
RAIRO-Oper. Res. 46 (2012) 373–409 RAIRO Operations Research

DOI: 10.1051/ro/2012021 www.rairo-ro.org

FLOW POLYHEDRA AND RESOURCE CONSTRAINED
PROJECT SCHEDULING PROBLEMS

Alain Quilliot
1

and Hélène Toussaint

Abstract. This paper aims at describing the way Flow machinery may
be used in order to deal with Resource Constrained Project Scheduling
Problems (RCPSP). In order to do it, it first introduces the Timed
Flow Polyhedron related to a RCPSP instance. Next it states several
structural results related to connectivity and to cut management. It
keeps on with a description of the way this framework gives rise to a
generic Insertion operator, which enables programmers to design greedy
and local search algorithms. It ends with numerical experiments.

Keywords. Scheduling with resource constraints, network flow
theory.

Mathematics Subject Classification. 90-08.

1. Introduction

Dealing with Resource Constrained Project Scheduling Problems (RCPSP:
see [10, 12, 20, 21, 41, 50]) means scheduling a set of tasks, which is submitted
to temporal and cumulative resource constraints, in such a way that the induced
Makespan value be the smallest possible. This problem, which can be viewed as
an extension of the Multiprocessor Scheduling Problem (see [9, 39, 66, 69, 70]), is
one of the problems which have been the most widely studied in Scheduling The-
ory: it may be related to many practical applications which involve industrial
activity planning (see [12, 15, 42, 72]); at the same time, its theoretical analy-
sis requires the use of sophisticated mathematical tools like linear programming,
quadratic programming, and also of combinatorial tools like partially ordered sets

Received April 17, 2011. Accepted October 8, 2012.

1 LIMOS, UMR CNRS 6158, Bat. ISIMA, Université Blaise Pascal,Campus des Cézeaux,
BP 125, 63173 Aubiere, France. alain.quilliot@isima.fr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2012

http://dx.doi.org/10.1051/ro/2012021
http://www.rairo-ro.org
http://www.edpsciences.org

374 A. QUILLIOT AND H. TOUSSAINT

and hypergraphs (see [28,29,34,36,38]). While the standard RCPSP problem only
involve deterministic non pre-emptive tasks submitted to binary precedence re-
lations and to restrictions on the use of a set of renewable resources, one may
also address a very large number of possible extensions which involve pre-emption
(see [29, 60–62]), extended precedence relations (time lags: see [32]), non renewable
resources (see [47, 59]), non constant profiles, financial flows (see [47, 72]), robust-
ness in relation to uncertainty (see [24]), multiple task execution modes. . .Also,
it is possible to handle this problem while focusing on other performance criteria
than the makespan: criteria related to economical costs, to deadlines and penal-
ties, to redundant resources. . . (see [1,22,43]). A recent survey about variants and
extensions of the RCPSP is available in [40].

The RCPSP problems are difficult ones: whatever the way they are formulated
(see [10, 21, 53]), they remain NP-Complete. Practically, getting exact results be-
comes hard as soon as the number of tasks exceeds 60 and that the number of
resources is at least equal to 4 (see [31, 51]). Generating benchmarks and charac-
terizing their computational complexity may itself be viewed as a difficult problem
(see [48,51]). When it comes to the design of exact methods, RCPSP problems are
usually handled through Integer Linear Programming (see [28, 47, 56]), through
a combination of branch and bound, cut generation and constraint propagation
techniques (see [19,30,32,68]), or through extensions of multiprocessor scheduling
algorithms (see [33, 44, 60]). Powerful lower bounds may be obtained through ap-
plication of column generation techniques to specific linear programming models,
through energetic reasoning processes, through pre-emption handling or through
the computation of largest paths (see [11, 18, 23, 29]). But efficient heuristics may
also be designed: one may for instance refer to [24,62] for greedy algorithms based
on priority rules, to [6, 7] for very efficient algorithms based upon insertion tech-
niques, to [5, 16, 35, 51, 52, 65, 78] for local search methods driven by metaheuris-
tic scheme (Tabu, Simulated Annealing, memetic approaches), as well as to [46]
for statistics about experiments. In case the problem is set according to a dy-
namic point of view, authors most often propose priority rule based algorithms,
(see [7, 62]).

Network Flow Theory (see [2, 3, 57]) is dedicated to the modelling and to the
algorithmic handling of problems which involve the circulation of goods, people,
money, energy or information. It has been essentially used in order to optimize
the design of transportation and telecommunication systems (see [27]), or in or-
der to help in managing the activity of gas or electricity distribution networks
(see [2, 58, 67]). It proved itself to be a very powerful tool for the numerical handling
of such problems, not only as a modelling tool, but also as a specific link between
the linear programming machinery and purely combinatorial techniques. As a mat-
ter of fact, part of current research trends is about handling network flow problems
while taking into account purely combinatorial constraints (see [25, 67, 79]).

The existence of a link between the RCPSP and Network Flow Theory has al-
ready be noticed by several authors (see [37, 42, 43, 54, 63]). Recently [8] studied
the complexity of flow-based insertion problem for RCPSP with generalized prece-

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 375

dence relations. This link between the RCPSP and Network Flow Theory has
been used in order to get ILP formulations of the RCPSP, as well as some specific
heuristics: for example [37] proposed flow-based local search operators while [6, 7]
proposed a flow-based insertion mechanism. Briand [17] proposed a schedule gen-
eration scheme using the operator insertion designed by Artigues. Still, few works
have explicitly involved the network flow machinery in the design of algorithms.
So, our goal is to make appear the way this link may help in designing fast and
efficient generic methods, i.e., methods which are going not to require too much
implementation effort and which will easily reused in case of context changes.
We are first going to recall and formalize the way RCPSP may be cast into the
Network Flow framework, while introducing the Flow Polyhedron Vertex Subset
related to a RCPSP instance. Next, we shall state several structural results about
the connectivity of this vertex subset and about cut management. Finally, we shall
derive from this theoretical work a generic insertion mechanism, close to the in-
sertion mechanisms which were proposed in [6,7], and which will be used in order
to design greedy and local search randomized algorithms.

2. Network and Multi-Commodity Flow related

to a RCPSP Instance

2.1. Preliminary notations and definitions

About sets, algorithms, lists, partial and linear orderings: we denote by←
the value allocation operator: “x← α” means that the variable x takes the value
α; so the symbol “=” is used inside algorithmic descriptions as a comparator or
as a descriptor. We denote by Q the set of the rational numbers. If A is a set, we
denote its cardinality by Card(A); if τ is some linear (or complete) order relation
defined on some finite set X , then we consider τ as both a binary relation and a
list; if A is some subset of X , we denote by Min(A, τ) (Max(A, τ)) the smallest
(largest) element of A according to τ ; if x is some element in A, we denote by
Succ(x, A, τ) (Pred(x, A, τ)) the successor (predecessor) of x in A according to τ ,
which becomes undefined in case x = Max(A, τ) (Min(A, τ)); if τ is some partial
order relation, we denote by τ= the relation (τ or =) and we denote by Tr (τ) the
transitive closure of τ .
About graphs and networks (oriented graphs): we refer to the standard no-
tation of C. BERGE (see [14]). An oriented graph (network) G with node (vertex)
set Z and arc set E is denoted by G = (Z, E). An arc e with origin node x and
destination node y is denoted by (x, y). Such an oriented graph G is said to be no
circuit if it does not contain any circuit. A partial graph of G is the restriction of
G to some subset of the arc set E, while a subgraph of G is the restriction of G
to some subset of the node set X .

376 A. QUILLIOT AND H. TOUSSAINT

2.2. The Standard Non-Preemptive RCPSP Problem

An instance I = (V , K, R, r, d, �) of the standard Resource Constrained
Project Scheduling Problem (RCPSP) is defined by:

• a set V of non pre-emptive activities: every activity v in V is endowed with
some duration dv > 0 and must be run without any interruption during some
time window with length dv;
• a binary no circuit precedence relation�, which is defined on the set V : v � w

means that the activity v must be finished before the activity w starts;
• a finite renewable resource set K: the initial available amount of resource k ∈ K

is given by the component Rk of the resource vector R = (Rk, k ∈ K); during
the whole time it is run, activity v requires a rk,v amount of resource k to be
available, and forbids any other activity to use this amount of resource k. Once
it is over, activity v gives this resource back to the system.

Then solving such a RCPSP instance I = (V , K, R, r, d, �) means computing,
for any activity v ∈ V , its starting time Tv � 0, in such a way that:

• if v and w ∈ V are such that v � w, then Tv + dv � Tw; (Precedence Con-
straint);
• at any instant t � 0, and for any resource k ∈ K,

∑
v∈U(T,t)

rk,v � Rk, where

U(T, t) = {v ∈ V such that Tv � t <Tv + dv }⊆ V is the set of the activities
which are run at time t; (Resource Constraint);
• the makespan Makespan (T) = Supv∈V (Tv + dv) is the smallest possible.

Any V-indexed time vector T which is feasible for the above Resource and Prece-
dence constraints is called a feasible RCPSP schedule for the activity set V .

2.3. Linking Network Flows with RCPSP: Timed Flows

Recall:Network Flows and Multi-commodity Flows

Given a network G = (Z, E), i.e. an oriented graph with node (vertex) set Z and
arc set E, together with a Q-valued function φ defined on the node set Z, we say
that a Q-valued E-indexed vector f is a φ-flow vector iff:

∀z ∈ Z,
∑

z is the origin of e

fe =
∑

z is the destination of e

fe = φ(z) (Extended Kirshoff Law)

If I is some commodity set, if φ = (φ(i), i ∈ I) is a commodity function, i.e., if
every φ(i), i ∈ I, is a Q-valued function defined on the node set Z, then we call
φ-multi-commodity flow vector any collection f = (f(i), i ∈ I), where every f(i),
i ∈ I, is a φ(i)-flow vector.

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 377

The Activity Network related to a RCPSP instance
Let us consider now a RCPSP instance I = (V , K, R, r, d, �). We associate

with I the Activity Network N (V) = (V ∗, E∗) by introducing two auxiliary nodes
Start and End, and by setting:

• V ∗ = V ∪ {Start, End}= node set of N(V);
• E∗ = {(v, v′), v, v′ ∈ V } ∪ {(Start, v), (v, End), v ∈ V } ∪ {(End, Start),

(Start, End)}= arc set of N(V).

We provide the arc set E∗ of the network N(V) with a E∗-indexed length vector
d∗, by setting:

• for any v ∈ V , d∗(Start,v) = 0;
• d∗(End,Start) = −∞;
• for any v ∈ V , w ∈ V ∪ {End}, d∗v,w = dv.

We also define on the node set V ∗ of N (V) a commodity vector r∗, by setting for
every resource k ∈ K, and for any v in V ∗: if v ∈ V then r∗k,v = rk,v else r∗k,v = Rk.

We define the precedence arc subset E∗
� by setting: E∗

� = {(v, v′), v, v′ ∈ V
such that v T r (�)v′} ∪ {(Start, v), (v, End), v ∈ V }, where Tr (�) denotes the
transitive closure of the � relation.

Associating a r∗-multi-commodity flow vector with a feasible solution
T of the RCPSP instance I

Let us suppose now that T is some feasible solution of this RCPSP instance,
and let us denote by Δ the Makespan value of T . Following [6,7], using for instance
a geometrical representation of the schedule T (Gantt Chart) and proceeding by
induction on the starting time T (v), v ∈ V , one may easily derive from T a
multi-commodity flow vector F = (F (k), k ∈ K), which is defined on the Activity
Network N (V), and which is such that, for any k in K:

• for any activity v in V ,
∑

v is the origin of e

F (k)e =
∑

v is the destination of e

F (k)e = rk,v;

• ∑
Start is the origin of e

F (k)e =
∑

Start is the destination of e

F (k)e = Rk;

• ∑
End is the origin of e

F (k)e =
∑

End is the destination of e

F (k)e = Rk.

