five classes of instances were developed;
one sparse class and four dense classes. The densities are 2%, 10%, 20%, 30%, and
40% respectively for each class. Each class consists of six problem categories, with
varying dimensions. The number of the nodes in each class, starts from 200 and
is up to 700, with step equal to 100, (so this way the six, previously mentioned,
categories are built). The number of the arcs depends on the class of the instance.
Moreover, in each one category of the classes, ten instances have been created,
in order to compute the average number of the iterations and also of the total
cpu time. To conclude with, 300 MCNFP instances have been created and solved.
The comparative computational results and the normalized comparative computa-
tional results, of DNEPSA and DNSA, on a number of random problem instances
produced by NETGEN are presented in Tables 2 and 3 respectively.

Figures 4–8 demonstrate the performance of DNEPSA compared to the perfor-
mance of the DNSA. The average numbers of iterations (niter) and the average
numbers of cpu time (cpu) are depicted at the left and right part of each figure
respectively. All the figures have been created with gnuplot 4.2. These average
numbers come up from the instances which were solved in each category of the
five classes.

226 G. GERANIS ET AL.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 200 300 400 500 600 700

N
um

be
r

of
 it

er
at

io
ns

Dimension (nodes)

10 % Density

DNSA
DNEPSA

 0

 50

 100

 150

 200

 250

 300

 350

 400

 200 300 400 500 600 700

C
P

U
 T

im
e

(s
ec

on
ds

)

Dimension (nodes)

10 % Density

DNSA
DNEPSA

Figure 5. Comparative computational results of DNEPSA and
DNSA for problem instances of density 10%.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 200 300 400 500 600 700

N
um

be
r

of
 it

er
at

io
ns

Dimension (nodes)

20 % Density

DNSA
DNEPSA

 0

 100

 200

 300

 400

 500

 600

 200 300 400 500 600 700

C
P

U
 T

im
e

(s
ec

on
ds

)

Dimension (nodes)

20 % Density

DNSA
DNEPSA

Figure 6. Comparative computational results of DNEPSA and
DNSA for problem instances of density 20%.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 200 300 400 500 600 700

N
um

be
r

of
 it

er
at

io
ns

Dimension (nodes)

30 % Density

DNSA
DNEPSA

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 200 300 400 500 600 700

C
P

U
 T

im
e

(s
ec

on
ds

)

Dimension (nodes)

30 % Density

DNSA
DNEPSA

Figure 7. Comparative computational results of DNEPSA and
DNSA for problem instances of density 30%.

DNEPSA AND ITS COMPUTATIONAL BEHAVIOR 227

Table 2. Iterations and cpu time (s) averages for random generated instances.

DNSA DNEPSA
Density Nodes × Arcs niter cpu niter cpu

2% 200 × 796 296 0.85 289 0.71
300 × 1794 550 4.02 516 3.31
400 × 3192 969 11.10 845 8.90
500 × 4990 1315 34.02 1143 26.50
600 × 7188 1550 72.20 1237 51.60
700 × 9786 2317 140.38 1784 95.20

10% 200 × 3980 383 1.43 350 1.01
300 × 8970 853 7.70 770 5.01

400 × 15 960 1451 30.02 1277 18.30
500 × 24 950 2073 78.69 1811 46.81
600 × 35 940 2819 170.20 2231 97.10
700 × 48 930 4149 365.00 3101 188.21

20% 200 × 7960 389 2.34 359 1.71
300 × 17 940 884 11.50 786 8.02
400 × 31 920 1567 44.20 1298 29.60
500 × 49 900 2271 125.47 1841 82.90
600 × 71 880 3050 264.20 2291 155.40
700 × 97 860 4478 591.64 3202 323.23

30% 200 × 11 940 416 3.13 364 2.16
300 × 26 910 954 16.50 803 11.20
400 × 47 880 1628 72.15 1331 47.32
500 × 74 850 2357 176.60 1848 103.63
600 × 107 820 3083 265.52 2366 155.91
700 × 146 790 4535 981.35 3278 497.33

