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M/M/1 RETRIAL QUEUE WITH COLLISIONS
AND WORKING VACATION INTERRUPTION UNDER

N-POLICY
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Abstract. Consider an M/M/1 retrial queue with collisions and work-
ing vacation interruption under N-policy. We use a quasi birth and
death process to describe the considered system and derive a condi-
tion for the stability of the model. Using the matrix-analytic method,
we obtain the stationary probability distribution and some performance
measures. Furthermore, we prove the conditional stochastic decomposi-
tion for the queue length in the orbit. Finally, some numerical examples
are presented.
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1. Introduction

Queueing systems with server’s vacations have been studied extensively, gen-
eral models can be found in Tian and Zhang [15]. In 2002, Servi and Finn [12]
first introduced a new vacation policy and studied an M/M/1 queue, the server
commits a lower service rate rather than completely stopping the service during a
vacation, which we call working vacation. Liu et al. [18] obtained the stochastic de-
compositions in the M/M/1 queue with working vacations by the matrix-analytic
method. Subsequently, Wu and Takagi [4] generalized results in [12] to an M/G/1
queue. Baba [19] considered a GI/M/1 queue with working vacations by the
matrix-analytic method. Recently, Li and Tian [8] investigated the GI/M/1 queue
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with single working vacation. Furthermore, during the working vacation period,
the server can stop the vacation if there are customers at a service completion
instant. For the vacation interruption models, Li and Tian [9] first introduced
and studied an M/M/1 queue with working vacations and vacation interruption.
Subsequently, Li et al. [10] analyzed a GI/M/1 queue with working vacations and
vacation interruption by the matrix-analytic method. Using the method of a sup-
plementary variable, Zhang and Hou [14] investigated the M/G/1 queue. Baba [20]
even studied the M/PH/1 queue with working vacations and vacation interruption
where the vacation time follows a phase type distribution.

In recent years there have been significant contributions to the retrial queues.
Retrial queueing systems are described by the feature that the arriving customers
who find the server busy join the retrial orbit to try again for their requests. Choi
et al. [1] studied an M/M/1 retrial queue. Martin and Corral [13] investigated
an M/G/1 retrial queue with liner control policy. Next, Lillo [16] considered a
GI/M/1 retrial queue. More models can be found in Artalejo and Corral [6]. Many
authors also analyzed the retrial system with collisions, since some networks can
be treated as these models. Choi et al. [2] studied a retrial queue with collision
arising from unslotted CSMA/CD protocol. Kim [7] analyzed an M/M/1 retrial
queue with collision and impatience. Kumar et al. [3] discussed an M/M/1 retrial
queue with feedback and collisions. Wu et al. [11] investigated a Geo/G/1 retrial
queue with preemptive resume and collisions.

Do [17] first studied an M/M/1 queue with both retrials and working vacations.
In this paper, we generalize the model in [17, 21], and also consider vacation in-
terruption and collisions. In our model, upon the arrival of requests, if the server
is busy, requests are forced to wait in the orbit of infinite size. Assume requests
in the orbit try to get service from the server with a constant retrial rate. And,
it is more reasonable to assume that the server can stop the vacation at a service
completion instant, if the number of customers in the orbit achieves N . When a
vacation ends, a regular busy period starts only if there are at least N customers
in the orbit.

This paper is organized as follows. In Section 1, we introduce the model and
obtain the infinitesimal generator. In Section 2, we derive the stability condition
and the minimal non-negative solution R. Using the matrix-analytic method, the
stationary probability distribution is obtained in Section 3. In Section 4, we in-
troduce two random variables and give the conditional stochastic decomposition
for the queue length. In Section 5, we obtain some important and interesting per-
formance measures. Some numerical results are presented in Section 6. Finally,
Section 7 concludes this paper.

2. Quasi birth and death (QBD) process model

In this paper, we consider an M/M/1 retrial queue with collisions, working
vacations, vacation interruption and N-policy at the same time. Request retrials
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from the orbit of infinite size follow a Poisson process with rate α. And, if the server
is busy, the retrial customer collides with the customer in service resulting in both
being shifted to the orbit. During the normal service period, the server begins a
working vacation each time when the system becomes empty, i.e., when the server
is free and there is no customer in the orbit. At a service completion instant,
if there are at least N customers in the orbit, the server will stop the vacation
and come back to the normal working level, which means vacation interruption
happens. If the number of customers in the orbit is less than N , on the other
hand, the server will stay in the working vacation period. Meanwhile, if there are
at least N customers in the orbit when a vacation ends, the server switches to the
normal busy period, otherwise, the server continues the vacation.