It comes that F = (F (k), k ∈ K) is a r∗-multi-commodity flow, which may be
viewed as transporting the resources k ∈ K, from the source Start to the end-node
End, while providing the activities v ∈ V with the resources they require. We may
identify the support arc subset E(F , �) of F by setting: E(F , �) = E∗

� ∪ {(v,
w), v, w ∈ V such that F(v,w) is non null}. Clearly, E(F , �) is no circuit.

Figure 1 shows an example of a Gantt chart which gives rise to an ad hoc
flow representation related to the instance described in Table 1. The Gantt chart
represents any activity x as a rectangle of length (respectively height) equal to the
duration (respectively resource consumption) of x. For example activity 3 has a
duration d3 = 1 and needs 2 units of resource. The flow representation underlines
the exchange of resources between activities.

378 A. QUILLIOT AND H. TOUSSAINT

Table 1. Example of RCPSP instance with 5 activities and 1
resource of capacity 4.

Activities Duration Resource requirement Predecessors
1 2 2 –
2 1 1 1
3 1 2 –
4 3 1 –
5 2 2 3

)b()a(

Figure 1. (a) Gantt chart related to instance of Table 1 – (b)
Flow representation (the costs on the edges are the flow values).

Timed Flows
Also, if we extend the time vector T to V ∪ {Start, End}by setting:

• TStart = 0;
• TEnd = Δ = Makespan (T) = Supv∈V (Tv + dv);

then, for any arc e = (v, w) in the arc set E∗ of N(V), the following implication
becomes true:

e = (v, v′) ∈ E(F,�)⇒ (Tw ≥ Tv + dv ⇔ Tw ≥ Tv + d∗e) (P1)

Conversely, let us call no circuit r∗-flow vector any r∗-multi-commodity flow vector
F such that E(F , �) is no circuit. Then we define a timed (r∗, d∗)-flow as being
any pair (F , T) made of a no circuit r∗-multi-commodity-flow vector F and a time
vector T such that (P1) is true. One easily checks that if (F , T) is such a timed (r∗,
d∗)-flow defined on N(V), then the restriction of T to V is a feasible schedule for
I = (V , K, R, r, d, �). This notion of Timed Flow provides us with a synthetic
framework for the simultaneous handling of routing and scheduling problems. It
allows us to reformulate the RCPSP Problem as follows:

Reformulation Scheme
Solving the RCPSP instance I= (V, K, R, r, d, �) means computing, on the

Activity network N (V), provided with the length vector d∗, with the commodity
vector r∗ and with the precedence arc subset E∗�, a timed (r∗, d∗)-flow (F,T) such
that TEnd is the smallest possible.

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 379

The Flow framework provides programmers with a tool for the design of generic
algorithmic schemes, which is, sometimes, better-fitted than the very general ILP
framework. The above Reformulation scheme open the way to the use of the flow
machinery in the design of RCPSP algorithms.

2.4. A Connectivity Theorem

The aim of this section is to set a theoretical basis for the management of RCPSP
problems through the use of Flow algorithms: though flow RCPSP representations
were already used in the past, it was always according to an empirical approach.
More specifically, part of the efficiency of the algorithmic network flow machinery
derives from the structural properties of the network flow polyhedron: as a matter
of fact, most flow algorithms may be viewed as primal-dual versions of the Simplex
algorithm, and running those algorithms may be viewed as performing some walk
on the vertex set of this network flow polyhedron. Thus, one may ask in a natural
way about the structural properties of the subset of the network flow polyhedron
node set which is defined by no circuit r∗-flow vectors.

The No Circuit r∗-Flow Polyhedral Vertex Set related to the RCPSP
instance I

The set of all r∗-multi-commodity flow vectors F � 0 defined on the Activity
Network N (V) defines a bounded polyhedron, which we denote by Pr∗. It is known
that such a r∗-multi-commodity flow vector F is a vertex of Pr∗ if and only if it
contains no non null alternated cycle, that means no cycle (v0, v1, . . . , vn = v0)
such that:

• n is even and all the nodes v0, v1, . . . , vn−1 are distinct (the cycle is elementary);
• there exists k ∈ K such that:

– the arcs (v0, v1), (v2, v3), . . . , (vn−2, vn−1) are all endowed with non null
F (k) values;

– the arcs (v2, v1), (v4, v3), . . . , (v0, vn−1) are all endowed with non null F (k)
values.

We denote by Sr∗ the vertex set of this polyhedron. It is known that Sr∗ is endowed
with a canonical adjacency relation R, which corresponds to the moves which
are performed by the Simplex Algorithm when running a linear program on a
constraint set defined by Sr∗. This adjacency relation R may be characterized as
follows:

• let Γ be some even elementary cycle (v0, v1, . . . , vn = v0) in N (V): we define
the alternated cycle flow related to Γ as the flow vector fΓ which is defined
by:
– fΓ

e = + 1 for any arc e = (v0, v1), (v2, v3), . . . , (vn−2, vn−1);
– fΓ

e = −1 for any arc e = (v2, v1), (v4, v3), . . . , (v0, vn−1).

380 A. QUILLIOT AND H. TOUSSAINT

• F , F ′ in Sr∗ are R-adjacent if there exists some resource k0 ∈ K, some even
elementary cycle Γ and some number λ � 0, such that we have:
– for any k �= k0, F (k) – F ′(k) = 0;
– F ′(k0) – F (k0) = λ. fΓ .

In such a case, the value λ is unique, and we also say that F ′ derives from F
through redirection of F(k) on the cycle Γ .

It comes from Linear Programming Theory that the vertex set Sr∗ of the poly-
hedron Pr∗ is connected for this non oriented adjacency relation R. Redirection
processes and search into the vertex set Sr∗ are at the core of the classical Net-
work Flow algorithmic framework. Clearly, casting RCPSP into this framework
mean that we intend to perform thoses processes. Since we are required to deal
with no circuit r∗-multi-commodity flows, we are led in a natural way to investi-
gate whether restricting the Redirection scheme to the specific vertices of Pr∗which
define no circuit r∗-multi-commodity flow vectors maintains this connectivity prop-
erty. In order to do it, we denote by SNr∗ the restriction of Sr∗ to the no circuit
r∗-multi-commodity flow vectors, that means to the r∗-multi-commodity flow vec-
tors F such that the support arc subset E(F,�) is no circuit. We call this set
SNr∗ the No Circuit r∗ -Flow Polyhedral Vertex Set. Then we may state:

Theorem 2.1 (Connectivity Theorem).
If we suppose that, for any k ∈ K, v, w ∈ V, we have: rk,v + rk,w � Rk (Par-

allelism Hypothesis), then the No Circuitr∗-Flow Polyhedral Vertex Set SNr∗ is
connected for the canonical adjacency relation R.

Comment: of course, the meaning of this statement is that one may think into
handling timed flows (and consequently RCPSP instances) while using the classi-
cal local search procedures (cancelling cycle procedures. . .) which are part of the
Network Flow Theory machinery.

Proof.
Let us first define a linear r∗-multi-commodity-flow vector as being a no circuit

r∗-multi-commodity-flow vector F � 0 which is such that the transitive extension
of the support arc set E(F ,�) is linear. So we denote by SNLr∗ the subset of
SNr∗ which is made with linear r∗-multi-commodity-flow vectors. If σ is some
linear ordering of V ∪ {Start, End}, which is compatible with �, we denote by
SNr∗(σ) the subset of SNr∗ which corresponds to the case when σ may be viewed
as a linear extension of the transitive extension of E(F,�). We first state:

Lemma 2.2 (SNr∗ (σ) is connected for the R relation).
Proof-Lemma. If F is in SNr∗(σ), then E(F ,�) is included into the arc set

A(σ) = {(v, w), v ∈ V ∪ {Start}, w ∈ V ∪ {End}, such that (v σ w)}. Conversely
any multi-commodity flow vector F � 0 which is such that E(F , �) ⊆ A(σ), and
which does not admit any alternated cycle, is in SNr∗(σ). But SNr∗(σ) is nothing
more than the vertex set of the polyhedron which is defined by imposing F to be
null on the arcs which are not in A(σ) ∪ {(End, Start)}, while the relation R is the
adjacency relation related to this polyhedron. We deduce the result from the fact

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 381

that any polyhedron vertex set is connected for its canonical adjacency relation.
End-Lemma.

Lemma 2.3. Let us suppose that, for any v ∈ V, k ∈ K, rk,v �= 0 and that the
parallelism condition: for any v, w in V, we have: rk,v +rk,w � Rk, holds. Then:

• If F and F’ are both in the set SNLr∗, then there exists a R-path from F to F’;
(P2)

• for any linear ordering σ of V ∪ {Start, End}, which is compatible with �, the
intersection of SNLr∗ and SNr∗(σ) is non empty. (P3).

Proof -Lemma. (P3) derives in a trivial way from the fact that, for any v ∈ V ,
k ∈ K, rk,v �= 0.

In order to prove (P2), let us consider two linear r∗-multi-commodity-flow vec-
tors F and F ′ such that F is in SNr∗(σ) and F ′ is in SNr∗(τ), with σ �= τ . Because
of (P3) and Lemma 1, we may choose F in such a way that for any k ∈ K, and
for any v, w ∈ V ∪ {Start, End}, such that w is the successor of v according
to σ, v sends a non null F (k) value to w (it is easy to check the existence of an
element of SNr∗(σ) which satisfies this property). Since σ �= τ , there must exist v,
w, consecutive according to σ, such that w τ v, and we may choose v in such a way
that it is the smallest possible with this property according to σ. Let us denote by
u and t respectively the predecessor of v and the successor of w according to σ.
For any k, we have F (k)(u,v) �= 0 and F (k)(w,t) �= 0.

Let us consider now some resource k, together with the following subsets X and
Y of V ∪ {Start, End}, and the following flow amounts Q1, Q2, Q3, Q4:

• X = {x ∈ V ∪ {Start, End} such that xσ v};
• Y = {y such that wσy};
• Q1 = flow F (k) amount which starts from X and which arrives into w;
• Q2 = flow F (k) amount which starts from v and which arrives into Y ;
• Q3 = flow F (k) amount which starts from X and which arrives into Y ;
• Q4 = F (k)(v,w).

We see that: (P4)

• Rk = Q1 + Q2 + Q3 + Q4;
• rk,v = Q2 + Q4;
• rk,w = Q1 + Q4.

By combining those equalities (P4) with the inequality rk,v+ rk,w � Rk and with
the relation F (k)(v,w) �= 0, we get that Q3 must be non null, which means that
there must exist x in X and y in Y such that F (k)(x,y) �= 0. So we may redirect F (k)
on the cycle Γ = (x, w, v, y, x). By repeating this process as long as F(v,w) �= 0
we can make in such a way that F(v,w) = 0.

Once it has been done, we still have F (k)(u,v) �= 0 and F (k)(w,t) �= 0, for any
k in K. According to the previous process, there must exist, for any k in K, a
node x in X and a node y in Y such that F (k)(x,w) �= 0 and F (k)(v,y) �= 0. In

382 A. QUILLIOT AND H. TOUSSAINT

case x �= u, we redirect F (k) on the cycle Γ = (u, w, x, v, u). By the same way,
in case y �= w, we redirect F (k) on the cycle Γ = (v, t, w, y, v). Then we get
that F (k)(u,w) �= 0 and F (k)(v,t) �= 0. We end the process by considering x′ which
provides a F (k) flow amount to v, y′ which receives F (k) flow amount from w, and
by redirecting F (k) on the cycle Γ = (w, v, x′, y′, w). At this time, F becomes a
linear element of the set SNr∗(σ′), related to the linear ordering σ’ which derives
from σ by permuting v and w. We easily conclude by induction on the number of
permutations which make possible turning σ into τ . End-Lemma.