40% 200 × 15 920 454 4.59 377 3.06
300 × 35 880 1049 18.15 864 11.76
400 × 63 840 1791 79.37 1455 51.05
500 × 99 800 2512 199.26 1913 110.10
600 × 143 760 3398 312.25 2580 167.50
700 × 195 720 4943 1069.67 3473 552.08

A theoretical explanation of DNEPSA’s superiority against the classic DNSA,
is the fact that DNEPSA can cross over the infeasible region of the dual problem
and return back to it by finding an optimal solution. This behavior can lead to an
essential reduction on the number of iterations. In terms of linear programming,
DNEPSA computes the direction towards to the dual feasible region and, iteration
by iteration, it gets closer to the primal feasible region by reducing the solution’s
infeasibility. The comparative study of DNEPSA and DNSA algorithms shows

228 G. GERANIS ET AL.

Table 3. Normalized iterations and cpu time (s) averages for
random generated instances.

DNSA DNEPSA
Density Nodes × Arcs niter cpu niter cpu

2% 200 × 796 1.02 1.20 1 1
300 × 1794 1.07 1.21 1 1
400 × 3192 1.15 1.25 1 1
500 × 4990 1.15 1.28 1 1
600 × 7188 1.25 1.40 1 1
700 × 9786 1.30 1.47 1 1

10% 200 × 3980 1.09 1.42 1 1
300 × 8970 1.11 1.54 1 1
400 × 15 960 1.14 1.64 1 1
500 × 24 950 1.14 1.68 1 1
600 × 35 940 1.26 1.75 1 1
700 × 48 930 1.34 1.94 1 1

20% 200 × 7960 1.08 1.37 1 1
300 × 17 940 1.13 1.43 1 1
400 × 31 920 1.21 1.49 1 1
500 × 49 900 1.23 1.51 1 1
600 × 71 880 1.33 1.70 1 1
700 × 97 860 1.40 1.83 1 1

30% 200 × 11 940 1.14 1.45 1 1
300 × 26 910 1.19 1.47 1 1
400 × 47 880 1.22 1.52 1 1
500 × 74 850 1.28 1.70 1 1
600 × 107 820 1.30 1.70 1 1
700 × 146 790 1.38 1.97 1 1

40% 200 × 15 920 1.20 1.50 1 1
300 × 35 880 1.21 1.54 1 1
400 × 63 840 1.23 1.55 1 1
500 × 99 800 1.31 1.81 1 1
600 × 143 760 1.32 1.86 1 1
700 × 195 720 1.42 1.94 1 1

that, for the instances considered, the cpu time and the number of iterations for
DNEPSA algorithm are lesser than the same numbers for the DNSA.

6. Statistical analysis of the performance evaluation

In order to gain insight into the performance evaluation a statistical analysis is
needed, as also shown in [7,24,25]. The results of this statistical analysis were based

DNEPSA AND ITS COMPUTATIONAL BEHAVIOR 229

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 200 300 400 500 600 700

N
um

be
r

of
 it

er
at

io
ns

Dimension (nodes)

40 % Density

DNSA
DNEPSA

 0

 200

 400

 600

 800

 1000

 1200

 200 300 400 500 600 700

C
P

U
 T

im
e

(s
ec

on
ds

)

Dimension (nodes)

40 % Density

DNSA
DNEPSA

Figure 8. Comparative computational results of DNEPSA and
DNSA for problem instances of density 40%.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
N

E
P

S
A

 (
nu

m
be

r
of

 it
er

at
io

ns
)

DNSA (number of iterations)

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000 10000

D
N

E
P

S
A

 (
lo

g-
tr

an
sf

or
m

ed
 c

pu
 ti

m
e)

DNSA (log-transformed cpu time)

Figure 9. Scatterplots of DNEPSA vs. DNSA.

on IBM PASW Statistics v.19, and are presented in this Section in order to improve
and strengthen our experimental results. Typically, an increase or decrease in the
running time leads to an increase or decrease in the variance respectively. This
can be attributed to the fact that, the running times are bounded below at zero.
Therefore, a log transformation of the running times usually is preferred. Figure 9
depicts two scatterplots with a 45◦ line for reference; the left one showing the
number of iterations while the right one showing the solution times on a double-
logarithmic scale. Both of them exhibit a linear trend. The majority of the points
lie below the 45◦ line, thus indicating that DNSA is generally slower.