We assume that inter-arrival times, inter-retrial times, service times and vaca-
tion times are mutually independent. And, the inter-arrival times, the inter-retrial
times, the service times during a normal period, the service times during a vacation
period and the vacation times are exponentially distributed with parameters λ, α,
μ, η and θ, respectively.

Let Q(t) be the number of customers in the orbit at time t, and J(t) be the state
of server at time t. There are four possible states of the single server as follows:

(a) the server is on a working vacation at time t and the server is free. When the
server is in this state J(t) = 0.

(b) the server is on a working vacation at time t and the server is busy. If the
server is in this state J(t) = 1.

(c) the server is in a regular busy period at time t and the server is free. When
the server is in this state J(t) = 2.

(d) the server is in a regular busy period at time t and the server is busy. If the
server is in this state J(t) = 3.

Then {Q(t), J(t)} is a Markov process with state space

Ω = {(k, j), k ≥ 0, j = 0, 1, 2, 3}.

The system states and one step transitions are shown in Figure 1. Using the
lexicographical sequence for the states, the infinitesimal generator can be written as

Q̃ =

0
1
...

N − 1
N

N + 1
...

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 C0

B A1 C
. . . . . . . . .

B A1 C
B A C

B A C
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Figure 1. Transition diagram of the states when N=3.

where

A0 =

⎛⎜⎝−λ λ 0 0
η −λ − η 0 0
0 0 0 0
μ 0 0 −λ − μ

⎞⎟⎠; C0 =

⎛⎜⎝0 0 0 0
0 λ 0 0
0 0 0 0
0 0 0 λ

⎞⎟⎠;

B =

⎛⎜⎝0 α 0 0
0 0 0 0
0 0 0 α
0 0 0 0

⎞⎟⎠; A1 =

⎛⎜⎝−λ − α λ 0 0
η −λ − α − η 0 0
0 0 −λ − α λ
0 0 μ −λ − α − μ

⎞⎟⎠;

A =

⎛⎜⎝−λ − α − θ λ θ 0
0 −λ − α − η − θ η θ
0 0 −λ − α λ
0 0 μ −λ − α − μ

⎞⎟⎠; C =

⎛⎜⎝ 0 0 0 0
α λ 0 0
0 0 0 0
0 0 α λ

⎞⎟⎠.

Due to the block structure of matrix Q̃, {Q(t), J(t)} is called a QBD process.
Note that when there is no customer in the orbit, the probability that the server

is in a busy period and does not serve a customer is zero.

3. Stability condition and rate matrix R

In this section, we derive the stability condition and the rate matrix R.

Theorem 3.1. The QBD process {Q(t), J(t)} is positive recurrent if and only if
(μ − 2λ)α > λ2.
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Proof. First, we assume

D = B + A + C =

⎛⎜⎝−λ − α − θ λ + α θ 0
α −α − η − θ η θ
0 0 −λ − α λ + α
0 0 α + μ −α − μ

⎞⎟⎠.

Since matrix D is reducible, the Theorem 7.3.1 in [5] gives the condition for positive
recurrence of the QBD. After permutation of rows and columns, the Theorem 7.3.1
states that the QBD is positive recurrent if and only if

υ

(
0 α
0 0

)
e > υ

(
0 0
α λ

)
e,

where e is a column vector with all elements equal to one, and υ is the unique

solution of the system υ

(−λ − α λ + α
α + μ −α − μ

)
= 0, υe = 1. After some algebraic

manipulation, the QBD process is positive recurrent if and only if α(α + μ) >
(λ + α)2, i.e., (μ − 2λ)α > λ2. �

Remark 3.2. In order to obtain the stability condition, we can also use the
method in [17]. It needs to guarantee that the number of eigenvalues of Q(x) =
Bx2 + Ax + C inside the unit disk is 4. We can easily get that Q(x) have five
eigenvalues: x1 = 0, x2 = λ(λ + 2α + θ)/[(λ + α + θ)(λ + α + η + θ) − α2], x3 =
0, x4 = λ(λ + 2α)/αμ, x5 = 1. Thus, x4 < 1 leads to the result in Theorem 2.1.