Clearly, combining both previous lemmas allows us to conclude to the R-
connectivity of SN r∗ in the case when, for every activity v in V and every resource
k in K, the quantity rk,v is non null.

In order to get our result in the general case, we use a trick which involves
topology. Let δ > 0 be a small positive number. For every activity v and any
resource k, such that rk,v = 0, we replace rk,v by δ, and Rk by Rk + Card(V (k)).δ,
where V (k) = {v ∈ V such that rk,v = 0}. We denote by Sδ

r∗ and SN δ
r∗ the

respective related polyhedron vertex sets and by Rδ the related adjacency relation.
It comes from above that SN δ

r∗ is connected for the relation Rδ. Also, we see that
if F is some vertex in SNr∗, then the r∗-multi-commodity-flow vector F δ defined
by:

• for any v and any k such that rk,v = 0, F δ(k)(Start,v) = δ = F δ(k)(v,End);
• F δ(k)(Start,s) = Card(V (k)).δ;
• for any other pair (e, k), k in K, e in the arc set of the network N (V), F δ(k)e =

F (k)e;

is no circuit and does not admit any non null alternated cycle, and thus is in SN δ
r∗.

Let us now consider two r∗-multi-commodity-flow vectors F and H in SNr∗.
F δ and Hδ can be connected by a path γδ = (F δ

0 , F δ
1 , F δ

n = Hδ) (where each
F δ

i is a flow vector) in SN δ
r∗, which means that it is possible to find coefficients

λδ
0, . . . , λδ

n−1, and cycles Γ δ
0 , . . . , Γ δ

n−1, in such a way that, for any i = 0. . . n-1:
F δ

i+1 = F δ
i + λδ

i .f
Γδ,i, where fΓδ,I is the alternated cycle flow which derives from

Γ δ
i . Since V is finite, a compacity argument allows us to suppose that:

• for any i = 0 . . . n-1, Γ δ
i = Γi does not depend on δ;

• λδi converges to some coefficient λi when δ converges to 0.

Then it becomes easy to deduce a sequence γ = (F0, F1, Fn = H) by setting, for
any i = 0 . . . n: Fi+1 = Fi + λi.Γi. Every Fi defined this way is clearly no circuit.
Also, it does not contain any non null alternated cycle. We deduce that γ defines
a R path from F to H in SNr∗. End-Theorem.

Remark 2.4. the Parallelism hypothesis cannot be removed. If we consider for
example the following RCPSP instance:

– V = {A, B, C, D}; A� B; C � D; A� D;
– K = {α}; any activity in V has duration equal to 1; the total amount of

resource α is 4;

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 383

)b()a(

Figure 2. (a) Timed flow F – (b) Gantt chart which represents
the timed flows F .

)b()a(

Figure 3. (a) Timed flow H – (b) Gantt chart which represents
the timed flows H .

– A and D require 1 unit of the resource α; C and B require 4 units of the
resource α;

then we notice that there exist only two related timed flows F and H , respectively
defined by:

– F(Start,A) = 1; F(Start,B) = 3; F(A,B) = 1; F(C,D) = 1; F(B,C) = 4; F(C,End) = 3;
F(D,End) = 1;

– H(Start,A) = 1; H(Start,C) = 3; H(A,C) = 1; H(B,D) = 1; H(C,B) = 4;
H(B,End) = 3; H(D,End) = 1.

But we also see that the difference of those two timed flows is not the multiple of
any alternated cycle flow. Figure 2 illustrates the timed flow F while 3 illustrates
timed flow H .

3. The Match-Flow and Insertion-Flow Problems

As we told it inside the previous section, the main motivation for introducing
the Timed Flow formalism is provided by the prospect of applying ad hoc network

384 A. QUILLIOT AND H. TOUSSAINT

flow algorithmic tools to RCPSP instances. So the current Section 3 is going to
be devoted to the description of those basic algorithmic components which will be
used in Section 4 in order to derive flow algorithms for RCPSP.

The algorithms which will be described in Section 4 works while performing
insertion/removal processes which may be compared with those which have been
proposed in [6, 7]: the basic difference lays upon the fact that every time the
insertion/removal of some activity is performed, it involves the resolution of a
specific Insertion Flow sub-problem related to a Cut of the currently inserted
activity set; so, the related resolution process updates all the flow values which
express the flow transportation between both sides of this Cut, and may be viewed
as an implementation of the Connectivity Theorem of Section 2. More precisely,
at any time during the process of some RCPSP instance I = (V , K, R, r, d, �),
we are provided with some Inserted Activity subset W of V , with a no circuit
r∗-multi-commodity flow vector F defined on the Activity Network N(W), and
with two positive (or null) Q-valued time vectors T and T ∗, both with indexation
on W ∗, in such a way that, for any v in W : (P5)

• Tv = Length of a largest path from Start to v in the Support Partial Activity
Network defined by E(F ,�), for the length vector d∗;
• T ∗

v = Length of a largest path from v to End in the Support Partial Activity
Network defined by E(F , �), for the length vector d∗.

Clearly, this pair (F , T) defines a timed (r∗, d∗)-flow. Then, performing an In-
sertion means picking up some activity v0 which is not in W , and turning (F ,
T), through some local computation process, into a convenient timed (r∗, d∗)-flow
defined on the Activity Network N(W ∪ {v0}). The related insertion mechanism
involves a Cut, i.e. a partition of W into two subsets U and W − U , such that
no flow amount goes from to (W − U)∪ {End } to U ∪ {Start}: therefore, the
insertion process makes v0 receive flow values from U ∪ {Start} and give them
back to (W −U)∪ {End}. Performing a Removal means reversing this operation.
In order to explain those mechanisms in an accurate way, we shall introduce (next
subsections) the notions of Match Flow and Insertion Flow. Meanwhile, we may
illustrate the general insertion/removal mechanism on the instance described in
Table 1 through the drawings of Figure 4 which represents a partial solution with
4 activities and a cut (U = {1, 3}, W − U = {2, 4}): the aim is to insert activity
v0 = 5 (with d5 = 2 and r5 = 2) into this cut. The resultant flow is given in
Figure 5.

3.1. The Match-Flow Problem

Match Flows

Let (X , E) be some bipartite graph, X = A ∪B be a partition of X into two
disjoint independent sets, Π , Π∗ be two positive (or null) Q-valued functions,
with respective domains A and B. We also suppose that we are provided with two

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 385

)b()a(

Figure 4. (a) A timed flow (the dotted line shows the “cut”) –
(b) The Gantt chart associated to timed flow (a).

Figure 5. The timed flow of Figure 4 after insertion of activity 5.

Q-valued functions Out and In, with respective domains A and B, in such a way
that:

Out � 0; In � 0;
∑

x∈A Out(x) =
∑

y∈B In(y).

Then we say that a Q-valued vector G = (Gx,y � 0, x ∈ A, y ∈ B) � 0, defines a
match flow vector related to those data iff:

• for any x in A, Out(x) =
∑

y∈B Gx,y;
• for any y in B, In(y) =

∑
x∈A Gx,y.

For such a match flow vector G, we set: M-Makespan(G) =
Supx∈A,y∈B such that (x,y)∈E or Gx,y �=0(Π(x) + Π∗(y)).

This definition leads us to introduce the following Match Flow Problem:
The Match Flow Problem : {Given (X, E), A, B, In, Out, Π, Π* as above, find
a related match flow vector G in such a way that M-Makespan(G) be the smallest
possible.}
Explanation: if we refer to the insertion mechanism which motivates the Match
Flow concept, we see that if I = (V , K, R, r, d, �) is some RCPSP instance,
if W ⊂ V is some Inserted Activity subset, if F is some no circuit r∗-multi-
commodity-flow vector F defined on the Activity Network N (W), if T and T ∗ are

386 A. QUILLIOT AND H. TOUSSAINT

Figure 6. Timed flow G does not satisfy the no cross property
while Timed flow H does it.

two Q-valued vectors T and T ∗, defined as in (P5) and both with indexation on
W ∗, if U ⊂W defines a Cut, i.e. a partition of W into two subsets U and W −U ,
such that no flow amount goes from to (W − U) ∪ {End} to U ∪ {Start}, and
if k ∈ K is some resource, then optimizing the flow values F (k)(v,w), v ∈ U ∪
{Start}, w ∈ (W – U) ∪ {End}, means solving the Match Flow instance defined
by:

• A = U ∪ {Start}; B = (W – U) ∪ {End}; X = A ∪ B; E = (v, w), v ∈ A,
w ∈ B, such that vT r(�)w;
• for any v in U , Π(v) = Tv + dv; T (Start) = 0;
• for any v in W − U , Π∗(v) = T ∗

v ;
• for any v in U ∪ {Start}, Out(v) =

∑
w∈B F (k)(v,w);

• for any w ∈ (W − U) ∪ {End}, In(w) =
∑

v∈A F (k)v,w.

The following No Cross property is going to provide us with a sufficient optimality
condition for the Match Flow problem: G satisfies the no cross property if there
does not exist x, x′ ∈ A, y, y′ ∈ B, such that:

• Gx,y �= 0; Gx′,y′ �= 0;
• Π(x’) >Π(x); Π∗(y′) >Π∗(y).

Theorem 3.1. Any match flow vector G related to (X, E), A, B, In, Out, Π,
Π∗ above, and which satisfies the no cross property is an optimal solution of the
Match Flow problem.

Proof. Let us consider some match flow vector G, related to the above data and
which satisfies the no cross property, and let us assume that there exists an
other match flow vector H , related to the same data, and which is such that
M-Makespan(H) < M-Makespan(G). Clearly, the value M-Makespan(G) must be

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 387

Table 2. Example of RCPSP instance with 7 activities and
1 resource of capacity 6.

Activities Duration Resource requirement Predecessors
1 6 1 –
2 3 3 –
3 4 2 –
4 2 3 –
5 2 2 –
6 3 1 –
7 5 3 –

larger than Supx∈A,y∈B such that (x,y)∈E (Π(x) + Π∗(y)). So there must exist x ∈
A, y ∈ B, such that: �

• Gx,y �= 0;
• M-Makespan(G) = Π(x) + Π∗(y);
• Hx′,y′ = 0 for any pair (x′, y′) such that Π(x′) + Π∗(y′) � M-Makespan(G).

The difference G−H induces the existence of some elementary cycle Γ = (x0, y0,
x1, y1, . . . , xn = x0) such that:

• x0 = x; y0 = y;
• for any i = 0. . . n-1, Gxi,yi > Hxi,yi and Gxi+1,yi < Hxi+1,yi (see Fig. 6 for an

example with n = 3).

Since M-Makespan(H) < M-Makespan(G), we must have Π(x1) <Π(x0), and
since G is no cross, we must have Π∗(y1) � Π∗(y0). Keeping on this way, we see
that, for any i = 1 . . . n, we must have Π(xi) <Π(x0) and Π∗(yi) � Π∗(y0). We
get a contradiction when i = n. End-Theorem.

Clearly, the following Match-Flow Procedure provides us with such a no cross
match flow vector:

Match-Flow Procedure
Compute 2 linear orderings�Π and �Π∗ of A and B, respectively
compatible with increasing values Π(v) and decreasing values Π∗(v);
x← Min(A, �Π); y ← Min(B, �Π∗);
While x and y are both defined do

r ← Inf(Out(x), In(y)); Gx,y ← r;
In(y)← In(y) – r; Out(x)← Out(x) – r;
If Out(x) �= 0 then y ← Succ(y, B, �Π∗)
Else

x← Succ(x, A, �Π);
Endif

EndWhile
Return M-Makespan(G);

Computational complexity of the Match-Flow procedure

388 A. QUILLIOT AND H. TOUSSAINT

Table 3. Example of RCPSP instance with 3 activities and 2 resources.