However, in order to draw a valid statistical conclusion about the differences
between the solution times or the number of iterations, a hypothesis testing is
needed. To accomplish this, a decision must be made regarding the use of para-
metric or non-parametric statistical hypothesis test. We denote by dniter the vec-
tor of pairwise differences in number of iterations between DNSA and DNEPSA.

230 G. GERANIS ET AL.

Thus, dniter = niterDNSA − niterDNEPSA, where niterDNSA and niterDNEPSA

correspond to the vectors of DNSA and DNEPSA number of iterations respec-
tively (30 values taken from Tab. 2). In a similar way, we denote by dcpu the vec-
tor of pairwise differences in solution times between DNSA and DNEPSA. Thus,
dcpu = tDNSA − tDNEPSA, where tDNSA and tDNEPSA correspond to the vectors of
DNSA and DNEPSA solution times respectively (30 values taken from Tab. 2).

By applying a one sample Kolmogorov-Smirnov test to the sample of dniter, we
take a p-value equal to 0.260 which is greater than 0.05. Therefore, there is no
reason to doubt the distribution of dniter is normal and we can safely proceed to a
paired-sample t-test. On the contrary, by applying again a one sample Kolmogorov-
Smirnov test to the sample of dcpu, we take a p-value equal to 0.018 which is less
than 0.05. Therefore, there is sufficient evidence to reject the normality assumption
of the distribution of dcpu and thus we should proceed to a Wilcoxon matched-pairs
signed-ranks test.

In the first case, the paired-sample t-test is actually a test on the differences
between the number of iterations between DNSA and DNEPSA. If we denote
by M the population mean of pairwise differences, then M = 0 indicates that on
randomly generated problem instances the experimental performance of DNSA and
DNEPSA is about the same. However, M > 0 implies that DNSA is likely to need
more iterations whereas M < 0 implies that DNEPSA needs more iterations. Since,
we have no a priori reason to consider either algorithm is doing less iterations, we
will test the hypothesis that H0 : M = 0 versus H1 : M
= 0. The mean difference
in number of iterations (Mean = 423.27, Standard Error = 74.90, N = 30) was
significantly greater than zero, t = 5.65, two-tail p < 0.05, verifying the conclusion
that the two algorithms perform differently. A 95% confidence interval about mean
difference in number of iterations is (270, 576), indicating that the mean difference
in number of iterations is between 270 iterations and 576 iterations. Therefore, we
reject H0 and conclude that the algorithms perform differently. Since the values of
the pairwise differences are all positive, we conclude that DNEPSA needs a lesser
number of iterations than DNSA.

In the second case, the Wilcoxon matched-pairs signed-ranks test is a
distribution-free hypothesis test for the population median. The Wilcoxon signed
rank statistic W+ is based on the sizes of the absolute values of the differences be-
tween observations of solution times. If we denote by M the population median of
pairwise differences, then M = 0 indicates that on a randomly generated problem
instances the experimental performance of DNSA and DNEPSA is about the same.
Since we have no a priori reason to consider either algorithm is faster, we will test
the hypothesis that H0 : M = 0 versus H1 : M
= 0. The median differences in
solution times is significantly different from zero (W+ = 465, p < 0.05) providing
evidence that the two algorithms perform differently. Therefore, we reject H0 and
conclude that the algorithms perform differently. Since the values of the pairwise
differences are all positive, we conclude that DNEPSA performs more quickly than
DNSA. It should be noted that the differences between the the null hypothesis of
the Wilcoxon matched-pairs signed-ranks test and the paired-sample t-test, is that

DNEPSA AND ITS COMPUTATIONAL BEHAVIOR 231

the median difference between pairs of observations, instead the mean difference
between pairs, is zero.