Next, we solve the minimal non-negative solution R of the matrix quadratic equa-
tion

R2B + RA + C = 0 (3.1)

Theorem 3.3. If (μ − 2λ)α > λ2, the matrix equation (3.1) has the minimal
non-negative solution

R =

⎛⎜⎝ 0 0 0 0
r1 r2 r3 r4

0 0 0 0
0 0 r5 r6

⎞⎟⎠,

where

r1 =
α

λ + α + θ
, r2 =

λ(λ + 2α + θ)
(λ + α + θ)(λ + α + η + θ) − α2

, r3 =
θr1 + (η + θ)r2

(1 − r2)α
,

r4 =
λ + α

μ
r3 − θr1 + ηr2

μ
, r5 =

λ + α

α
, r6 =

λ(λ + 2α)
αμ

·
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Proof. From the structure of B, A, C, we can assume R =
(

R11 R12

0 R22

)
, where

R11, R12 and R22 are all 2 × 2 matrices. Taking R into (3.1), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = R2
11

(
0 α

0 0

)
+ R11

(
−λ − α − θ λ

0 −λ − α − η − θ

)
+

(
0 0
α λ

)
,

0 = (R11R12 + R12R22)

(
0 α

0 0

)
+ R11

(
θ 0
η θ

)

+ R12

(
−λ − α λ

μ −λ − α − μ

)
+

(
0 0
0 0

)
,

0 = R2
22

(
0 α

0 0

)
+ R22

(
−λ − α λ

μ −λ − α − μ

)
+

(
0 0
α λ

)
.

From the first equation, we get R11 =
(

0 0
r1 r2

)
. Similarly, R22 =

(
0 0
r5 r6

)
can be

derived from the third equation. Taking R11 and R22 into the second equation, we

finally obtain R12 =
(

0 0
r3 r4

)
by some computation. �

Remark 3.4. In our model, B, A, C and R are all block upper triangular ma-
trices. When we solve the equation (3.1), we don’t solve it directly, but break
the equation into three matrix equations. This method is more effective when the
dimension of the matrix is higher, but does not always hold in general case.

4. Stationary probability distribution

If (μ− 2λ)α > λ2, let (Q, J) be the stationary limit of the process {Q(t), J(t)},
and denote

πk = (πk0, πk1, πk2, πk3), k ≥ 0;
πkj = P{Q = k, J = j} = lim

t→∞P{Q(t) = k, J(t) = j}, (k, j) ∈ Ω.

Note that from the states we described before, π02 = 0.

Theorem 4.1. If (μ− 2λ)α > λ2, the stationary probability distribution of (Q,J)
is given by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

πk0 = πN−1,1r1r
k−N
2 , k ≥ N,

πk1 = πN−1,1r
k+1−N
2 , k ≥ N,

πk2 = πN−1,1

(
r3r

k−N
2 +

r4r5

r6 − r2

(
rk−N
6 − rk−N

2

))
+ πN−1,3r5r

k−N
6 , k ≥ N,

πk3 = πN−1,1
r4

r6 − r2

(
rk+1−N
6 − rk+1−N

2

)
+ πN−1,3r

k+1−N
6 , k ≥ N,

(4.1)
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πk0 =
α+η

λ+α
π01+

α

λ+α
(π11−π01)

1−qk−1
1

1−q1
+

η

λ+α
(π11−π01)

1−qk
1

1−q1
, (4.2)

2 ≤ k ≤ N − 2, (4.3)

πk1 = π01 + (π11 − π01)
1 − qk

1

1 − q1
, 2 ≤ k ≤ N − 2, (4.4)

πk2 =
α+μ

λ+α
π03+

α

λ+α
(π13−π03)

1−qk−1
2

1−q2
+

μ

λ+α
(π13−π03)

1−qk
2

1 − q2
, (4.5)

2 ≤ k ≤ N − 2, (4.6)

πk3 = π03 + (π13 − π03)
1 − qk

2

1 − q2
, 2 ≤ k ≤ N − 2, (4.7)