Activities Duration Resource Resource Predecessors
requirement R1 requirement R2

1 3 3 2 –
2 5 1 0 –
3 2 2 5 –

Table 4. RCPSP-Greedy-Flow procedure, Monte-Carlo Scheme, Mean Results.

N-Activity N-res N-rep Time (s) Gap(%) TB Gap(%) LB
30 4 100 0.63 1.87 1.87
30 4 1000 6.3 0.92 0.92
30 4 5 000 31.6 0.53 0.53
30 4 50 000 317.4 0.28 0.28
60 4 100 4.54 16.91 7.10
60 4 1000 53.04 15.37 5.79
60 4 5000 243 14.56 5.13
60 4 50000 2432 13.77 4.47
120 4 100 29.6 52.33 21.32
120 4 1000 515 48.84 18.5
120 4 5000 2608 47.05 17.12
120 4 50 000 25 961 45.07 15.54

Table 5. RCPSP-L5-Flow procedure, Mean Results.

N−Aivity N-Rep Strategy Gap (%) TB Gap (%) LB Time(s) Up (%)
30 10 Crit-Path 0.85 0.85 3.77 10.07
30 10 Antichain 0.36 0.36 1.64 10.45
30 50 Crit-Path 0.49 0.49 19.41 9.85
30 50 Antichain 0.12 0.12 8.42 10.68
60 10 Crit-Path 14.34 4.97 20.11 13.11
60 10 Antichain 12.70 3.82 9.33 11.17
60 50 Crit-Path 13.69 4.4 101.50 13.04
60 50 Antichain 11.93 3.34 46.93 I1.25
120 10 Crit-Path 45.41 15.80 210.80 13.11
120 10 Antichain 38.67 12.41 63.73 16.72
120 50 Crit-Path 43.71 14.45 1055.90 13.04
120 50 Antichain 36.60 11.34 321.13 17.04

The while loop has a complexity O(|A|+|B|). The computation of the 2 lin-
ear orderings at the beginning of the procedure has a complexity O(|A|log|A|+
|B|log|B|) since sorting p numbers can be performed in O(p.log(p)). Nevertheless
let us notice that in practice the computation of the linear orderings of A and
B is performed in an incremental way, which means that the computational costs
related to the sorting of A and B has not to be taken into account. Moreover, if we
think into the way the Match-Flow algorithm is going to be used in order to deal

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 389

with a RCPSP instance I = (V , K, R, r, d,�), we see that cardinalities of A and
B are usually going to be much smaller than the total number of activities |V |. As
a matter of fact, those cardinalities will most often remain bounded, or increase
in a logarithmic way as a function of |V |. This means that, practically, it will be
possible to consider the running time induced by a Match-Flow call inside our
global RCPSP resolution process as bounded by some constant number or by some
Log(|V |) term.

If we link this Match Flow problem with the insertion of some activity v0 into
some timed (r∗, d∗)-flow through some Cut W = A ∪B, as previously explained,
it comes that we should be interested, when dealing with the Match Flow problem,
in making the resulting match flow G be, the most often possible, null on the arcs
which are not in E. In order to put this in a formal way, we denote by EC the
set A.B − E, and we order the set EC by first computing 2 linear orderings �Π

and �Π∗ of A and B, respectively compatible with increasing values Π(v) and
decreasing values Π∗(v), and by next setting:

(x, y)σ
(
x

′
, y

′)
iff

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Π(x)+ Π∗ (y) < Π
(
x

′
)
+ Π∗

(
y

′
)
,

or
(
Π(x)+ Π∗ (y)=Π

(
x

′
)
+ Π∗

(
y

′
)

and x�Π x
′
)
,

or
(
Π(x)+ Π∗ (y)=Π

(
x

′
)
+ Π∗

(
y

′
)

and x=x
′
and y �Π∗ y

′
)
.

It is possible to associate with this linear ordering σ of EC a lexicographic ordering
Lex(σ) which is defined on the EC -indexed vectors by:

• G Lex(σ)H iff there exists (x0, y0) ∈ EC such that:
– Gx,y = Hx,y for any pair (x, y) in EC such that (x, y)σ (x0, y0);
– Gx0,y0 <Hx0,y0.

The meaning of this lexicographic ordering σ is that the highest is some arc (x,y)
according to the σ hierarchy, the less we want it to support non null match flow
value Gx,y. This leads us to deal with the following problem, which expresses
the fact that we are going to compute the Match Flow G in such a way that it
minimizes the M-Makespan value while involving, as much as possible, support
arcs which either are in E or are low ranked according to the σ linear ordering:

The Lexicographic Match Flow Problem : {Given (X, E), A, B, In, Out, Π
and Π∗,�Π, �Π∗ , as above, find a related match flow vector G in such a way
that:

• M-Makespan(G) be the smallest possible;
• The restriction of G to EC is minimal for the above defined lexicographic order

Lex(σ), among all G which make M-Makespan(G) be the smallest possible}.
In order to deal with this problem, we only need to apply the following algorithm,
which iteratively minimizes (through the Redirection procedure below) the flow
value G on the arcs of EC , while dealing first with those which are the highest
according to the σ hierarchy:

390 A. QUILLIOT AND H. TOUSSAINT

Lexicographic-Match-Flow Procedure
Apply the Match-Flow Procedure, while considering that �Π and �Π∗ ,
of this procedure are provided as part of the input of the Lexicographic
Match Flow Problem: let G be the resulting match flow ;
Esup = (xsup, ysup)← Largest (for the σ ordering) element (x, y) in EC

which is such that Gx,y �= 0;
L← {(x, y) ∈ EC such that (x, y)σ= (xsup, ysup)};
While L is not empty do

E0 = (x0, y0)← Largest element of L for the σ ordering;
Remove e0 from L; Redirection (e0);

EndWhile
Return M -Makespan(G);

Redirection Procedure
Input: (x0, y0)
Stop ← False;
While Stop = False do

Search for a sequence (simple path search) Γ = (x0, y0, x1, y1, . . . ,
xn = x0) such that for any i = 1 . . . n− 1:
• Gxi,yi �= 0;
• (xi+1,yi) is in E ∪ L;

If Γ does not exist then Stop ← True;
Else

Δ← Infi=0..n−1Gxi,yi;
For any i = 0 . . . n-1 do

Gxi,yi ← Gxi,yi– Δ; Gxi+1,yi ← Gxi+1,yi +Δ;
EndFor
If Gx0,y0 = 0 then Stop ← True Endif ;

Endif
EndWhile

Theorem 3.2. The above Lexicographic-Match-Flow procedure computes an
optimal solution of the Lexicographic Match Flow problem.

Proof-Theorem. Left to the reader. End-Theorem.

Computational complexity of the Lexicographic-Match-Flow procedure
The theoretical complexity of the Lexicographic-Match-Flow procedure is

quite high: the main loop can have up to |A|∗|B| iterations; the Search instruc-
tion of the redirection process is in O(|A|+|B|) (it is a simple path search in a
graph); the while loop of the redirection procedure has the same complexity as
an algorithm for a maximum flow problem: O(|A|*|B|). The global complexity
is then O(((|A|*|B|)2) *(|A|+|B|)). Still, one checks that in practice the 2 while
loops terminate very quickly. Also, if we think into our RCPSP application con-
text, we should take into account that the cardinalities of A and B tend to be
almost constant as |V | increases.

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 391

Match Multi-Commodity Flows

We consider now the same problem as above, while trying to deal with a whole
resource set H . That means that Out and In are Q-valued functions with respec-
tive domains H.A and H.B, where H is a resource set. It comes that, for any
h ∈ H , Out(h) and In(h) respectively denote Q-valued functions with domains
A and B. Thus, the match flow vector G becomes a match multi-commodity flow
vector G = (G(h), h ∈ H), and related Match Multi-Commodity Flow Problems
may be defined in a natural way. The simple Match Flow problem may be handled
through independent applications of the Match-Flow procedure to the various
components of G. If we want to make G be the most often possible null outside
the arc set E, we must proceed in such a way that, when we deal with the com-
putation of some flow vector G(h0), once flow vectors G(h), h ∈ H have already
been computed, the flow value Gx,y be the most possible null outside the arcs (x,
y) which support the flow vectors G(h), h ∈ H . That means that we must adapt
the Lexicographic-Match-Flow Procedure in the following way:

MF-Lexicographic-Match-Flow Procedure
EAux ← E;
For any h ∈ H do G ← 0;
For h ∈ H do

Compute G(h)x,y values, x ∈ A, y ∈ B, through application of the
Lexicographic-Match-Flow procedure to (X , EAux), A, B, Out(h),
In(h), Π, Π∗, �Π, �Π∗ ;
EAux ← EAux ∪ {(x, y), x ∈ A, y ∈ B, such that G(h)x,y �= 0}

EndFor

3.2. The Insertion Flow Problem

Insertion Flows
Since our ultimate goal is to provide an insertion flow mechanism in order to

deal with timed (r∗, d∗)-flows, we are led in a natural way to introduce a notion
Insertion Flow. We say that an oriented graph N = (X , E) is almost-bipartite,
if there exists some node z0 in X such that the restriction of N to X – {z0} is
bipartite, which means that X – {z0}may be written as the disjoint union X–
{z0 } = A ∪ B, of two disjoint independent sets A and B. Let us suppose now
that we are endowed with two positive (or null) Q-valued functions Π , Out, both
with domain A, with two positive (or null) Q-valued functions Π∗, In, both with
domain B, with two positive (or null) coefficients (respectively called the duration
and resource requirements of z0) d and ρ, such that:

∑
x∈A Out(x) =

∑
y∈B

In(y) � ρ. Then we say that a vector G = (Gx,y � 0, x ∈ A ∪ {z0}, B ∪ {z0})
� 0, is an Insertion Flow vector related to those data: (X, E), z0, A, B, In, Out,
Π , Π∗, ρ, d, iff:

• for any x in A, Out(x) =
∑

y∈B∪{z0} Gx,y;
• for any y in B, In(y) =

∑
x∈A∪{z0} Gx,y;

392 A. QUILLIOT AND H. TOUSSAINT

• ρ =
∑

x∈A Gx,z0 =
∑

y∈B Gz0,y.

For such an Insertion Flow vector G, we set:

• Makespan1 (G) = Supx∈A, y∈B such that (x,y)∈E or Gx,y �=0 (Π(x) + Π∗(y));
• Makespan2 (G) = Supx∈A, y∈B such that ((x,z0)∈E or Gx,z0�=0) and ((z0,y)∈E or Gz0,y �=0)

(Π(x) + Π∗(y) + d);
• I-Makespan(G) = Sup(Makespan1 (G), Makespan2 (G)).

This definition leads us to set the following Insertion-Flow Problem:

The Insertion-Flow Problem : {Given (X, E), z 0, A, B, In, Out, Π, Π∗, ρ, d
as above, find a related Insertion Flow vector G in such a way that I-Makespan(G)
be the smallest possible}.
Explanation: if we refer to the insertion mechanism which motivates the Insertion
Flow concept, we see that if I = (V , K, R, r, d, �) is some RCPSP instance,
if W ⊂ V is some Inserted Activity subset, if F is some no circuit r∗-multi-
commodity flow vector F defined on the Activity Network N(W), if T and T ∗ are
two Q-valued vectors T and T ∗, defined as in (P5) and both with indexation on
W ∗, if U ⊂ W defines a Cut, i.e. an ad hoc partition of W into two subsets U
and W − U , if k ∈ K is some resource, if v0 is some activity in V −W which is
to be inserted, then optimizing the flow values F (k)(v,w), v ∈ U ∪ {Start}, w ∈
(W– U) ∪ {End}, F (k)(v,v0), v ∈ U ∪ {Start}, F (k)(v0,w), w ∈ (W −U) ∪ {End},
means solving an Insertion Flow instance defined by:

• A = U ∪ {Start}; B = (W − U) ∪ {End}; X = A ∪B;
• E = (v, w), v ∈ A, w ∈ B, such that v Tr(�)w;
• z0 = v0; ρ = rk,v0; d = dv0;
• for any v in U , Π(v) = Tv +dv; T (Start) = 0; for any v in W −U , Π∗(v) = T ∗

v ;
• for any v in U ∪ {Start}, Out(v) =

∑
w∈B F (k)(v,w);

• for any w ∈ (W − U)∪ {End}, In(w) =
∑

v∈A F (k)(v,w).