7. Empirical complexity of DNEPSA using statistical

analysis

Assuming an algorithm with expected running time T (n, m) = O(g(n, m)),
where g(n, m) is a function which the input length is parameterized by n, m, the
estimated function O(g(n, m)) is usually referred to as the empirical complexity of
the algorithm [7]. The empirical complexity of DNEPSA presented in this Section,
was based on a statistical analysis carried out using IBM PASW Statistics v.19.
The research approach includes a stepwise multiple regression analysis. The re-
sponse variables are (i) the number of iterations and (ii) the cpu time, while the
predictor variables are a large number of variables that are combinations of n
and m (e.g., logn, logm, n2, n3, m2, nm, nm2, etc.). A similar approach for the
evaluation of the experimental performance of the classical Simplex algorithm for
the linear programming problem was presented by Vanderbei in [30] as also in the
papers [6, 8].

R-squared (R2), is usually called the coefficient of determination and equals
to the ratio of the sum of squares explained by our regression model and the
total sum of squares around the mean. Furthermore, adjusted R-squared (R̄2) is
a modification of R-squared that adjusts for the number of explanatory variables
in a model. Unlike R-squared, the adjusted R-squared increases only if the new
variable clearly improves the regression model (and not by chance).

The regression analysis, regarding the number of iterations, indicated the fol-
lowing regression equation (7.1), with an adjusted R-Squared value equal to
R̄2 = 97.5% that is very nearly unity:

niter = a1 + b1nlogm + c1

√
n (7.1)

where a1 = 775.991, b1 = 1.45, and c1 = −105.336. Hence, about 97.5% of vari-
ation in the number of iterations can be explained by the variables nlogm and√

n. However, the function g1(n, m) = nlogm is the one having the larger order
of growth. In a similar way, the regression analysis regarding the cpu time needed
to solve each problem instance based on the problem dimension, indicated the
following regression equation (7.2), with an adjusted R-Squared value R̄2 = 97.4%
that is almost unity:

cpu = a2 + b2mn2 + c2nm + d2

√
nm (7.2)

where a2 = −16.871, b2 = 1.959×10−8, c2 = −1.208×10−5, and d2 = 0.29. Hence,
about 97.4% of variation in the cpu time can be explained by the variables mn2,
nm, and

√
nm. In this case, the function g2(n, m) = mn2 have the larger order of

growth.

232 G. GERANIS ET AL.

Regression analysis for niter

Observed value

Ex
pe

ct
ed

 N
or

m
al

Regression analysis for cpu

Observed value

Ex
pe

ct
ed

 N
or

m
al

Figure 10. Normal Q-Q Plot of standardized residuals.

Moreover, the analysis of variance (ANOVA) resulted p < 0.001, showing an
absolute linear correlation between the variables of each regression equation. The
fit of both polynomials (7.1) and (7.2) were quite good at 5% level of significance.
The left and right plot of Figure 10 depicts the normal probability plots of the
standardized residuals regarding the number of iterations and the cpu time re-
spectively. The standardized residuals of both regressions are normally distributed
(Kolmogorov-Smirnov normality tests p > 0.05 in both cases).

Therefore, the regression analysis indicates that the DNEPSA algorithm re-
quires O(nlogm) number of iterations and O(mn2) cpu time. Thus, DNEPSA has
a polynomial empirical computational behavior regarding the required number of
iterations and the cpu time, observed statistically.

8. Conclusions and future work

The mathematical proof of correctness, a detailed comparative computational
study of DNEPSA and DNSA on sparse and dense random problem instances, a
statistical analysis of the experimental results, and finally some new results on
the empirical complexity of DNEPSA were presented in this paper. A subject
for future work is the improvement of the performance of the algorithm by using
special data structures for storing and updating the necessary variables. Such
data structures include Fibonacci heaps [10] and dynamic trees [18, 29]. The data
structures used in an algorithm, can greatly affect its performance. It would be
very interesting to use such data structures and compare DNEPSA’s performance
against some state-of-the-art algorithms. Such state-of-the-art algorithms include
RELAX IV [5], combinatorial code CS2 [17], interior-point code DLNET [28],
RNET [19], and NETFLO [21]. The algorithm’s behavior has also to be examined
in some well-known pathological instances, as described in [31, 32].