πN−1,0 =
α(r1α − λ − α − η) − λη

λη + (λ + α)(r1α − λ − α − η)
πN−2,1, (4.8)

πN−1,1 =
λ + α

η
πN−1,0 − α

η
πN−2,1, (4.9)

πN−1,2 = r3πN−1,1 +
λ + α

α
πN−2,3, (4.10)

πN−1,3 =
λ + α

μ
πN−1,2 − α

μ
πN−2,3, (4.11)

where

q1 =
λ(λ + 2α)

αη
, q2 =

λ(λ + 2α)
αμ

,

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π11 = −K−1

[
λ(λ + 2α + η)

λ + α
+ Δ − K

]
π01, (4.12)

π10 =
η

λ + α
π11, (4.13)

π00 =
λ + η

λ
π01 − α

λ
π10, (4.14)

π03 =
λ

μ
π00 − η

μ
π01, (4.15)

π12 =
λ + μ

α
π03, (4.16)

π13 =
λ + α

μ
π12, (4.17)

where Δ =
α2(r1α − λ − α − η) − λαη

λη + (λ + α)(r1α − λ − α − η)
− λ − α − η, and K =

λ(λ + 2α)
λ + α

1 − qN−3
1

1 − q1
+ (Δ +

λη

λ + α
)
1 − qN−2

1

1 − q1
.

Finally, π01 can be determined by the normalization condition.
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Proof. Using the matrix-geometric solution method (see [5]), we have

πk = (πk0, πk1, πk2, πk3) = πN−1R
k+1−N

= (πN−1,0, πN−1,1, πN−1,2, πN−1,3)Rk+1−N , k ≥ N.

And for k ≥ N ,

Rk+1−N =⎛⎜⎜⎜⎜⎜⎝
0 0 0 0

r1r
k−N
2 rk+1−N

2 r3r
k−N
2 +

r4r5

r6−r2

(
rk−N
6 −rk−N

2

) r4

r6−r2

(
rk+1−N
6 −rk+1−N

2

)
0 0 0 0

0 0 r5r
k−N
6 rk+1−N

6

⎞⎟⎟⎟⎟⎟⎠,

taking Rk+1−N into the above equation, we get (4.1). On the other hand,
π0, π1, · · · , πN−1 satisfies the next equation

(π0, π1, · · · , πN−1)B[R] = 0,

where

B[R] =

0

1

...

N − 2

N − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 C0

B A1 C

. . . . . . . . .

B A1 C

B RB + A1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From the infinitesimal generator Q̃, we can obtain πN−2C + πN−1A1 + πNB = 0.
Since πN = πN−1R, we can get πN−2C + πN−1(A1 + RB) = 0. Thus, we have
RB + A1 in the last line of B[R].

And,

RB + A1 =

⎛⎜⎜⎜⎜⎝
−λ − α λ 0 0

η r1α − λ − α − η 0 r3α

0 0 −λ − α λ

0 0 μ r5α − λ − α − μ

⎞⎟⎟⎟⎟⎠.
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Thus, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λπ00 + ηπ01 + μπ03 = 0, (4.18)
λπ00 − (λ + η)π01 + απ10 = 0, (4.19)
−(λ + μ)π03 + απ12 = 0, (4.20)
−(λ + α)π10 + ηπ11 = 0, (4.21)
−(λ + α)π12 + μπ13 = 0, (4.22)
απk−1,1 − (λ + α)πk0 + ηπk1 = 0, 2 ≤ k ≤ N − 2, (4.23)

λπk−1,1 + λπk0 − (λ + α + η)πk1 + απk+1,0 = 0, 1 ≤ k ≤ N − 2, (4.24)
απk−1,3 − (λ + α)πk2 + μπk3 = 0, 2 ≤ k ≤ N − 2, (4.25)
λπk−1,3 + λπk2 − (λ + α + μ)πk3 + απk+1,2 = 0, 1 ≤ k ≤ N − 2, (4.26)
απN−2,1 − (λ + α)πN−1,0 + ηπN−1,1 = 0, (4.27)
λπN−2,1 + λπN−1,0 + (r1α − λ − α − η)πN−1,1 = 0, (4.28)
απN−2,3 − (λ + α)πN−1,2 + μπN−1,3 = 0, (4.29)
λπN−2,3 + r3απN−1,1 + λπN−1,2 + (r5α − λ − α − μ)πN−1,3 = 0. (4.30)