Remark: Feasibility of the Insertion-flow Problem
According to this interpretation, we understand that the Insertion-Flow prob-

lem has always a solution since:

• the number
∑

x∈A Out(x) of resources given by A is equal to the number∑
y∈B In(y) of resources required by B and is at least equal to the number ρ

of resources which are required by task z0;
• the arcs in E are related to precedence relations between the activities of A

and the activities of B ∪ {z0} or between z0 and the activities of B (there is
precedence relation neither from B to A nor from B to z0).

It comes that a disjunction relationship between an activity x in A (B) and z0

(which derives from the fact that the sum of the resources required by those 2
activities is more than R =

∑
x∈A Out(x) means that the activity x will have to

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 393

give (receive) some resources to (from) z0 and so, that x will precede (succeed) z0

in the resulting schedule.
In order to deal with this Insertion Flow problem, we first build (pre-treatment)

2 linear orderings�Π, �Π∗ , of A and B, respectively compatible with increasing
values of Π and with decreasing values of Π∗. Next, we notice that our Insertion
Flow problem is resolved once we have identified the Attachment Node u, i.e. the
node x ∈ A, such that:

• Gu,z0 �= 0;
• For any x ∈ A such that: u�Π x then we have: Gx,z0 = 0.

As a matter of fact, if the attachment node u is known, we may compute the values
Gx,z0, x ∈ A, through an Attach Procedure, in such a way that: (P6)

• if x and x′ are such that: x′ �Π x (�Π=)u and Gx′,z0 �= 0, then we have:
Gx,z0 = Out(x);
• for any x such that: u�Π x then we have: Gx,z0 = 0.

The procedure Attach is entirely determined by (P6), and consequently modifies
the values Out(x), x ∈ A. Once Attach(u) has been performed, we only need to
add z0 to the set A and to apply the Match-Flow procedure in a convenient way,
in order to get an Insertion Flow. This may be summarized through the following
Try-Insertion algorithm:

Try-Insertion Procedure

Input: u (a node of A)
Attach(u);
Extend Π, Out and �Π to A ∪ {z0}, in such a way that:
• Π(z0) = Supx∈A((x,z0)∈E or Gx,z0�=0)(Π(x) + d);
• �Π becomes defined on A ∪ {z0}, and compatible with increasing
values Π(x);
• Out(z0) = ρ

Apply the Match-Flow procedure to (X , E), A ∪ {z0}, B, In, Out, Π, Π∗
while considering that �Π and �Π∗ of this procedure are provided as
results of the above instructions;
Return I-Makespan(G);

As for the search for a convenient attachment node u, we handle it in an exhaustive
way by scanning what we call the relevant subset AE,z0 of A, and which is defined
by:

AE,z0 = {x ∈ A, such that:

• there does not exist x′ ∈ A, such that x�Π x′ and (x′, z0) ∈ E;
• ∑

x′∈A, x′(�Πor=) x Out(x′) � ρ}.

That means that our Insertion-Flow problem may be handled through the follow-
ing Insertion Procedure:

394 A. QUILLIOT AND H. TOUSSAINT

Insertion Procedure

Compute 2 linear orderings�Π and �Π∗ of A and B, respectively
compatible with increasing values Π(v) and decreasing values Π∗(v);
Compute u0 ∈ AE,z0 defined as above, in such a way that the
Try-Insertion value S0 provided by an application of the procedure
Try-Insertion (u0) be the smallest possible;
Return (u0, S0);

Comment : Insertion provides us with a pair (attach-node u0, I-Makespan
value S0).

Computational complexity of the Insertion procedure

Running the Insertion procedure mainly means scanning the possible attach-
ment nodes u and, for every such a node u, performing the Try-Insertion proce-
dure that is first performing the Attach procedure and next applying the Match-
Flow procedure to the resulting Match-Flow instance. The complexity of this last
combination of processes is O(|A|+|B|). It comes that the complexity of the whole
Insertion procedure is O(|A|. (|A|+|B|)).

We may state:

Theorem 3.3. The Insertion procedure yields an optimal solution of the Inser-
tion Flow Problem.

Proof. In order to prove this statement, we first need to check that if we consider
some feasible solution G of the Insertion Flow Problem, and if we set:

u = Largest, according to the ordering�Π, element x ∈ A, such that (x, z0) ∈ E
or Gx,z0 �= 0, �

then it is possible to modify G in such a way that we end getting the (P6) property
related to u, without making us lose the feasibility of G and without deteriorating
I-Makespan(G). Clearly, once the (P6) property will be satisfied by u and G, u will
be the attachment node, and also that u will belong to the relevant subset AE,z0.
In order to do it, we suppose that u and G do not satisfy (P6) and we consider for
instance x, x′ in A, such that: x�Π x′ (�=

Π)u; Gx′,z0 �= 0 and Gx, z0 �= Out(x).
Then we choose y ∈ B, such that Gx,y �= 0, and we apply to G the following flow
redirection process:

• δ ← Inf Gx′,z0, Gx,y;
• Gx′,z0 ← Gx′,z0– δ ; Gx,y ← Gx,y– δ ; Gx′,y ← Gx′,y + δ ; Gx,z0 ← Gx,z0 + δ.

Clearly, applying this redirection process makes G get closer to the (P6) property
while maintaining it as a feasible solution of the Insertion Flow Problem. Also, we
notice that the value I-Makespan(G) has not increased. Thus, if G is an optimal
solution of the Insertion Flow Problem, we may turn it into an optimal solution
G′ which satisfies (P6).

Concluding the proof is easy, since Theorem 3.1 tells us that we may next
deduce, through application of the Match-Flow Procedure, an Insertion Flow G′′

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 395

which fits the statement of Theorem 3.3 and which is such that I-Makespan(G′′) �
I-Makespan(G′). End-Theorem.

Insertion Multi-Commodity Flows
The above Insertion algorithmic scheme can be easily adapted to the case of
multi-commodity flow vectors. We only need to notice that the same attachment
node may be used for all the Insertion Flow vectors G(h), h ∈ H , H being the
commodity set, and that this node needs to be in the above defined subset AE,z0

of A. Also, if part of the goal is to make in such a way that the number of arcs
in EC which carry non null multi-commodity flow values be the smallest possible,
it is possible to derive a MF-Lex-Insertion Procedure (u: u is a node of the
subset AE,z0 of A) from the Lexicographic-Match-Flow procedure which we
just previously described.

3.3. Difference between our insertion mechanism and Artigues et al.
one

As told at the beginning of part 3, our algorithms may be compared with those
which have been proposed in [6, 7]: the basic difference lays upon the fact that
every time the insertion of some activity is performed, it involves the resolution of
a specific Insertion Flow sub-problem related to a Cut of the currently inserted
activity set; so, the related resolution process updates all the flow values which
express the flow transportation between both sides of this Cut, while in Artigues
et al. proposal, the insertion process does not involve any Cut, but a specific arc
subset E: part of the flow which runs along an arc [x, y] of E is redirected along
the arcs [x, z0] and [z0, y] in order to first provide with resource coming from x,
before giving back this resource to y.

This main difference between the two methods is highlighted in the following
Figures 7 and 8 related to the instance described in Table 2: activity 7 is to be
inserted into the cut (1,2,3)/(4,5,6). The initial flow (before insertion of activity 7)
is given by the Figure 7a.

Figure 7b shows the flow after the insertion of the activity 7 using the mechanism
proposed in [7] while Figure 7c shows the flow after the insertion of the activity 7
using our method. In the two figures, the new (or changed) flows are in dot line
and the Gantt charts associated to each solution are shown in Figure 8. We see
that our method, which allows to change all the flow in the cut, leads to a new
makespan of 10 while [7] method leads to a new makespan of 12.

4. Generic Flow Algorithms for the RCPSP

4.1. A Greedy Insertion Algorithm

This algorithm RCPSP-Greedy-Flow works as follows: at any time while
processing some RCPSP instance I = (V , K, R, r, d, �), it deals with some
Inserted Activity subset W of V , together with a no circuit r∗-multi-commodity

396 A. QUILLIOT AND H. TOUSSAINT

)c()b()a(

Figure 7. (a) Partial solution – (b) Insertion of activity 7 in
the cut (1,2,3)/(4,5,6) using the mechanism proposed in [7] – (c)
Insertion of activity 7 in the cut (1,2,3)/(4,5,6) using our mecha-
nism.

)c()b()a(

Figure 8. (a) Gantt chart related to the initial solution – (b)
Gantt chart related to the flow of Figure 7b (using the insertion
mechanism proposed in [7]) – (c) Gantt chart related to the flow
of Figure 7c (using our proposed mechanism).

flow F defined on the Activity Network N(W), with two positive (or null) Q-valued
vectors T and T ∗, both with indexation on V ∗ = V ∪ {Start, End}, and with 2
linear orderings�T and�T∗ , respectively compatible with increasing values Tv+
dv (with dStart = 0) and decreasing values T ∗

v , in such a way that, for any v in W :

• Tv = Length of a largest path, in the sense of the d∗ length vector, from Start
to v in the Support Partial Activity Network defined by E(F , �);
• T ∗

v = Length of a largest path from v to End in the Support Partial Activity
Network defined by E(F , �).

Then it randomly picks up some activity v0 in V −W , and it “inserts” it into the
timed (r∗, d∗)-flow (F , T), i.e. it turns F into a convenient no circuit r∗-multi-
commodity flow defined on the Activity Network N (W ∪ {v0}). That means that
it selects a Cut of (W , F), that means some subset U of W such that: (P7)

• for any v in U , and any v′ in W such that (v′ � v or F(v′,v) �= 0), we have
v′ ∈ U ;

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 397

Figure 9. Successive insertion of activities related to the instance of Table 3.

• for any v ∈W , such that v T r (�)v0, we have v ∈ U , and for any v ∈W , such
that v0 Tr (�)v, we have v ∈W − U .

For such a well-chosen Cut U , it sets: (P8)

• X = W ∪ {Start, End, v0}; A = U∪ {Start}; B = X – A – {v0}; z0 = v0;
• d = dv0 ; H = K; for any k in K = H , ρ(k) = rk,v0;
• E = {(x, y), x ∈ A ∪ {v0}, y ∈ B∪ {v0}, such that x Tr (�)y };
• for any x in U ∪ {Start}, any k in K, Out(k, x) =

∑
y∈B F (k)(x,y);

• for any y in X – (U ∪ {Start, z0}), any k in K, In(k, y) =
∑

x∈A F (k)(x,y);
• for any x in A = U ∪ {Start}, Π(x) = Tx + dx (with dStart = 0) ; for any x in

B, Π∗(x) = T ∗
x ;

• �Π =�T ; �Π∗=�T∗ .