Furthermore, it would be interesting to develop a capacitated version of
DNEPSA, although it is possible for any capacitated network to be transformed

DNEPSA AND ITS COMPUTATIONAL BEHAVIOR 233

into an uncapacitated equivalent one by removing arc capacities. This technique is
analytically described in [1]. The only drawback of this transformation is that, it
increases the number of nodes in the network. However, in most cases, the original
and transformed networks can be solved by algorithms of the same complexity.
This is due to the reason that the transformed network possesses a special struc-
ture that permits us to design more efficient algorithms.

Moreover, statistical techniques were used in order to present for the first time
some new experimental results on the empirical complexity of DNEPSA. The fit
of both polynomials (7.1) and (7.2) were quite good at 5% level of significance.
Furthermore, high adjusted R-Squared values equal to 97.5% and 97.4% for the
estimation of the number of iterations and the total cpu time respectively, provide
the required validity of our experimental results. However, it is well known that
the statistical measures of an algorithm’s complexity do not always tally with the
mathematical counterpart. Thus, it is very interesting to also derive the compu-
tational complexity of DNEPSA with rigorous theoretical proofs.

Finally, it would be also interesting to develop a visualization software for the
teaching of DNEPSA to students. Similar educational tools have been already
developed for other network optimization algorithms, as in [3, 4].

Acknowledgements. The authors gratefully acknowledge the helpful suggestions of two
anonymous reviewers. This work was partially supported by the Research Committee of
the University of Macedonia, Economic and Social Sciences, Greece, under Grant 80217
for the advance of Basic Research.

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows: theory, algorithms and applica-

tions. Prentice Hall, Englewood Cliffs, NJ (1993).
[2] R.K. Ahuja, T.L. Magnanti, J.B. Orlin and M. Reddy, Applications of network optimization.

Handbooks of Operations Research and Management Science 7 (1995) 1–83.
[3] D. Andreou, K. Paparrizos, N. Samaras and A. Sifaleras, Visualization of the network ex-

terior primal simplex algorithm for the minimum cost network flow problem. Oper. Res. 7
(2007) 449–464.

[4] Th. Baloukas, K. Paparrizos and A. Sifaleras, An animated demonstration of the uncapaci-
tated network simplex algorithm. ITE 10 (2009) 34–40.

[5] D.P. Bertsekas and P. Tseng, RELAX-IV: A faster version of the RELAX code for solv-
ing minimum cost flow problems. Technical Report, Massachusetts Institute of Technology,
Laboratory for Information and Decision Systems (1994).

[6] S. Chakraborty and P.P. Choudhury, A statistical analysis of an algorithm’s complexity.
Appl. Math. Lett. 13 (2000) 121–126.

[7] M. Coffin and M.J. Saltzman, Statistical Analysis of computational tests of algorithms and
heuristics. INFORMS J. Comput. 12 (2000) 24–44.

[8] C. Cotta and P. Moscato, A mixed evolutionary-statistical analysis of an algorithm’s com-
plexity. Appl. Math. Lett. 16 (2003) 41–47.

[9] T.R. Ervolina and S.T. McCormick, Two strongly polynomial cut canceling algorithms for
minimum cost network flow. Discr. Appl. Math. 46 (1993) 133–165.

[10] M. Fredman and R. Tarjan, Fibonacci heaps and their uses in improved network optimization
algorithms. J. ACM 34 (1987) 596–615.

234 G. GERANIS ET AL.

[11] K. Fukuda and T. Terlaky, Criss-cross methods: a fresh view on pivot algorithms. Math.
Program. 79 (1997), 369–395.