From (4.23) and (4.24), we get (4.4) by some computation. Taking (4.4) into (4.23),
we get (4.2). In a similar way, we will obtain (4.5) and (4.7) from (4.25) and (4.26).
From (4.27) and (4.28), we get πN−1,0 and πN−1,1 after some computation. Simi-
larly, taking r5 into (4.30), together with (4.29), we can derive πN−1,2 and πN−1,3.
Then, π10, π00, π03, π12 and π13 can be obtained from the equations (4.18)–(4.22).
Next, we explain the equation (4.12). Let k take N − 2 in equation (4.24), using
the expressions of πN−3,1, πN−2,0, πN−2,1 and πN−1,0, we get (4.12) after some
computation. Since

∑3
j=0

∑∞
k=0 πkj = 1, we can finally get π01. �

5. Conditional stochastic decomposition

Consider a retrial M/M/1 queue with collisions. This system at any time t can
be described by two inter-valued random variables. Let Q∗(t) represent the number
of customers in the orbit at time t, and

J∗(t) =

{
0, the server is free at time t,

1, the server is busy at time t,

then {Q∗(t), J∗(t)} is a Markov process with state space {(k, j), k ≥ 0, j = 0, 1}.
And the infinitesimal generator can be written as

Q̃∗ =

⎛⎜⎜⎝
A0 C0

B A C
B A C

. . . . . . . . .

⎞⎟⎟⎠,
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where

A0 =
(−λ λ

μ −λ − μ

)
; C0 =

(
0 0
0 λ

)
;

B =
(

0 α
0 0

)
; A =

(−λ − α λ
μ −λ − α − μ

)
; C =

(
0 0
α λ

)
.

Following the steps we used before, the QBD process {Q∗(t), J∗(t)} is positive
recurrent if and only if (μ − 2λ)α > λ2. Denote π̃kj = P{Q∗ = k, J∗ = j} =
lim

t→∞ P{Q∗(t) = k, J∗(t) = j}. Then, the stationary probability distribution is
given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π̃10 =
λ2

αμ
π̃00,

π̃k0 = π̃11r5r
k−2
6 , k ≥ 2,

π̃01 =
λ

μ
π̃00,

π̃11 =
λ2(λ + α)

αμ2
π̃00,

π̃k1 = π̃11r
k−1
6 , k ≥ 1,

where π̃00 can be determined by the normalization condition.
Let Qo = {Q∗ − 1|Q∗ ≥ 1, J∗ = 1}, and Qo is a conditional queue length given

that the server is busy and there are at least one customer in the orbit.

Lemma 5.1. If (μ − 2λ)α > λ2, then Qo has a probability generating function

GQo(z) =
1 − r6

1 − r6z
.

Proof.

GQo(z) =
∞∑

k=0

zkP{Qo = k} =
∞∑

k=0

zk P{Q∗ = k + 1, J∗ = 1}
P{Q∗ ≥ 1, J∗ = 1}

=
∞∑

k=0

π̃11r
k
6zk∑∞

k=1 π̃11r
k−1
6

=
1 − r6

1 − r6z
· �

We introduce a random variable QN = {Q − N |Q ≥ N, J = 1or3}, and QN is a
conditional queue length given that the server is busy and there are at least N
customers in the orbit. Let P ∗

b be the probability that the server is busy and there



Title Suppressed Due to Excessive Length 365

are at least N customers in the orbit. Clearly,

P ∗
b = P{Q ≥ N, J = 1or3} =

∞∑
k=N

πk1 +
∞∑

k=N

πk3

=
∞∑

k=N

πN−1,1r
k+1−N
2 +

∞∑
k=N

πN−1,1
r4

r6 − r2
(rk+1−N

6 − rk+1−N
2 )

+
∞∑

k=N

πN−1,3r
k+1−N
6

=
r4 + r2(1 − r6)
(1 − r2)(1 − r6)

πN−1,1 +
r6

1 − r6
πN−1,3.