This construction makes possible the call to the MF-Insertion and the MF-
Lex-Insertion Procedures we just described in 3.2, which yield an Insertion
Multi-commodity-flow vector G. Then RCPSP-Greedy-Flow updates the timed
(r∗, d∗)-flow (F , Π) by setting: (P9)

• for any k in K, v in U ∪ {Start, v0}, w in (W − U) ∪ {End, v0}: F (k)(v,w) =
G(k)(v,w),

by keeping on with former values F (k)(v,w) for any pair (v, w) in A.A or in B.B,
and by updating every value Tv, v ∈W ∪ {v0}, as the length, for the length vector
d∗, of a largest path from Start to v in the Support Partial Activity Network defined
by E(F ,�). Clearly, the definition of a Cut (property (P7)) keeps the arc set E(F ,
�) from defining any circuit, and (F , T) remains a timed (r∗, d∗)-flow.

The Figure 9 shows a full example: we consider an instance with 3 activities
and 2 resources and without precedence constraint (see Tab. 3). First resource has
a capacity 4 and second resource has a capacity 6.

Searching for a best Cut U in the general sense seems to be a difficult problem.
As a matter of fact, we may state:

Theorem 4.1. The search for a best Cut as defined above is NP-Complete.

Proof
Let us consider the following situation, which provides us with an input for the

Insertion Cut Problem:

398 A. QUILLIOT AND H. TOUSSAINT

Figure 10. Left: timed flow for 6 activities with duration 1, the
optimal cut for insertion of v0 is shown in dotted line – Center:
Gantt chart which represents the timed flow left – Right: Gantt
chart after insertion of v0 in the cut.

• there is only one resource (so we set rk,x = rx) and Rk = R, for the unique k
in K;
• ∑

v∈W rv = R; rv0 = R/2; � is the empty relation; for any v in W , dv = 1;
dv0 = 2.

The current flow F must be the trivial flow defined by: for any v in W , F(Start,v) =
rv = F(v,End), which induces a Makespan value equal to 1. Clearly, determining
whether the optimal value of the Insertion Cut instance is equal (�) to 2 means
solving an instance of the 2-Partition problem (see Fig. 10). End-Theorem.

Still, if we consider now some node v of W ∪ {End}, such that:

• for any w ∈ W , such that w Tr (�) v0 we have w �T v;
• for any w ∈ W , such that v0 Tr (�)w we have v �T w or w = v,

then we may associate with v, in a natural way, a Cut Cut(v), by setting: Cut(v) =
{v′ ∈ W such that v′ �T v}. While searching for a best Cut U in the general sense
is a difficult problem, we can easily scan the list �T and choose v1 in such a way
that an application of the MF-Insertion Procedure to U1 = Cut(v1) in the sense
of (P8) and (P9) yields the best possible Makespan value. So, our first RCPSP-
Greedy-Flow algorithm works this way, by applying the MF-Insertion proce-
dure to a well-chosen Cut Cut(v1) as it has just been told, by next updating T ,
T ∗, �T and�T∗ , and by keeping on with the insertion process until all activities
have been inserted. The whole process may be summarized as follows:

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 399

RCPSP-Greedy-Flow Algorithm
Input: the instance I = (V , K, R, r, d, �) of the RCPSP problem;
Output: a timed (r∗, d∗)-flow (F , T), and the related Makespan value Δ
Initialization:

W ← Nil; Δ← 0; F ← 0; �T=�T∗← {Start, End};
T (Start) = T (End) = T ∗(Start) = T ∗(End) ← 0;

Main Loop:
RCPSP-Flow ← Packet-Insertion(V);

Packet-Insertion Procedure

Input: the instance I = (V , K, R, r, d, �) of the RCPSP problem, given
together with a timed r∗-flow vector F , two vectors T and T ∗, and two
linear orderings�T and �T∗ , related to the restriction of (V ,K, R, �,
r, d) to W = V − S where S is a subset of V
Output: a timed (r∗, d∗)-flow (F , T), and the related Makespan value Δ
SAux ←S; W ← V − S;
While SAux �= Nil do

Randomly Pick up v0 in SAux and Remove it from SAux; (I1)
Compute v1 in W ∪ {End}, such that the application of the
MF-Insertion procedure to: (I2)
• X = W ∪ {Start, End, v0}; A = Cut(v1) ∪ {Start}; B = X – A

– {v0}; z0 = v0; d = dv0; H = K; for any k in K, ρ(k) = rk,z0;
• E = {(x, y), x ∈ A ∪ {v0}, y ∈ B ∪ {v0}, such that x Tr (�) y };
• Out defined by: for any x in Cut(v1) ∪ {Start}, any k in K,

Out(k, x) =
∑

y∈B F (k)x,y;
• In defined by: for any y in X – (Cut(v1) ∪ {Start, z0}), any k in K,

In(k, y) =
∑

x∈AF (k)x,y;
• for any x in A= Cut(v1) ∪ {Start}, Π(x) = Tx + dx(with

d(Start) = 0);
• for anyx in B, Π ∗(x) = T ∗

x ;
• �Π=�T; �Π∗=�T∗ ;

yields the best possible Makespan value;
Let u1 be the attachment node provided by the related application
of MF-Insertion ;
Apply the MF-Lex-Insertion (u1) procedure to the input related
to v1 according to the instruction (I2), in order to perform the
insertion of v0 into the timed (r∗, d∗)-flow (F , T) in an effective way;
Let G be the resulting Insertion Flow vector: update F values by
setting ((P9) equations), for any k in K, v in Cut(v1) ∪ {Start, v0},
w in (W – Cut(v1)) ∪ {End, v0}: F (k)v,w = G(k)v,w; For any v ∈
W ∪ {Start, End, v0}, update Tv (T ∗

v) as the largest length
(for the d∗ length vector) of a path from Start to v (from v to End)
in the Support Partial Activity Network defined by (F , �));
Update �T=�T∗; Δ← T (End); W ←W ∪ {v0};

EndWhile
Return (F , T , Δ);

400 A. QUILLIOT AND H. TOUSSAINT

Remark 4.2. This algorithm may be randomized and next integrated it into a
GRASP algorithmic scheme:

GRASP RCPSP-Greedy-Flow Procedure

Input: NRep (number of replications)
For i = 1. . . NRep do

Apply the RCPSP-Flow Procedure;
EndFor
Keep the best result (F , Π, Δ) obtained;

4.2. A Local Search Algorithm

The above Packet-Insertion operator gives rise in a generic way to a local
search operator. The idea is that, once we are endowed with a timed (r∗, d∗)-flow
(F , T) defined on the activity set V , we may pick up some (small) subset S of V ,
take it away from V (which means reversing the insertion process) and, next,
come back to inserting the activities of S into the pair (F , T). In order to describe
this operator in a more accurate way, we need to introduce the Reverse-Insertion
process. This process operates on an activity subset W ⊆ V , and on a timed (r∗,
d∗)-flow (F , T). It takes some activity v in W as a parameter and it proceeds as
follows:

Reverse-Insertion Procedure

Input: v0

Compute T ∗, as well as 2 linear ordering �T and �T∗, respectively
compatible with T and T ∗ values;
A← {v ∈ W ∪ {Start}such that v �T v0};
B ←{v ∈W ∪ {End}such that v0 �T v};
E ← {(x, y), x ∈ A, y ∈ B, such that x Tr (�) y};
Apply the MF-Lexicographic-Match-Flow procedure while considering
that:
• for any k ∈ K, v ∈ A, Out(k, v) =

∑
w∈B∪{vo}F (kv,w) ;

• for any k ∈ K, v ∈ B, In(k, v) =
∑

w∈A ∪{vo} F (k)w,v;
Let G be the resulting Multi-commodity Match Flow vector: for any v ∈ A,
w ∈ B, k ∈ K, set F (k)v,w = G(k)v,w ;
Update T ;

This elementary process may be extended into a more general Packet-Reverse-
Insertion procedure, which deals with an activity subset S ⊆ V , and which
removes it from a timed (r∗, d∗)-flow (F , T):

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 401

Packet-Reverse-Insertion Procedure

Input:S (subset of V)
SAux ← S; W ← V ;
While SAux �= Nil do

Pick up v0 in SAux and remove it from SAux;
Reverse-Insertion(v0);
Remove v0 from W ;

EndWhile

This enables us to define a local search operator Transform-Insertion , which
is going to work on any timed (r∗, d∗)-flow (F , T), related to I = (V , K, R, r,
d, �), with parameter an activity subset S ⊆ V :

Transform-Insertion Procedure

Input: S (subset of V)
Packet-Reverse-Insertion(S);
Packet-Insertion(S);

Provided with this operator, we may design algorithms according to the following
scheme:

RCPSP-LS-Flow Procedure

Input: NTry (number of tries)
Compute, through the RCPSP-Greedy-Flow procedure, an initial
timed (r∗, d∗)-flow (F , T), together with a Makespan value Δ;
j ← 1;
While j � NTry do

Compute some subset S ⊂ V ; (I3)
Compute the Makespan value Δ’ resulting from the application of
Transform-Insertion(S) to (F , T);
If Δ′ < Δ then

Replace the current (F , T) by the timed (r∗, d∗)-flow which
results from the application of Transform-Insertion(S) to (F , T);
j ← 1;

Else
j ←j + 1;

Endif
EndWhile

Comment : of course, it would be possible to use a Tabu Search scheme or a Sim-
ulated Annealing scheme.

Clearly, the basic instruction is here the (I3) instruction. We tried the following
approaches:

• crit-path strategy: S is the activity subset defined by a critical path;
• antichain strategy: S is the activity subset S(t) defined by the activities

which are simultaneously run at some instant t, according to the schedule
defined by the current vector T . Several strategies have been tested to choose

402 A. QUILLIOT AND H. TOUSSAINT

a “good” date t: for example the date at which the resources are the less used
or at which there are the less activities in parallel. The strategy which provides
us with the best results was to choose the date t randomly.

Remark: is a “good” insertion order likely to produce an optimal solu-
tion?

One may ask in a natural way if there always exist, for a given RCPSP instance
I = (V , K, R, r, d, �), some insertion order σ of V , such that performing
the RCPSP-Greedy-Flow process while picking up the tasks of V according
to σ yields an optimal solution. Intuitively, one feels that this should be true.
Unfortunately, we were not able to prove it, and solving this open question may
happen to be difficult. Actually, it would be sufficient, in order to do it, to prove
that if some timed-flow (F , T) is an optimal solution of I, then it is possible to
choose an activity v in such a way that applying the Packet-Reverse-Insertion
procedure with S={v} leads to an optimal solution for the restriction of I to
V -{v}.

5. Numerical Tests

5.1. Results about RCPSP-Flow and RCPSP-LS-Flow procedures

We performed our experiments, on PC AMD opteron 2.1 GHz, while using gcc
4.1 compiler. We tried several instance packages, all of them obtained from the
PSPLIB test bed, and, for every package, we tried both Monte-Carlo-RCPSP-
Greedy-Flow and procedure with several distinct values of the parameter I. For
every instance package, we kept memory of the following quantities:

• N-Activity = the common number of activities; N-Res = the common number
of resources;
• N-Rep = the parameter value for the Monte-Carlo-RCPSP-Flow proce-

dure, i.e. the number of replications of the RCPSP-Flow procedure;
• Time = the time in seconds needed to performed the N-rep replications;
• Gap TB = the gap between the best value obtained through N-rep replications

of the RCPSP-Flow procedure and:
– in the case of 30 job instances, the optimal value;
– in the case of 60 and 120 job instances, the trivial (largest�-path) lower

bound value.
• Gap LB = the gap between the best value obtained through N-rep replica-

tions of the RCPSP-Flow procedure and the best known lower bound value
(optimal value if |V |= 30):

The following table provides us with average results for the RCPSP-Greedy-
Flow and RCPSP-LS-Flow Procedures, related to the PSPLIB packages
respectively defined by the 480 instances of 30 jobs, by the 480 instances of 60
jobs and by the 600 instances of 120 jobs.