[12] G. Geranis, K. Paparrizos and A. Sifaleras, A dual exterior point simplex type algorithm
for the minimum cost network flow problem. Yugosl. J. Oper. Res. 19 (2009) 157–170.

[13] G. Geranis, K. Paparrizos and A. Sifaleras, On the Computational Behavior of a Dual
Network Exterior Point Simplex Algorithm for the Minimum Cost Network Flow Problem,

in Proceedings of the International Network Optimization Conference (INOC 2009). Pisa,
Italy (2009).

[14] F. Glover, D. Klingman and A. Napier, Basic dual feasible solutions for a class of generalized
networks. Oper. Res. 20 (1972) 126–136.

[15] F. Glover, D. Karney and D. Klingman, The augmented predecessor index method for
locating stepping stone paths and assigning dual prices in distribution problems. Transp.
Sci. 6 (1972) 171–180.

[16] F. Glover, D. Klingman and N. Phillips, Network models in optimization and their applica-
tions in practice. Wiley Publications (1992).

[17] A.V. Goldberg, An Efficient Implementation of a scaling minimum-cost flow algorithm. J.
Algorithms 22 (1997) 1–29.

[18] A. Goldberg, M. Grigoriadis and R.E. Tarjan, Use of dynamic trees in a network simplex
algorithm for the maximum flow problem, Math. Program. 50 (1991) 277–290.

[19] M. Grigoriadis, An efficient implementation of the network simplex method. Math. Program.
Stud. 26 (1984) 83–111.

[20] J. Hultz and D. Klingman, An advanced dual basic feasible solution for a class of capacitated
generalized networks. Oper. Res. 24 (1976) 301–313.

[21] J. Kennington and R. Helgason, Algorithms for network programming. Wiley, New York
(1980).

[22] D. Klingman, A. Napier and J. Stutz, NETGEN: a program for generating large scale
capacitated assignment, transportation, and minimum cost flow networks. Manag. Sci. 20
(1974) 814–821.

[23] I. Maros, A practical anti-degeneracy row selection technique in network linear programming.
Ann. Oper. Res. 47 (1993) 431–442.

[24] C.C. McGeoch, Toward an experimental method for algorithm simulation. INFORMS J.
Comput. 8 (1996) 1–15.

[25] R. Nance, R. Moose and R. Foutz, A statistical technique for comparing heuristics: an
example from capacity assignment strategies in computer network design. Commun. ACM
30 (1987) 430–442.

[26] J.B. Orlin, Genuinely polynomial simplex and non-simplex algorithms for the minimum
cost flow problem. Technical Report No. 1615-84, Sloan School of Management, M.I.T.,
Cambridge, MA (1984).

[27] K. Paparrizos, N. Samaras and A. Sifaleras, An exterior simplex type algorithm for the
minimum cost network flow problem. Comput. Oper. Res. 36 (2009) 1176–1190.

[28] M. Resende and G. Veiga, An efficient implementation of a network interior point method,
in Network flows and matching: first DIMACS implementation challenge 12, edited by
D.S. Johnson and C.C. McGeoch. DIMACS series in discrete mathematics and theoretical
computer science, American Mathematical Society, Providence, Rhode Island (1993) 299–
348.

[29] R.E. Tarjan, Dynamic trees as search trees via Euler tours, applied to the network simplex
algorithm. Math. Program. 78 (1997) 169–177.

[30] R. Vanderbei, Linear programming: foundations and extensions, 3rd edition. Springer,
New York (2007).

[31] N. Zadeh, More pathological examples for network flow problems. Math. Program. 5 (1973)
217–224.

[32] N. Zadeh, A bad network problem for the simplex method and other minimum cost flow
algorithms. Math. Programm. 5 (1973) 255–266.

	Introduction
	Problem statement and notation
	Algorithm description
	Mathematical proof of correctness
	Implementation of DNEPSA and computational results
	Statistical analysis of the performance evaluation
	Empirical complexity of DNEPSA using statistical analysis
	Conclusions and future work
	References