Theorem 5.2. If (μ−2λ)α > λ2, the conditional queue length QN can be decom-
posed into the sum of two independent random variables: QN = Qo + Qc, where
Qo follows a geometric distribution with parameter 1− r6. Additional queue length
Qc has a distribution

P{Qc = 0} =
1

P ∗
b

(r2 + r4)πN−1,1 + r6πN−1,3

1 − r6
,

P{Qc = k} =
πN−1,1

P ∗
b

r2(r2 + r4 − r6)
1 − r6

rk−1
2 , k ≥ 1.

Proof. The probability generating function of QN is as follows:

GQN (z) =
∞∑

k=0

zkP{QN = k} =
1

P ∗
b

( ∞∑
k=0

zkπN+k,1 +
∞∑

k=0

zkπN+k,3

)

=
1

P ∗
b

[
πN−1,1

r2

1 − r2z
+ πN−1,1

r4

(1 − r2z)(1 − r6z)
+ πN−1,3

r6

1 − r6z

]
=

1
P ∗

b

1 − r6

1 − r6z

[
πN−1,1

r2(1 − r6z)
(1 − r6)(1 − r2z)

+ πN−1,1
r4

(1 − r6)(1 − r2z)

+ πN−1,3
r6

1 − r6

]
=

1
P ∗

b

1 − r6

1 − r6z

[
(r2 + r4)πN−1,1 + r6πN−1,3

1 − r6
+ πN−1,1

r2(r2 + r4 − r6)z
(1 − r6)(1 − r2z)

]
=

1−r6

1−r6z

[
1

P ∗
b

(r2+r4)πN−1,1+r6πN−1,3

1−r6
+πN−1,1

1
P ∗

b

r2(r2+r4−r6)z
(1−r6)(1−r2z)

]
= GQo(z)GQc(z). �
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6. Performance measures

From Theorem 4.1, the probability that the server is busy is

Pb =
∞∑

k=0

πk1 +
∞∑

k=0

πk3 = (N − 1)
(

π11

1 − q1
− q1π01

1 − q1

)
− π11 − π01

(1 − q1)2
(1 − qN−1

1 )

+ (N − 1)
(

π13

1 − q2
− q2π03

1 − q2

)
− π13 − π03

(1 − q2)2
(1 − qN−1

2 )

+
1 − r6 + r4

(1 − r2)(1 − r6)
πN−1,1 +

1
1 − r6

πN−1,3,

and the probability that the server is free is

Pf =
∞∑

k=0

πk0 +
∞∑

k=1

πk2 = 1 − Pb.

Let L be the number of customers in the orbit, then from Theorem 4.1,

E[L] =
∞∑

k=1

k(πk0 + πk1 + πk2 + πk3)

=
N−1∑
k=1

k(πk0 + πk2) +
N−2∑
k=1

k(πk1 + πk3)

+ (N − 1)πN−1,1
(1 + r1 + r3)(1 − r6) + r4(1 + r5)

(1 − r2)(1 − r6)

+ (N − 1)πN−1,3
1 + r5

1 − r6
+ πN−1,3

r5 + r6

(1 − r6)2

+ πN−1,1
(r1 + r2 + r3)(1 − r6)2 + r4r5(2 − r2 − r6) + r4(1 − r2r6)

(1 − r2)2(1 − r6)2
.

Let Ls be the number of customers in the system, we have

E[Ls] =
∞∑

k=1

k(πk0 + πk2) +
∞∑

k=0

(k + 1)(πk1 + πk3) = E[L] + Pb.

Let W be the waiting time of a customer in the orbit, using Little’s formula,
E[W ] = E[L]/λ. And, the expected sojourn time of a customer in the system
E[Ws] = E[Ls]/λ.

The steady-state interrupted frequency IF of the service due to collisions is
given by

IF =
∞∑

k=1

α(πk1 + πk3) = α(Pb − π01 − π03).
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Figure 2. The expected queue length in the orbit with the change of θ.

Let T be the system busy period that starts at an epoch when an arriving customer
finds an empty system and ends at the next departure epoch at which the system
is empty. Using the theory of regenerative processes,

π00 =
E[T00]

1/λ + E[T ]
,

where E[T00] is the amount of time in a regenerative cycle during which the system
is in the state (0,0). Clearly, E[T00] = 1/λ. Thus, E[T ] = λ−1(π−1

00 − 1).