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 403

Table 6. Comparison with other methods of literature.

Reference j30 j60 j120

1000 5000 50000 1000 5000 50000 1000 5000 50000

[52] 0.10 0.04 0.00 11.7I 11.17 10.74 34.74 33.36 32.06

[35] 0.27 0.11 0.01 11.73 11.10 10.71 35.22 33.10 31.57

[77] 0.27 0.06 0.02 11.56 11.10 10.73 34.07 32.54 31.24

[78] 034 0.20 0.02 12.21 11.27 10.74 35.39 33.24 31.58

[5] 0.25 0.06 0.03 11.89 11.19 10.84 36.53 33.91 31.49

our heuristic 0.36 0.12 0.03 12.70 11.93 11.40 38.67 36.60 35.00

[4] 0.33 0.12 12.57 11.86 − 39.36 36.57 –

[76] 0.25 0.13 0.05 11.88 11.62 11.36 35.01 34.41 33.71

[64] 0.46 0.16 0.05 12.97 12.18 11.58 40.86 37.88 35.85

[74] 0.30 0.16 0.07 12.18 11.87 11.54 36.49 35.81 35.01

[40] 0.38 0.22 0.08 12.21 I1.70 11.21 37.19 35.39 33.21

[41] 0.54 0.25 0.08 12.68 11.89 11.23 39.37 36.74 34.03

[75] 0.30 0.17 0.09 12.14 11.82 11.47 36.24 35.56 34.77

[73] 0.42 0.17 12.77 12.03 – – – –

[16] 0.38 0.23 12.75 11.90 – 42.81 37.68 –

[26] 0.74 0.33 0.16 13.28 12.63 11.94 39.97 38.41 36.44

[71] 0.65 0.44 12.94 12.58 – 39.85 38.70 –

The next table provides us with average results for the RCPSP-LS-Flow Pro-
cedure, related to the same PSPLIB packages. N-Rep means the replication number
of the GRASP RCPSP-LS-Flow scheme. The value Up denotes the improvement
which was due to the local search process in relation to the initialization through
RCPSP-Greedy-Flow.

Comment : those results seem to be very satisfactory, taken into account the sim-
plicity and the generic features of those algorithms which derive from our Timed
Flow framework. Also, one may notice the good behaviour of the generic local
search operator Transform-Insertion. In order to confirm this feeling we have per-
formed a full comparison with the best known methods of literature which is
described in the following section.

5.2. Comparison with other methods of literature

We propose in this part to give the performances of our heuristic according to
evaluation method proposed by Kolish and Hartmann [49]. They rank heuristics
from literature comparing the best solution obtained through a same number of
schedules evaluations. Table 6 shows the gap to the optimal solution for the j30
instances and to the trivial lower bound for the j60 and j120 instances for 1000,

404 A. QUILLIOT AND H. TOUSSAINT

Table 7. Classification of the 30 job instances of the PSPLIB library.

Instance RESOURCE- RESOURCE- PARALLEL- PARALLEL-

Package RELAX TYPE MEAN MAX

min max moy min max moy min max moy min max moy

j301 0 26.3 13.8 1 1 1 2.4 3.4 3.0 4 7 5.4

j302 0 11.8 4.4 1 1 1 3.0 3.9 3.5 5 7 6

j303 0 15.2 3.1 1 1 1 2.0 3.6 2.9 4 6 5.5

j304 0 0 0 1 1 1 2.8 3.9 3.2 5 7 5.9

j305 25 76.7 38.7 2.03 2.03 2.03 2.0 3.0 2.4 3 5 4.4

j3011 0 5 1.4 3.03 3.03 3.03 2.3 4.3 3.2 4 7 5.1

j3012 0 0 0 3.03 3.03 3.03 3 4.7 3.7 4 8 6.1

j3013 31.1 121 61.2 4 4 4 1.6 2.3 2 2 3 2.9

j3014 0 20.5 7.1 4 4 4 2.7 3.7 2.9 3 5 4

j3015 0 8.7 1.2 4 4 4 2.6 3.7 3 4 6 4.6

j3021 22.6 60.5 35.3 2.03 2.03 2.03 1.8 2.6 2.2 3 4 3.8

j3022 3.3 15.6 7.9 2.03 2.03 2.03 2.3 3.6 3.0 4 7 5.2

j3023 0 8.6 2.6 2.03 2.03 2.03 2.5 3.3 2.9 4 7 5.3

j3024 0 0 0 2.03 2.03 2.03 2.5 4.1 3.2 5 7 5.7

j3025 23.4 81.6 59.9 3.03 3.03 3.03 1.67 2.44 2.0 3 3 3

j3031 0 12.2 2.9 4 4 4 2.6 3.4 2.9 3 5 4.5

j3032 0 0 0 4 4 4 2.7 4.1 3.2 5 8 5.5

j3033 0 31 14.6 1 1 1 2.3 3.2 2.8 3 6 4.7

j3034 0 16 5.3 1 1 1 2.4 3.5 2.8 4 6 4.6

j3035 0 7.3 2.0 1 1 1 2.5 3.2 2.9 4 6 5.3

j3041 33.3 81.6 60.5 3.03 3.03 3.03 1.4 2.0 1.8 2 4 3.2

j3042 0 22.4 7.4 3.03 3.03 3.03 2.0 3.1 2.6 3 5 3.9

j3043 0 3.8 1.8 3.03 3.03 3.03 2.3 3.1 2.7 4 5 4.2

j3044 0 0 0 3.03 3.03 3.03 2.5 3.7 3.2 4 7 5.3

j3045 40.3 98.4 59.4 4 4 4 1.3 1.9 1.6 2 3 2.3

5000 and 50000 schedules evaluations. This table is sorted by ascending gap value
relative to j30 instances and 50000 schedule evaluations. For the authors who
provided results for different methods in the same article we kept the best results.

Comment: We notice that our algorithm provide us with some of the best avail-
able results, not too far behind GA, TS-path relinking of [52], Scatter Search FBI
of [35], GA FBI of [78] and GA-forward/Backward of [5].

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 405

5.3. Results about structural properties of the instances

We also performed a more detailed experiment, while trying to make appear the
way structural properties of the instances may eventually impact the behaviour of
the algorithm. In order to do it, we started by classifying those instances according
to several indicators:

– RESOURCE-RELAX : gap between reference makespan and trivial makespan
(the makespan which is induced by the relaxation of the resource constraint);

– RESOURCE-TYPE : average quantity of resource type required by jobs;
– PARALLEL-MEAN : average number of parallel jobs per instance related to an

optimal solution;
– PARALLEL-MAX : maximum number of parallel jobs per instance related to

an optimal solution;

In the case of the 25 packages j301..j305..j341..j345 which allow us to decompose
the 30 job instances of the PSPLIB library into 10 instance packages, it yielded
the following Table 7:

Then we applied to those instances the RCPSP-Greedy-Flow Procedure,
Monte-Carlo Scheme, while considering with N-Rep = 1000, and we got the fol-
lowing Table 8:
Comment : it is interesting to notice the correlation which exists between the true
difficulty of the instances and the parallelism level which they allow. One should be
cautious while trying to interpret it. Still, it seems to be that, in most cases, a low
parallelism level tends to make the instance more difficult. Indeed a low parallelism
level, which creates implicit disjunction constraints, discriminates insertions in a
more significant way, and makes the quality of the final schedule more sensitive
to “bad” insertion decisions. Conversely, a high parallelism level makes easier to
partially offset non optimal insertion decisions.

6. Conclusion

What we just did here was trying to take advantage of the existing link between
Flow Theory and Resource Constrained Scheduling. Clearly, one of the focus here
was genericity: we got structural results which helped us in designing greedy and
local search flow based algorithms. We tested those algorithms which proved them-
selves to be rather efficient. It would be interesting to try to go further, and study
the way other scheduling problems (involving pre-emption. . .) might be cast into
the Flow formalism. Also, it would be interesting to find the way to take more
advantage from the general Flow Theory algorithmic machinery while efficiently
dealing with the combinatorial no circuit constraint.

406 A. QUILLIOT AND H. TOUSSAINT

Table 8. RCPSP-Greedy-Flow procedure, Monte Carlo Scheme,
on the 48 packages of Table 7.

instances group name Time (s) Gap (%)
j301 5.81 0.00
j302 6.33 0.00
j303 6.30 0.00
j304 6.04 0.00
j305 5.80 2.69
j3011 7.01 1.02
j30I2 8.01 0.00
j3013 5.71 6.43
j3014 6.71 3.50
j3015 7.37 0.52
j3021 5.23 0.33
j3022 6.35 0.00
j3023 6.49 0.00
j3024 6.90 0.00
j3025 5.26 4.06
j3031 7.12 0.93
j3032 7.91 0.00
j3033 5.23 0.00
j3034 5.24 0.00
j3035 5.60 0.00
j3041 4.75 1.91
j3042 6.02 1.02
j3043 6.36 0.83
j3044 7.25 0.00
j3045 4.52 2.03

References

[1] B. Abbasi, S. Shadrokh and J. Arkat, Bi-objective resource-constrained project scheduling
with robustness and makespan criteria. Appl. Math. Comput. 180 (2006) 146–152.

[2] R.K. Ahuja, T.L. Magnanti, J.B. Orlin and M.R. Reddy, Applications of network optimiza-
tion, in Network Models (Chapter 1). Handbooks Oper. Res. Manage. Sci. 7 (1995) 1–83.

[3] R.V. Ahuja, T.L. Magnanti and J.B. Orlin. Network flows: theory, algorithms and applica-
tions. Prentice hall, Englewood Cliffs, N.J (1993).

[4] J. Alcaraz and C. Maroto, A robust genetic algorithm for resource allocation in project
scheduling. Ann. Oper. Res. 102 (2001) 83–109.

[5] J. Alcaraz, C. Maroto and R. Ruiz, Improving the performance of genetic algorithms for the
RCPSP problem, in Proc. 9th Int. workshop on project management and scheduling (2004)
40–43.

[6] C. Artigues and F. Roubellat, A polynomial activity insertion algorithm in a multiresource
schedule with cumulative constraints and multiple nodes. EJOR 127 (2000) 297–316.

[7] C. Artigues, P. Michelon and S. Reusser, Insertion techniques for static and dynamic resource
constrained project scheduling. EJOR 149 (2003) 249–267.

[8] C. Artigues and C. Briand, The resource-constrained activity insertion problem with mini-
mum and maximum time lags. J. Schedul. 12 (2009) 447–460.

[9] K.R. Baker, Introduction to sequencing and scheduling. Wiley, N.Y (1974).

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 407

[10] P. Baptiste, Resource constraints for preemptive and non preemptive scheduling, MSC The-
sis, University PARIS VI (1995).

[11] P. Baptiste and S. Demassey, Tight LP-bounds for resource constrained project scheduling.
OR Spectrum 26 (2004) 251–262.

[12] P. Baptiste, P. Laborie, C. Lepape and W. Nuijten, Constraint-based scheduling and plan-
ning, in Handbook of Constraint Programming 22, edited by F. Rossi, P. Van Beek. Elsevier

(2006) 759–798.
[13] T. Baar, P. Brucker and S. Knust, Tabu-search algorithms and lower bounds for the resource-

constrained project scheduling problem, in Meta-heuristics: Advances and trends in local
search paradigms for optimization, edited by S. Voss, S. Martello, I. Osman and C. Roucairol.
Kluwer Academic Publishers (1998) 1–8.

[14] C. Berge, Graphes et Hypergraphes. Dunod Ed (1975).
[15] J. Blazewiecz, K.H. Ecker, G. Schmlidt and J. Weglarcz, Scheduling in computer and man-

ufacturing systems. 2th edn, Springer-Verlag, Berlin (1993).
[16] K. Bouleimen and H. Lecocq, A new efficient simulated annealing algorithm for the resource-

constrained project scheduling problem and its multiple mode version. EJOR 149 (2003)
268–281.

[17] C. Briand, A new any-order schedule generation scheme for resource-constrained project
scheduling. RAIRO - Oper. Res. (2009) 297–308.

[18] P. Brucker and S. Knust, A linear programming and constraint propagation based lower
bound for the RCPSP. EJOR 127 (2000) 355–362.

[19] P. Brucker, S. Knust, A. Schoo and O. Thiele, A branch and bound algorithm for the resource
constrained project scheduling problem. EJOR 107 (1998) 272–288.

[20] P. Brucker, A. Drexl, R. Mohring, K. Neumann and E. Pesch, Resource-constrained project
scheduling: notation, classification, models and methods. EJOR 112 (1999) 3–41.

[21] J. Carlier and P. Chrétienne. Problèmes d’ordonnancements : modélisation, complexité et
algorithmes. Masson Ed, Paris (1988).

[22] J. Carlier and E. Neron, Computing redundant resources for the resource constrained project
scheduling problem. EJOR 176 (2007) 1452–1463.

[23] J. Carlier and E. Neron, On linear lower bounds for the resource constrained project schedul-
ing problem. EJOR 149 (2003) 314–324.

[24] H. Chtourou and M. Haouari, A two-stage-priority rule based algorithm for robust resource-
constrained project scheduling. Comput. Indust. Engin. 12 (2008).

[25] N. Chistophides and C.A. Whitlock, Network synthesis with connectivity constraint: a sur-
vey. Oper. Res. (1981) 705–723.

[26] J. Coelho and L. Tavares, Comparative analysis of metaheuricstics for the resource con-
strained project scheduling problem. Technical report, Department of Civil Engineering,
Instituto Superior Tecnico, Portugal (2003).

[27] G. Dahl and M. Stoer, A polyhedral approach to multicommodity survivable network design.
Numerische Math. 68 (1994) 149–167.

[28] J. Damay, Techniques de resolution basées sur la programmation linéaire pour
l’ordonnancement de projet. PH.D. Thesis, Université de CLERMONT-FERRAND (2005).

[29] J. Damay, A. Quilliot and E. Sanlaville, Linear programming based algorithms for preemp-
tive and non preemptive RCPSP. EJOR 182 1012–1022. (2007).

[30] S. Demassey, C. Artigue and P. Michelon, Constraint–propagation-based cutting planes: an
application to the resource-constrained-project-scheduling problem. INFORMS J. Comput.
17 (2005) 1.

[31] E. Demeulemeester and W. Herroelen, New benchmark results for the multiple RCPSP.
Manage. Sci. 43 (1997) 1485–1492.

[32] B. De Reyck and W. Herroelen, A branch and bound procedure for the resource-constrained
project scheduling problem with generalized precedence relations. EJOR 111 (1998) 152–

174.
[33] K. Djellab, Scheduling preemptive jobs with precedence constraints on parallel machines.

EJOR 117 (1999) 355-367.

408 A. QUILLIOT AND H. TOUSSAINT

[34] D. Dolev and M.K. Warmuth, Scheduling DAGs of bounded heights. J. Algor. 5 (1984)
48–59.

[35] D. Debels, B. De Reyck, R. Leus, M. Vanhoucke, A hybrid scatter search/electromagnetism
meta-heuristic for project scheduling. EJOR 169 (2006) 638–653.

[36] B. Dushnik and W. Miller, Partially ordered sets. Amer. J. Math. 63 (1941) 600–610.
[37] P. Fortemps and M. Hapke, On the disjunctive graph for project scheduling. Foundat. Com-

put. Decis. Sci. 22 (1997) 195–209.
[38] D.R. Fulkerson and J.R. Gross, Incidence matrices and interval graphs. Pac. J. Maths 15

(1965) 835–855.
[39] R.L. Grahamson, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnoy-Khan, Optimization and

approximation in deterministic scheduling: a survey. Annal. Disc. Math. 5 (1979) 287–326.
[40] S. Hartmann and D. Briskorn, A survey of variants and extensions of the resource-

constrained project scheduling problem. Eur. J. Operat. Res. 207 (2010) 1–14.
[41] W. Herroelen, E. Demeulemeester and B. de Reyck, A classification scheme for project

scheduling, in Project Scheduling: recent models, algorithms and applications. Kluwer Acad
Publishers (1999) 1–26.

[42] W. Herroelen, Project Scheduling-Theory and Practice. Prod. Oper. Manag. 14 (2006) 413–
432.

[43] M. Haouari, A. Gharbi, A improved max-flow based lower bound for minimizing maximum
lateness on identical parallele machines. Operat. Res. Lett. 31 (2003) 49–52 .

[44] J. Josefowska, M. Mika, R. Rozycki, G. Waligora, J. Weglarcz, An almost optimal heuristic
for preemptive Cmax scheduling of dependant task on parallel identical machines. Annal.
OR 129 (2004) 205–216.

[45] R. Kolisch and A. Drexl, Adaptive search for solving hard project scheduling problems.
Naval Res. Logist. 43 (1996) 23–40.

[46] R. Kolisch and S. Hartmann, Experimental investigation of heuristics for the resource con-
strained scheduling problem: an update. EJOR 174 (2006) 23–37.

[47] A. Kimms, Mathematical programming and financial objectives for scheduling projects.
Oper. Res. Manag. Sci. Kluwer Academic Publisher (2001).

[48] R. Kolisch, A. Sprecher and A. Drexel, Characterization and generation of a general class
of resource constrained project scheduling problems. Manag. Sci. 41 (1995) 1693–1703.

[49] R. Kolisch, Serial and parallel resource-constrained project scheduling methods revisited:
Theory and computation. Eur. J. Oper. Res. 90 (1996) 320–333.

[50] R. Kolisch, R. Padman. An integrated survey of deterministic project scheduling. Omega
48 (1999) 249–272.

[51] R. Kolisch and S. Hartmann, Heuristic algorithms for solving the resource-constrained
project scheduling problem: classification and computational analysis, in edited by J.
Weglarcz. Project Scheduling: recent models, algorithms and applications, Kluwer Acad
Press (1999).

[52] Y. Kochetov and A. Stolyar, Evolutionnary local search with variable neighbourhood for
the resource constrained scheduling problem, in Proc. 3 th int. Conf. Computer Sciences
and Information Technologies, Russia (2003).

[53] E.L. Lawler, K.J. Lenstra, A.H.G. Rinnoy-Kan and D.B. Schmoys, Sequencing and schedul-
ing: algorithms and complexity, in Handbook of Operation Research and Management Sci-
ences, Vol 4: Logistics of Production and Inventory, edited by S. C. GRAVES, A.H.G.
Rinnoy-kan, P.H. Zipkin. North-Holland (1993) 445–522.

[54] R. Leus and W. Herroelen, Stability and resource allocation in project planning. IIE trans-
actions. 36 (2004) 1–16.

[55] V.J. Leon and B. Ramamoorthy, Strength and adaptability of problem-space based neigh-
borhoods for resource-constrained scheduling. OR Spektrum 17 (1995) 173–182.

[56] A. Mingozzi, V. Maniezzo, S. Ricciardelli and L. Bianco, An exact algorithm for project

scheduling with resource constraints based on a new mathematical formulation. Manage.
Sci. 44 (1998) 714–729.

FLOW POLYHEDRA AND RESOURCE CONSTRAINED PSP 409

[57] M. Minoux, Network synthesis and optimum network design problems: models, solution
methods and application. Networks 19 (1989) 313–360.

[58] P.B. Mirchandani and R.L. Francis, Discrete location theory. John Wiley and sons (1990).
[59] R.H. Mohring and F.J. Rademacher, Scheduling problems with resource duration interac-

tions. Methods Oper. Res. 48 (1984) 423–452.
[60] A. Moukrim and A. Quilliot, Optimal preemptive scheduling on a fixed number of identical

parallel machines. Oper. Res. Lett. 33 (2005) 143–151.
[61] A. Moukrim and A. Quilliot, A relation between multiprocessor scheduling and linear pro-

gramming. Order 14 (1997) 269–278.
[62] R.R. Muntz and E.G. Coffman, Preemptive scheduling of real time tasks on multiprocessor

systems. J. ACM 17 (1970) 324–338.
[63] K. Neumann, C. Schwindt and J. Zimmermann, Project scheduling with time windows and

scarce resources. Springer, Berlin (2003).
[64] K. Nonobe and T. Ibaraki, Formulation and tabu search algorithm for the resource con-

strained project scheduling problem. In C.C. Ribeiro and P. Hansen, editors, Essays and
surveys in metaheuristics. Kluwer Academic Publishers, Dordrecht (2002) 557–588.

[65] M. Palpant, C. Artigues and P. Michelon, LSSPER: solving the resource-constrained project
scheduling problem with large neighbourhood search. Ann. Oper. Res. 131 (2004) 237–257.

[66] C.H. Papadimitriou and M. Yannanakis, Scheduling interval ordered tasks. SIAM J. Com-
put. 8 (1979) 405–409.

[67] P.M. Pardalos and D.Z. Du, Network design: connectivity and facility location. DIMACS
Series 40, N.Y, American Math Society (1998).

[68] J.H. Patterson, A comparizon of exact approaches for solving the multiple constrained re-
source project scheduling problem. Manag. Sci. 30 (1984) 854–867.

[69] N. Sauer and M.G. Stone, Rational preemptive scheduling. Order 4 (1987) 195–206.
[70] N. Sauer and M.G. Stone, Preemptive scheduling of interval orders is polynomial. Order 5

(1989) 345–348.
[71] A. Schirmer, Case-based reasoning and improved adaptive search for project scheduling.

Naval Res. Logist. 47 (2000) 201–222.
[72] S.S. Liu and C.J. Wang, Resource-constrained construction project scheduling model for

profit maximization considering cash flow. Automat. Constr. 17 (2008) 966–974.
[73] P. Tormos and A. Lova, Project scheduling with time varying resource constraints. Int. J.

Prod. Res. 38 (2000) 3937–3952.
[74] P. Tormos and A. Lova, A competitive heuristic solution technique for resource-constrained

project scheduling. Ann. Oper. Res. 102 (2001) 65–81.
[75] P. Tormos and A. Lova, An efficient multi-pass heuristic for project scheduling with con-

strained resources. Int. J. Prod. Res. 41 (2003) 1071–1086.
[76] P. Tormos and A. Lova, Integrating heuristics for resource constrained project scheduling:

One step forward. Technical report, Department of Statistics and Operations Research,
University of Valencia (2003).

[77] V. Valls, F. Ballestin and S. Quintanilla, A hybrid genetic algorithm for the RCPSP. Techni-
cal report, Department of Statistics and Operations Research, University of Valencia (2003).

[78] V. Valls, B. Ballestin and S. Quintanilla, Justification and RCPSP: a technique that pays.
EJOR 165 (2005) 375–386.

[79] P. Van Hentenryk, Constraint Programming. North Holland (1997).

	Introduction
	Network and Multi-Commodity Flow related to a RCPSP Instance
	Preliminary notations and definitions
	The Standard Non-Preemptive RCPSP Problem
	Linking Network Flows with RCPSP: Timed Flows
	A Connectivity Theorem

	The Match-Flow and Insertion-Flow Problems
	The Match-Flow Problem
	The Insertion Flow Problem
	Difference between our insertion mechanism and Artigues et al. one

	Generic Flow Algorithms for the RCPSP
	A Greedy Insertion Algorithm
	A Local Search Algorithm

	Numerical Tests
	Results about RCPSP-Flow and RCPSP-LS-Flow procedures
	Comparison with other methods of literature
	Results about structural properties of the instances

	Conclusion
	References