7. Numerical results

In this section, taking N=3, λ=1.2 and μ=5, we present some numerical ex-
amples to illustrate the effect of the vacation rate θ, service rate η and retrial
rate α.

Figure 2 illustrates the expected queue length in the orbit E[L] with the change
of θ at different retrial rate α. Let η=0.5<μ=5, we can find that E[L] decreases
with the rate θ increasing. And, it’s easy to see that, if the other conditions are
same, the larger retrial rate α is, the smaller E[L] becomes. In Figure 3, with the
change of vacation rate θ, the curves of E[Ls] (the expected queue length in the
system) and E[Ws] (the expected sojourn time) are provided. E[Ls] and E[Ws]
both decrease with an increasing value of θ.

Figure 4 shows the influence of service rate η on the expected queue length
in the orbit E[L]. Taking θ=1, it’s obvious that E[L] decreases evidently with
the rate η increasing. When η=0, there is no service during the vacation period, so
the vacation interruption cannot happen. When service rate η approaches to μ=5,
the model we considered will become a retrial M/M/1 queue with collisions. Under
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Figure 3. E[Ls] and E[Ws] with the change of θ.
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Figure 4. The expected queue length in the orbit with the change of η.

the vacation policy, if we want to develop a better service, we can consider working
vacation policy that utilizes the server and decreases the waiting jobs effectively.
In Figure 5, Pf (the probability that the server is free) and IF (the steady-state
interrupted frequency) are plotted versus service rate η. We find that Pf increases
as η increases while IF decreases as η increases.

From Theorem 3.1, we vary the retrial rate α from 2 to 4. Figure 6 shows the
effect of retrial rate α on the expected queue length in the orbit E[L]. It’s easy to
see E[L] decreases with the rate α increasing, this is due to the fact that the inter-
retrial time becomes shorter. And, the larger service rate η is, the smaller E[L]
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Figure 5. Pf and IF with the change of η.
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Figure 6. The expected queue length in the orbit with the change of α.

becomes. In Figure 7, the effect of retrial rate on E[T ] (the system busy period)
and IF are presented. We can see that E[T ] decreases evidently with an increasing
value of α. And as expected, IF increases with the retrial rate α increasing.

8. Conclusion

In this paper, an M/M/1 retrial queue with collisions and working vacation
interruption under N-policy is analyzed. Using the matrix-analytic method, we
obtain the stationary probability distribution. We also derive the conditional
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Figure 7. E[T ] and IF with the change of α.

stochastic decomposition and some performance measures. Under the stability
condition, we perform some numerical examples to study the effect of various pa-
rameters on the system’s characteristics. And, the model we considered without
vacation interruption can be discussed in a similar way.

Appendix. A

If the matrix A = A0 + A1 + A2 is reducible, and A is written, possibly after a
permutation of its rows and columns, as

A =

⎛⎜⎜⎜⎜⎜⎝
C(1) 0 · · · 0 0

0 C(2) · · · 0 0
...

...
. . .

...
...

0 0 · · · C(K) 0
D(1) D(2) · · · D(K) D(0)

⎞⎟⎟⎟⎟⎟⎠, (A.1)

where the blocks C(k), 1 ≤ k ≤ K are irreducible and satisfy C(k)e = 0. The
matrices A0, A1 and A2 are similarly structured, and we have that

Ai =

⎛⎜⎜⎜⎜⎜⎜⎝
C

(1)
i 0 · · · 0 0
0 C

(2)
i · · · 0 0

...
...

. . .
...

...
0 0 · · · C

(K)
i 0

D
(1)
i D

(2)
i · · · D

(K)
i D

(0)
i

⎞⎟⎟⎟⎟⎟⎟⎠.

The continuous time case of Theorem 7.3.1 in [5]: Assume that the matrix
A = A0 + A1 + A2 is partitioned as in (A.1), where K ≥ 1 and the matrices C(k),
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1 ≤ k ≤ K are irreducible. The continuous time QBD is positive recurrent if and
only if γ(k)C

(k)
2 e > γ(k)C

(k)
0 e for all k: 1 ≤ k ≤ K, where γ(k) is the unique solution

of the system γ(k)C(k) = 0, γ(k)e = 1.

Remark A.1. The matrices A0, A1, A2 and A represent matrices C, A, B and D
in our model, respectively.
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